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Transcriptome analysis of mRNA 
and miRNA in skeletal muscle 
indicates an important network  
for differential Residual Feed 
Intake in pigs
Lu Jing1, Ye Hou1, Hui Wu1, Yuanxin Miao1, Xinyun Li1, Jianhua Cao1, John Michael 
Brameld2, Tim Parr2 & Shuhong Zhao1

Feed efficiency (FE) can be measured by feed conversion ratio (FCR) or residual feed intake (RFI). In 
this study, we measured the FE related phenotypes of 236 castrated purebred Yorkshire boars, and 
selected 10 extreme individuals with high and low RFI for transcriptome analysis. We used RNA-seq 
analyses to determine the differential expression of genes and miRNAs in skeletal muscle. There 
were 99 differentially expressed genes identified (q ≤ 0.05). The down-regulated genes were mainly 
involved in mitochondrial energy metabolism, including FABP3, RCAN, PPARGC1 (PGC-1A), HK2 
and PRKAG2. The up-regulated genes were mainly involved in skeletal muscle differentiation and 
proliferation, including IGF2, PDE7A, CEBPD, PIK3R1 and MYH6. Moreover, 15 differentially expressed 
miRNAs (|log2FC| ≥ 1, total reads count ≥ 20, p ≤ 0.05) were identified. Among them, miR-136, miR-
30e-5p, miR-1, miR-208b, miR-199a, miR-101 and miR-29c were up-regulated, while miR-215, miR-
365-5p, miR-486, miR-1271, miR-145, miR-99b, miR-191 and miR-10b were down-regulated in low 
RFI pigs. We conclude that decreasing mitochondrial energy metabolism, possibly through AMPK 
- PGC-1A pathways, and increasing muscle growth, through IGF-1/2 and TGF-β signaling pathways, 
are potential strategies for the improvement of FE in pigs (and possibly other livestock). This study 
provides new insights into the molecular mechanisms that determine RFI and FE in pigs.

Feed accounts for more than 60% of the costs for pig production, therefore improving feed efficiency 
(FE) is one of the major ways to reduce costs in the pig industry. FE can be measured as feed conversion 
ratio (FCR) or residual feed intake (RFI)1. FCR is the feed intake divided by the weight gained during a 
specified period. RFI is defined as the difference between the actual and the predicted dry matter (DM) 
intakes of each animal, based on its metabolic body weight and average weight gain during a specified 
period2. Thus, animals with higher RFI/FCR are less efficient at converting feed into body mass, whereas 
those with lower RFI/FCR are more efficient. Previous studies indicated that the heritability of RFI is 
0.14–0.40 and FCR is 0.13–0.313–5, and a strong correlation exists between them (R equals 0.76–0.99)3.

With microsatellite typing based QTL mapping, Zhang and his colleagues identified three genomic 
regions on SSC2, SSC7 and SSC9 in a White Duroc ×  Chinese Erhualian F2 segregated population6, 
associated with the feed consumption and feeding behavior traits, average daily feed intake (ADFI), feed 
conversion ratio (FCR), number of visits to the feeder per day (NVD) and average feeding rate (AFR). 
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Recently, a whole genome association analysis study showed that SNPs located on SSC7, SSC13, SSC14 
and SSC17 were significantly associated with the RFI trait in a Yorkshire pig population selected for high 
and low RFI7. Furthermore, 10 SNPs identified using high-density SNP chip analysis8 had significant 
association with FCR in a Duroc pig population, 2 of them were on SSC4 and the others were on SSC 14. 
However, by comparing chromosome regions and genes related with FE, it is hard to find a single region 
or one major candidate gene. Hence, the candidate genes relating to FE in pigs are not well understood.

Three biological processes have been reported to be associated with FE in pigs through microar-
ray transcriptome analysis, including glucose metabolism, lipid metabolism and muscle development 
(myogenesis). Gene expression profiling in liver and adipose tissue following acute caloric restriction of 
pigs, suggested that lipid metabolism, mitochondrial activity and glucose synthesis were all related with 
FE9. Moreover, lipogenic and steroidogenic genes were down-regulated in both liver and adipose tissue 
of Yorkshire gilts with lower RFI10. In cattle, 161 genes were differentially expressed between animals 
with high and low RFI. These genes were related with several gene networks, including cell growth and 
differentiation, lipid metabolism and carbohydrate metabolism11. No major gene has been identified to 
regulate FE in pigs12.

