72 research outputs found

    Precision Spectroscopy of Polarized Molecules in an Ion Trap

    Get PDF
    Polar molecules are desirable systems for quantum simulations and cold chemistry. Molecular ions are easily trapped, but a bias electric field applied to polarize them tends to accelerate them out of the trap. We present a general solution to this issue by rotating the bias field slowly enough for the molecular polarization axis to follow but rapidly enough for the ions to stay trapped. We demonstrate Ramsey spectroscopy between Stark-Zeeman sublevels in 180Hf19F+ with a coherence time of 100 ms. Frequency shifts arising from well-controlled topological (Berry) phases are used to determine magnetic g-factors. The rotating-bias-field technique may enable using trapped polar molecules for precision measurement and quantum information science, including the search for an electron electric dipole moment.Comment: Accepted to Scienc

    Social considerations for the cultivation of industrial crops on marginal agricultural land as feedstock for bioeconomy

    Get PDF
    Marginal agricultural land (MAL) has received much attention in research and policy formation as a potential resource for cultivating biomass for energy and biobased products. However, it is still unclear whether biomass from MAL meets the requirements of social sustainability. This study develops a conceptual linkage between value-chain analysis and social life-cycle analysis (S-LCA), and assesses both positive impacts (handprints) and negative impacts (footprints). A participatory approach including interviews and surveys was used to understand views and perceptions of the relevant stakeholders. A systemic strategy was applied to analyze value-chain activities, understand challenges, and identify competitive advantages and disadvantages. For S-LCA, the variety of impacts and indicators was met through a literature review and a consistent scoring system. The cultivation of perennial crops on MAL tends to cause skepticism among stakeholders, who are concerned about long-term commitment and biodiversity risks. Annual crops, on the other hand, are perceived by all stakeholder categories as very promising opportunities across all impact categories and indicators. They can facilitate income diversification and offer smart sustainable cropping options through crop rotation, agroforestry, etc. Most of the technological pathways examined are highly innovative, have a low technological readiness level, and are still at the early market development stage. As such they are ranked by stakeholders as medium opportunities for short-term implementation. In contrast, pyrolysis to industrial heat, ethanol from switchgrass, insulation material from hemp, and biogas/biomethane from sorghum are considered opportunities with good chances of being implemented in the short term. © 2022 The Authors. Biofuels, Bioproducts and Biorefining published by Society of Industrial Chemistry and John Wiley & Sons, Ltd

    Marginal agricultural land low-input systems for biomass production

    Get PDF
    This study deals with approaches for a social-ecological friendly European bioeconomy based on biomass from industrial crops cultivated on marginal agricultural land. The selected crops to be investigated are: Biomass sorghum, camelina, cardoon, castor, crambe, Ethiopian mustard, giant reed, hemp, lupin, miscanthus, pennycress, poplar, reed canary grass, safflower, Siberian elm, switchgrass, tall wheatgrass, wild sugarcane, and willow. The research question focused on the overall crop growth suitability under low-input management. The study assessed: (i) How the growth suitability of industrial crops can be defined under the given natural constraints of European marginal agricultural lands; and (ii) which agricultural practices are required for marginal agricultural land low-input systems (MALLIS). For the growth-suitability analysis, available thresholds and growth requirements of the selected industrial crops were defined. The marginal agricultural land was categorized according to the agro-ecological zone (AEZ) concept in combination with the marginality constraints, so-called 'marginal agro-ecological zones' (M-AEZ). It was found that both large marginal agricultural areas and numerous agricultural practices are available for industrial crop cultivation on European marginal agricultural lands. These results help to further describe the suitability of industrial crops for the development of social-ecologically friendly MALLIS in Europe

