285 research outputs found

    KIC 4768731: a bright long-period roAp star in theKeplerfield

    Get PDF
    We report the identification of 61.45 d−1 (711.2 μHz) oscillations, with amplitudes of 62.6 μmag, in KIC 4768731 (HD 225914) using Kepler photometry. This relatively bright (V = 9.17) chemically peculiar star with spectral type A5 Vp SrCr(Eu) has previously been found to exhibit rotational modulation with a period of 5.21 d. Fourier analysis reveals a simple dipole pulsator with an amplitude that has remained stable over a 4-yr time span, but with a frequency that is variable. Analysis of high-resolution spectra yields stellar parameters of Teff = 8100 ± 200 K, log g = 4.0 ± 0.2, [Fe/H] = +0.31 ± 0.24 and v sin i = 14.8 ± 1.6 km s−1. Line profile variations caused by rotation are also evident. Lines of Sr, Cr, Eu, Mg and Si are strongest when the star is brightest, while Y and Ba vary in antiphase with the other elements. The abundances of rare earth elements are only modestly enhanced compared to other roAp stars of similar Teff and log g. Radial velocities in the literature suggest a significant change over the past 30 yr, but the radial velocities presented here show no significant change over a period of 4 yr

    Seismic constraints on the radial dependence of the internal rotation profiles of six Kepler subgiants and young red giants

    Get PDF
    Context : We still do not know which mechanisms are responsible for the transport of angular momentum inside stars. The recent detection of mixed modes that contain the signature of rotation in the spectra of Kepler subgiants and red giants gives us the opportunity to make progress on this issue. Aims: Our aim is to probe the radial dependance of the rotation profiles for a sample of Kepler targets. For this purpose, subgiants and early red giants are particularly interesting targets because their rotational splittings are more sensitive to the rotation outside the deeper core than is the case for their more evolved counterparts. Methods: We first extract the rotational splittings and frequencies of the modes for six young Kepler red giants. We then perform a seismic modeling of these stars using the evolutionary codes CESAM2k and ASTEC. By using the observed splittings and the rotational kernels of the optimal models, we perform inversions of the internal rotation profiles of the six stars. Results: We obtain estimates of the mean rotation rate in the core and in the convective envelope of these stars. We show that the rotation contrast between the core and the envelope increases during the subgiant branch. Our results also suggest that the core of subgiants spins up with time, contrary to the RGB stars whose core has been shown to spin down. For two of the stars, we show that a discontinuous rotation profile with a deep discontinuity reproduces the observed splittings significantly better than a smooth rotation profile. Interestingly, the depths that are found most probable for the discontinuities roughly coincide with the location of the H-burning shell, which separates the layers that contract from those that expand. These results will bring observational constraints to the scenarios of angular momentum transport in stars.Comment: Accepted in A&A, 27 pages, 18 figure

    Overview of the LAMOST-KeplerKepler project

    Get PDF
    The NASA KeplerKepler mission obtained long-term high-quality photometric observations for a large number of stars in its original field of view from 2009 to 2013. In order to provide reliable stellar parameters in a homogeneous way, the LAMOST telescope began to carry out low-resolution spectroscopic observations for as many stars as possible in the KeplerKepler field in 2012. By September 2018, 238,386 low-resolution spectra with SNRg6_g \geq 6 had been collected for 155,623 stars in the KeplerKepler field, enabling the determination of atmospheric parameters and radial velocities, as well as spectral classification of the target stars. This information has been used by astronomers to carry out research in various fields, including stellar pulsations and asteroseismology, exoplanets, stellar magnetic activity and flares, peculiar stars and the Milky Way, binary stars, etc. We summarize the research progress in these fields where the usage of data from the LAMOST-KeplerKepler (LK) project has played a role. In addition, time-domain medium-resolution spectroscopic observations have been carried out for about 12,000 stars in four central plates of the KeplerKepler field since 2018. The currently available results show that the LAMOST-KeplerKepler medium resolution (LK-MRS) observations provide qualified data suitable for research in additional science projects including binaries, high-amplitude pulsating stars, etc. As LAMOST is continuing to collect both low- and medium-resolution spectra of stars in the KeplerKepler field, we expect more data to be released continuously and new scientific results to appear based on the LK project data.Comment: 15 pages, 9 figures, 1 table, RAA accepte