MicroRNAs (miRNAs) are small noncoding RNAs of 18 to 23 nucleotides, which play important roles 
as post-transcriptional regulators13. miRNAs have also been reported to be associated with feed efficiency 
and energy metabolism. In cattle, the distribution of SNPs in miRNA motifs associated with RFI was 
much more significant compared with SNPs in other regions14. In addition, one SNP of the stearoyl-CoA 
desaturase (SCD) gene, within a predicted target site for 2 miRNAs (ssc-miR-185 and ssc-miR-491), was 
significantly associated with daily body weight gain and FCR in cattle15. Besides, there are some differ-
entially expressed miRNAs in fish with different growth rates, with let-7j, miR-140, miR-192, miR-204, 
miR-218a, miR-218b, miR-301c and miR-460 all being down regulated in fast-growing fish. Moreover, 
let-7b, let-7c, miR-133, miR-152, miR-15a, miR-193a, miR-30b and miR-34 were all up regulated in 
fast-growing fish16. In March 2015, Li and his colleagues presented the first systematic identification and 
characterization of lincRNAs in fetal porcine skeletal muscle, which identified 570 porcine lincRNAs, 
but most were related to skeletal muscle development17. However, to our knowledge there are as yet no 
studies relating porcine FE and miRNA expression.

In this study, we used mRNA and miRNA sequencing to profile the skeletal muscle transcriptome and 
thereby identify genes and miRNAs that were differentially expressed between pigs with different feed 
efficiencies. We identify a number of genes and miRNAs that were significantly differentially expressed 
between high and low RFI pigs. Importantly, mitochondrial energy metabolism regulatory pathways (e.g. 
PGC-1a and AMPK) were down-regulated and muscle growth regulatory pathways (e.g. IGF-1/2 and 
TGF-β) were upregulated in skeletal muscle from the more efficient (low RFI) pigs.

Results
Animal performance. An original 238 castrated purebred Yorkshire boars were grown from 30 to 
90 kg (average body weight) on a commercial pig feed (see Materials and Methods). Daily feed intake 
(DFI) and average daily gain (ADG) were measured and the FCR and RFI determined. From this data, 
two sub-groups were selected with Low or High RFI (RFI_L and RFI_H respectively). Importantly, the 
total weight gained and the time taken to do so was not significantly different between the two groups. 
The High RFI group (RFI_H) had RFI and FCR values of 0.43 ±  0.19 (Kg/day) and 3.07 ±  0.15 respec-
tively, compared with − 0.28 ±  0.07 (Kg/day) and 2.19 ±  0.06 for the more efficient, Low RFI group 
(RFI_L, p <  0.05 for both RFI and FCR, Table 1). The lower FCR seen in the RFI_L group was achieved 
by a reduced DFI (p =  0.02) and, interestingly, a trend for an increase in ADG (p =  0.08) compared with 
the RFI_H group (Table 1). Although the average metabolic body weight gain (AMBW) was higher in 
the RFI_L group, it was not statistically significant (p =  0.65). Two assessments of body fat, average back 
fat (ABF) thickness and intramuscular fat (IMF) content, showed no significant differences, suggesting 
that changes in RFI or FCR were not mediated by significant changes in body fat.

RNA sequencing data mapping and annotation. A total of 6 cDNA libraries were sequenced 
from the longissimus dorsi muscle of RFI_L and RFI_H groups (n =  3 from each). The RNA sequence 
reads have been submitted to the NCBI Gene Expression Omnibus under accession E-MTAB-2946. 
After removing the adaptors and filtering, RNA-seq yielded from 7.8 M to 9.6 M single-end reads for all 
6 samples, more than 99.99% reads were qualified (Supplementary Table S1).