    Marginal Agricultural Land Low-Input Systems for Biomass Production

    Get PDF
    This study deals with approaches for a social-ecological friendly European bioeconomy based on biomass from industrial crops cultivated on marginal agricultural land. The selected crops to be investigated are: Biomass sorghum, camelina, cardoon, castor, crambe, Ethiopian mustard, giant reed, hemp, lupin, miscanthus, pennycress, poplar, reed canary grass, safflower, Siberian elm, switchgrass, tall wheatgrass, wild sugarcane, and willow. The research question focused on the overall crop growth suitability under low-input management. The study assessed: (i) How the growth suitability of industrial crops can be defined under the given natural constraints of European marginal agricultural lands; and (ii) which agricultural practices are required for marginal agricultural land low-input systems (MALLIS). For the growth-suitability analysis, available thresholds and growth requirements of the selected industrial crops were defined. The marginal agricultural land was categorized according to the agro-ecological zone (AEZ) concept in combination with the marginality constraints, so-called ‘marginal agro-ecological zones’ (M-AEZ). It was found that both large marginal agricultural areas and numerous agricultural practices are available for industrial crop cultivation on European marginal agricultural lands. These results help to further describe the suitability of industrial crops for the development of social-ecologically friendly MALLIS in Europe

    Perennial biomass cropping and use: Shaping the policy ecosystem in European countries

    Get PDF
    Demand for sustainably produced biomass is expected to increase with the need to provide renewable commodities, improve resource security and reduce greenhouse gas emissions in line with COP26 commitments. Studies have demonstrated additional environmental benefits of using perennial biomass crops (PBCs), when produced appropriately, as a feedstock for the growing bioeconomy, including utilisation for bioenergy (with or without carbon capture and storage). PBCs can potentially contribute to Common Agricultural Policy (CAP) (2023–27) objectives provided they are carefully integrated into farming systems and landscapes. Despite significant research and development (R&D) investment over decades in herbaceous and coppiced woody PBCs, deployment has largely stagnated due to social, economic and policy uncertainties. This paper identifies the challenges in creating policies that are acceptable to all actors. Development will need to be informed by measurement, reporting and verification (MRV) of greenhouse gas emissions reductions and other environmental, economic and social metrics. It discusses interlinked issues that must be considered in the expansion of PBC production: (i) available land; (ii) yield potential; (iii) integration into farming systems; (iv) R&D requirements; (v) utilisation options; and (vi) market systems and the socio-economic environment. It makes policy recommendations that would enable greater PBC deployment: (1) incentivise farmers and land managers through specific policy measures, including carbon pricing, to allocate their less productive and less profitable land for uses which deliver demonstrable greenhouse gas reductions; (2) enable greenhouse gas mitigation markets to develop and offer secure contracts for commercial developers of verifiable low-carbon bioenergy and bioproducts; (3) support innovation in biomass utilisation value chains; and (4) continue long-term, strategic R&D and education for positive environmental, economic and social sustainability impacts

    Building the Policy Ecosystem in Europe for Cultivation and Use of Perennial Biomass Crops

    Get PDF
    Perennial biomass crops (PBCs) can potentially contribute to all ten Common Agricultural Policy (2023-27) objectives and up to eleven of the seventeen UN Sustainable Development Goals. This paper discusses interlinked issues that must be considered in the expansion of PBC production: i) available land; ii) yield potential; iii) integration into farming systems; iv) research and development requirements; v) utilisation options; and vi) market systems and the socio-economic environment. The challenge to create development pathways that are acceptable for all actors, relies on measurement, reporting and verification of greenhouse gas emissions reduction in combination with other environmental, economic and social aspects. This paper makes the following policy recommendations to enable greater PBC deployment: 1) incentivise farmers and land managers through specific policy measures, including carbon pricing, to allocate their less productive and less profitable land for uses which deliver demonstrable greenhouse gas reductions; 2) enable greenhouse gas mitigation markets to develop and offer secure contracts for commercial developers of verifiable low carbon bioenergy and bio-products; 3) support innovation in biomass utilisation value chains; and 4) continue long-term, strategic research and development and education for positive environmental, economic and social sustainability impacts. © 2023 ETA-Florence Renewable Energies

    Elektronenmikroskopischer Nachweis von Fettpartikeln im Disseschen Raum

    No full text
    corecore