    Lamost observations in the kepler field. I. Database of low-resolution spectra*

    Get PDF
    The nearly continuous light curves with micromagnitude precision provided by the space mission Kepler are revolutionizing our view of pulsating stars. They have revealed a vast sea of low-amplitude pulsation modes that were undetectable from Earth. The long time base of Kepler light curves allows for the accurate determination of the frequencies and amplitudes of pulsation modes needed for in-depth asteroseismic modeling. However, for an asteroseismic study to be successful, the first estimates of stellar parameters need to be known and they cannot be derived from the Kepler photometry itself. The Kepler Input Catalog provides values for the effective temperature, surface gravity, and metallicity, but not always with sufficient accuracy. Moreover, information on the chemical composition and rotation rate is lacking. We are collecting low-resolution spectra for objects in the Kepler field of view with the Large Sky Area Multi-Object Fiber Spectroscopic Telescope (LAMOST, Xinglong observatory, China). All of the requested fields have now been observed at least once. In this paper, we describe those observations and provide a useful database for the whole astronomical communit

    A semi-automatic procedure for abundance determination of A- and F-type stars

    Full text link
    A variety of physical processes leading to different types of pulsations and chemical compositions is observed among A- and F-type stars. To investigate the underlying mechanisms responsible for these processes in stars with similar locations in the H-R diagram, an accurate abundance determination is needed, among others. Here, we describe a semi-automatic procedure developed to determine chemical abundances of various elements ranging from helium to mercury for this type of stars. We test our procedure on synthetic spectra, demonstrating that our procedure provides abundances consistent with the input values, even when the stellar parameters are offset by reasonable observational errors. For a fast-rotating star such as Vega, our analysis is consistent with those carried out with other plane-parallel model atmospheres. Simulations show that the offsets from the input abundances increase for stars with low inclination angle of about 4 degrees. For this inclination angle, we also show that the distribution of the iron abundance found in different regions is bimodal. Furthermore, the effect of rapid rotation can be seen in the peculiar behaviour of the H_beta line.Comment: accepted for publication in MNRAS, contains 6 tables and 8 figure

    Catalog of Galactic Beta Cephei Stars

    Full text link
    We present an extensive and up-to-date catalog of Galactic Beta Cephei stars. This catalog is intended to give a comprehensive overview of observational characteristics of all known Beta Cephei stars. 93 stars could be confirmed to be Beta Cephei stars. For some stars we re-analyzed published data or conducted our own analyses. 61 stars were rejected from the final Beta Cephei list, and 77 stars are suspected to be Beta Cephei stars. A list of critically selected pulsation frequencies for confirmed Beta Cephei stars is also presented. We analyze the Beta Cephei stars as a group, such as the distributions of their spectral types, projected rotational velocities, radial velocities, pulsation periods, and Galactic coordinates. We confirm that the majority of these stars are multiperiodic pulsators. We show that, besides two exceptions, the Beta Cephei stars with high pulsation amplitudes are slow rotators. We construct a theoretical HR diagram that suggests that almost all 93 Beta Cephei stars are MS objects. We discuss the observational boundaries of Beta Cephei pulsation and their physical parameters. We corroborate that the excited pulsation modes are near to the radial fundamental mode in frequency and we show that the mass distribution of the stars peaks at 12 solar masses. We point out that the theoretical instability strip of the Beta Cephei stars is filled neither at the cool nor at the hot end and attempt to explain this observation

    Light therapy as a treatment for sexual dysfunctions -beyond a pilot study

    Get PDF
    Summary Aim. Seasonal trends were demonstrated in reproduction and sexual activity. Through the secretion of melatonin the pineal gland plays an important role, in the neuroendocrine control of sexual function and reproductive physiology. We hypothesized that inhibition of the pineal gland activity through a light treatment may favorably affect sexual function. Method. We recruited 24 subjects with a diagnosis of hypoactive sexual desire disorder and / or primary sexual arousal disorder. The subjects were randomly assigned to either active light treatment (ALT) or placebo light treatment (L-PBO). Participants were assessed during the first evaluation and after 2 weeks of treatment, using the Structured Clinical Interview for Sexual Disorders DSM-IV (SCID-S) and a self-administered rating scale of the level of sexual satisfaction (1 to 10). Repeated measures ANOVA were performed to compare the two groups of patients. Post-hoc analysis was performed by Holm-Sidak test for repeated comparisons. Results. At baseline the two groups were comparable. After 2 weeks the group treated with Light Therapy showed a significant improvement in sexual satisfaction, about 3 times higher than the group that received placebo, while no significant improvement was observed in the group L-PBO. Conclusions. Our results confirm a potentially beneficial effect of Light Therapy on primary sexual dysfunction. In the future, we propose to correlate clinical findings with testosterone levels pre / post treatment
    corecore