After mapping clean reads to the porcine genome, 89.03%–91.11% reads were successfully aligned, 
with 51.5–58.4% of reads mapped to CDS regions, 0.53–0.59% of reads mapped to 5’UTR regions, 12.36–
14.37% of reads mapped to 3’UTR regions and 10.14–12.66% of reads mapped to introns or intergenic 
regions, while 8.83–11.00% of reads had multiple alignments (Supplementary Figure S1a). The reads dis-
tribution in each chromosome were analyzed according to the porcine genome, and about 10.19–21.29% 
of the total reads mapped to the mitochondrial genome, which was higher than the proportion of reads 
mapped to other chromosomes (Supplementary Figure S1b). The mitochondrial genome distribution of 
the RFI_H group was 19.73 ±  4.98%, compared with 14.33 ±  3.06% in the RFI_L group (Supplementary 
Figure S1c). This indicates that genes encoded for by the mitochondrial DNA account for a large pro-
portion of the genes differentially expressed in skeletal muscle.
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miRNA sequencing data mapping and annotation. A total of 2 cDNA libraries were sequenced 
from the longissimus dorsi muscle of RFI_L and RFI_H groups (1 pool of n =  5 for each group), 
each cDNA library included the 3 samples used for RNA sequencing). After sequencing, a total of 
13,307,888 reads were obtained from the RFI_H group and 11,744,483 reads from the RFI_L group. The 
miRNA sequence reads have been submitted to the NCBI Gene Expression Omnibus under accession 
E-MTAB-2949. After removing reads with non-canonical letters or with low quality, the 3’ adapter was 
trimmed and the sequences shorter than 18 nt discarded. In total, 12,503,358 (RFI_H), and 10,408,712 
(RFI_L) clean reads were obtained, which corresponded to 93.95% and 88.63% respectively of the raw 
reads from each small RNA library. The length distribution of clean reads showed that most of the reads 
were between 21–23 nt in length, and read counts with 22 nt were highest (Supplementary Figure S2a).

A total of 402 mature miRNAs were identified. Among them, 152 were annotated porcine miRNAs 
already present in miRbase v20, 153 were miRNAs homologous to human or mouse, while 97 were 
novel miRNAs not homologous to any other species (Supplementary Figure S2b). The distribution of 
miRNAs on each chromosome depended on the number of annotated miRNAs on each chromosome 
(Supplementary Figure S2c).

Differentially expressed genes between low and high RFI pigs. In the present RNA-seq study, 
30,484 genes were detected in the skeletal muscle of all 6 individuals. A total of 645 genes were differen-
tially expressed, with a criteria of at least a 2 fold difference and a p-value less than 0.05 (|log2FC| ≥  1, 
p <  0.05), of which 99 genes had a q-value ≤  0.05. Of the 99 differentially expressed genes, 60 genes were 
well annotated on the Sus Scrofa genome (version Sscrofa10.2.72), with 45 genes being up-regulated 
and 54 genes down-regulated in the low-RFI group (Supplementary Table S2). Table 2 shows the top 20 
differentially expressed (DE) genes, the top 10 genes with either higher or lower expression in low RFI 
compared to high RFI pigs.

To validate the differential expression of genes, eight genes were selected for qRT-PCR analysis. 
Compared with the RFI_H group, expression of FABP3, RCAN, PPARGC1, and PRKAG2 mRNA were 
all lower in RFI_L muscles, whereas expression of IGF2 mRNA was higher in RFI_L muscles (Fig. 1a). 
Expression of 4 of the selected genes (IGF2, RCAN, PPARGC1 and PRKAG2) showed significant dif-
ferences between the RFI_H and RFI_L groups. Hence the qRT-PCR analyses largely confirmed the 
RNA-seq data, with the correlation coefficient of the fold-change (FC) values from the two methods 
being 0.99 and the R2 for the linear regression also being 0.99, indicating the reliability of the RNA-seq 
analysis.

In addition, we analyzed the expression levels of various mitochondrial genes. There were 17 mito-
chondrial coding genes detected (log2FC ≥  0.5) and 16 genes (94.1%) were down regulated in the skeletal 
muscle from low RFI pigs (Fig. 1b, Supplementary Table S3).

Differentially expressed miRNAs between low and high RFI pigs. In the miRNA-sequencing 
study, 25 miRNAs were differentially expressed with a criteria of at least a 1.5 fold difference and total 

