21 research outputs found

    Transcriptome analysis of mRNA and miRNA in skeletal muscle indicates an important network for differential Residual Feed Intake in pigs

    Get PDF
    Feed efficiency (FE) can be measured by feed conversion ratio (FCR) or residual feed intake (RFI). In this study, we measured the FE related phenotypes of 236 castrated purebred Yorkshire boars, and selected 10 extreme individuals with high and low RFI for transcriptome analysis. We used RNA-seq analyses to determine the differential expression of genes and miRNAs in skeletal muscle. There were 99 differentially expressed genes identified (q ≀ 0.05). The down-regulated genes were mainly involved in mitochondrial energy metabolism, including FABP3, RCAN, PPARGC1 (PGC-1A), HK2 and PRKAG2. The up-regulated genes were mainly involved in skeletal muscle differentiation and proliferation, including IGF2, PDE7A, CEBPD, PIK3R1 and MYH6. Moreover, 15 differentially expressed miRNAs (|log2FC| ≄ 1, total reads count ≄ 20, p ≀ 0.05) were identified. Among them, miR-136, miR-30e-5p, miR-1, miR-208b, miR-199a, miR-101 and miR-29c were up-regulated, while miR-215, miR-365-5p, miR-486, miR-1271, miR-145, miR-99b, miR-191 and miR-10b were down-regulated in low RFI pigs. We conclude that decreasing mitochondrial energy metabolism, possibly through AMPK - PGC-1A pathways, and increasing muscle growth, through IGF-1/2 and TGF-ÎČ signaling pathways, are potential strategies for the improvement of FE in pigs (and possibly other livestock). This study provides new insights into the molecular mechanisms that determine RFI and FE in pigs

    Plasma and Liver Lipidomics Response to an Intervention of Rimonabant in ApoE*3Leiden.CETP Transgenic Mice

    Get PDF
    Background: Lipids are known to play crucial roles in the development of life-style related risk factors such as obesity, dyslipoproteinemia, hypertension and diabetes. The first selective cannabinoid-1 receptor blocker rimonabant, an anorectic anti-obesity drug, was frequently used in conjunction with diet and exercise for patients with a body mass index greater than 30 kg/m2 with associated risk factors such as type II diabetes and dyslipidaemia in the past. Less is known about the impact of this drug on the regulation of lipid metabolism in plasma and liver in the early stage of obesity. Methodology/Principal Findings: We designed a four-week parallel controlled intervention on apolipoprotein E3 Leiden cholesteryl ester transfer protein (ApoE&z.ast;3Leiden.CETP) transgenic mice with mild overweight and hypercholesterolemia. A liquid chromatography-linear ion trap-Fourier transform ion cyclotron resonance-mass spectrometric approach was employed to investigate plasma and liver lipid responses to the rimonabant intervention. Rimonabant was found to induce a significant body weight loss (9.4%, p<0.05) and a significant plasma total cholesterol reduction (24%, p<0.05). Six plasma and three liver lipids in ApoE&z.ast;3Leiden.CETP transgenic mice were detected to most significantly respond to rimonabant treatment. Distinct lipid patterns between the mice were observed for both plasma and liver samples in rimonabant treatment vs. non-treated controls. This study successfully applied, for the first time, systems biology based lipidomics approaches to evaluate treatment effects of rimonabant in the early stage of obesity. Conclusion: The effects of rimonabant on lipid metabolism and body weight reduction in the early stage obesity were shown to be moderate in ApoE&z.ast;3Leiden.CETP mice on high-fat diet. © 2011 Hu et al

    Insights into Supramolecular Sites Responsible for Complete Separation of Biomass-Derived Phenolics and Glucose in Metal–Organic Framework NU-1000

    Get PDF
    The molecular origins of adsorption of lignin-derived phenolics to metal–organic framework NU-1000 are investigated from aqueous solution as well as in competitive mode with glucose present in the same aqueous mixture. A comparison of adsorption equilibrium constants (<i>K</i><sub>ads</sub>) for phenolics functionalized with either carboxylic acid or aldehyde substituents demonstrated only a slight increase (less than a factor of 6) for the former according to both experiments and calculations. This small difference in <i>K</i><sub>ads</sub> between aldehyde and carboxylic-acid substituted adsorbates is consistent with the pyrene unit of NU-1000 as the adsorption site, rather than the zirconia nodes, while at saturation coverage, the adsorption capacity suggests multiple guests per pyrene. Experimental standard free energies of adsorption directly correlated with the molecular size and electronic structure calculations confirmed this direct relationship, with the pyrene units as adsorption site. The underlying origins of this relationship are grounded in noncovalent π–π interactions as being responsible for adsorption, the same interactions present in the condensed phase of the phenolics, which to a large extent govern their heat of vaporization. Thus, NU-1000 acts as a preformed aromatic cavity for driving aromatic guest adsorption from aqueous solution and does so specifically without causing detectable glucose adsorption from aqueous solution, thereby achieving complete glucose–phenolics separations. The reusability of NU-1000 during an adsorption/desorption cycle was good, even with some of the phenolic compounds with greatest affinity not easiliy removed with water and ethanol washes at room temperature. A competitive adsorption experiment gave an upper bound for <i>K</i><sub>ads</sub> for glucose of at most 0.18 M<sup>–1</sup>, which can be compared with <i>K</i><sub>ads</sub> for the phenolics investigated here, which fell in the range of 443–42 639 M<sup>–1</sup>. The actual value of <i>K</i><sub>ads</sub> for glucose may be much closer to zero given the lack of observed glucose uptake with NU-1000 as adsorbent

    Perfluoroalkyl Sulfonates Cause Alkyl Chain Length–Dependent Hepatic Steatosis and Hypolipidemia Mainly by Impairing Lipoprotein Production in APOE*3-Leiden CETP Mice

    No full text
    Perfluorobutane sulfonate (PFBS), perfluorohexane sulfonate (PFHxS), and perfluorooctane sulfonate (PFOS) are stable perfluoroalkyl sulfonate (PFAS) surfactants, and PFHxS and PFOS are frequently detected in human biomonitoring studies. Some epidemiological studies have shown modest positive correlations of serum PFOS with non-high-density lipoprotein (HDL)-cholesterol (C). This study investigated the mechanism underlying the effect of PFAS surfactants on lipoprotein metabolism. APOE*3-Leiden.CETP mice were fed a Westerntype diet with PFBS, PFHxS, or PFOS (30, 6, and 3 mg/kg/day, respectively) for 4-6 weeks. Whereas PFBS modestly reduced only plasma triglycerides (TG), PFHxS and PFOS markedly reduced TG, non-HDL-C, and HDL-C. The decrease in very lowdensity lipoprotein (VLDL) was caused by enhanced lipoprotein lipase-mediated VLDL-TG clearance and by decreased production of VLDL-TG and VLDL-apolipoprotein B. Reduced HDL production, related to decreased apolipoprotein AI synthesis, resulted in decreased HDL. PFHxS and PFOS increased liver weight and hepatic TG content. Hepatic gene expression profiling data indicated that these effects were the combined result of peroxisome proliferator-activated receptor alpha and pregnane X receptor activation. In conclusion, the potency of PFAS to affect lipoprotein metabolism increased with increasing alkyl chain length. PFHxS and PFOS reduce plasma TG and total cholesterol mainly by impairing lipoprotein production, implying that the reported positive correlations of serum PFOS and non-HDL-C are associative rather than causal. © The Author 2011. Published by Oxford University Press on behalf of the Society of Toxicology. All rights reserved

    Strategies Used by Pet Dogs for Solving Olfaction-Based Problems at Various Distances.

    Get PDF
    The olfactory acuity of domestic dogs has been well established through numerous studies on trained canines, however whether untrained dogs spontaneously utilize this ability for problem solving is less clear. In the present paper we report two studies that examine what strategies family dogs use in two types of olfaction-based problems as well as their success at various distances. In Study 1, thirty dogs were tasked with distinguishing a target, either their covered owner (Exp 1) or baited food (Exp 2), from three visually identical choices at distances of 0m (touching distance), 1m, and 3m. There were nine consecutive trials for each target. We found that in Exp 1 the dogs successfully chose their owners over strangers at 0m and 1m, but not at 3m, where they used a win-stay strategy instead. In Exp 2 the dogs were only successful in choosing the baited pot at 0m. They used the win-stay strategy at 1m, but chose randomly at 3m. In Study 2, a different group of dogs was tested with their owners (Exp 1) and baited food (Exp 2) at just the 3m distance with two possible targets in 10-10 trials. In Exp 1 the dogs' overall performance was at chance level; however, when analyzed by trial, we noticed that despite tending to find their owners on the first trial, they generally switched to a win-stay strategy in subsequent trials, only to return to correctly choosing their owners based on olfaction in the later trials. In Exp 2, the dogs chose randomly throughout. We also found that dogs who relied on visual information in the warm-up trials were less successful in the olfaction-based test. Our results suggest that despite their ability to successfully collect information through olfaction, family dogs often prioritize other strategies to solve basic choice tasks
    corecore