RFI_H RFI_L p-value

n 5 5

FCR 3.07 ±  0.15 2.19 ±  0.06 4.25E-06

RFI (kg/day) 0.43 ±  0.19 − 0.28 ±  0.07 1.13E-04

Testing Days 59 ±  6.84 55 ±  9.55 0.52

DFI 2.62 ±  0.3 2.11 ±  0.21 0.02

ADG 0.85 ±  0.07 0.96 ±  0.09 0.08

Initial BW (kg) 40.42 ±  4.2 40.54 ±  6.15 0.98

Final BW (Kg) 90.36 ±  2.36 92.76 ±  3.45 0.28

TBG 22.88 ±  0.55 23.2 ±  1.21 0.53

AMBW 22.88 ±  0.55 23.2 ±  1.21 0.65

ABF(mm) 19.84 ±  3.43 20.74 ±  3.4 0.72

LMA (cm2) 46.86 ±  6.14 47.34 ±  1.25 0.88

IMF 2.38 ±  0.0082% 2.18 ±  0.0057% 0.70

Table 1.  Animal performance of Yorkshire pigs used in RNA and miRNA sequencing. DFI - daily feed 
intake. ADG - average daily gain over the assessed feeding period. BW - body weight. TBG - total body 
weight gain (Kg) during the assessed feeding period. ABF - average of back fat thicknesses (mm) measured 
at three points between 6th and 7th ribs (6th–7th BF) and at the10th rib (10th BF). LMA - loin muscle area 
(cm2) measured between the 10th and 11th. IMF - intramuscular fat, percentage IMF determined by the 
petroleum ether extraction method. p-value as calculated by t-test.
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reads count no less than 20 (|logFC| ≥ 1, total ≥  20, p ≤  0.05). Of these 25 miRNAs, 14 were up-regulated 
and 11 down-regulated in RFI_L pigs (Table  3). Six of them were not found in the Sus scrofa miRNA 
database (miRbase v20), but are homologous with human. Six novel miRNAs were identified as being 
differentially expressed; the secondary structures of which were predicted by mirDeep2 (Supplementary 
Figure S3) and the predicted scores from mirDeep2 listed in Supplementary Table S4.

To validate the differential expression identified by the miRNA sequencing, miR-1, miR-30e, miR-10b 
and miR-145 were selected for qRT-PCR analysis. Compared to RFI_H muscles, expression of miR-1 and 
miR-30e miRNAs was higher, whereas expression of miR-10b, and miR-145 was lower in RFI_L muscles 
(Fig.  1c). All the selected miRNAs showed significant differences between RFI_H and RFI_L groups, 
confirming the results of miRNA-seq, and the correlation coefficient for the fold-change values (FC) 
from the two methods was 0.99 and the R2 for linear regression was also 0.99, indicating the reliability 
of the miRNA-seq analysis. The differentially expressed miRNAs were functionally involved in energy 
metabolism processes and pathways, which were all down regulated in low RFI pigs.

Pathway analysis of differentially expressed genes. For gene ontology (GO) biological processes 
analysis, 54 well annotated genes among the 99 significant DE genes were submitted and 45 of these 
genes were available in DAVID v6.7.

A total of 26 GO terms were enriched (Fisher Exact Probability Test, p <  0.05), which can be divided 
into 5 major groups: 1) Genes relating to general metabolism, 2) Genes relating to energy metabolism, 
3) Genes relating to lipid metabolism, 4) Genes relating to cell differentiation, and 5) Genes relating to 
biosynthetic processes (Table 4).

Most genes related to energy metabolism, cell differentiation and biosynthesis were down regulated 
in pigs with low RFI. For example PPARGC1, PRKAG2, HK2 are related to energy metabolism; NOR-1, 
RCAN, ESRRB, ESRRG and JUNB are related to cell differentiation; and LIPG and GM2A are related to 
lipid catabolism. The significant down regulation (p ≤  0.05) of all those genes indicates that low RFI pigs 
may be more efficient due to (i) a decrease in energy expenditure because of an inhibition of metabolic 
processes and/or (ii) an increase in skeletal muscle growth.

Gene RFI_H RFI_L FC(L/H) q_value Full Name

PPARGC1 65.89 8.63 − 7.63 1.52E–02 − 

NOR-1 6.83 1.20 − 5.68 1.52E− 02 − 

Unknow1 5.00 0.88 − 5.66 1.52E− 02 − 

HK2 23.88 4.99 − 4.78 1.52E− 02 hexokinase 2

NTN1 11.01 2.39 − 4.61 1.52E− 02 netrin 1

CST6 23.82 5.88 − 4.05 1.52E− 02 cystatin E/M

SYNJ2 4.93 1.26 − 3.92 1.52E− 02 synaptojanin 2

ESRRB 8.47 2.39 − 3.54 1.52E− 02 estrogen-related receptor beta

Unknow2 69.28 20.22 − 3.43 1.52E− 02 − 

PON3 16.27 4.92 − 3.31 1.52E− 02 paraoxonase 3

MYH6 7.22 29.23 4.05 1.52E− 02 myosin, heavy chain 6, cardiac 
muscle, alpha

Unknow12 0.91 3.73 4.12 1.52E− 02 − 

CD1D 0.66 2.92 4.4 4.55E− 02 CD1d molecule

Unknow13 1.75 8.22 4.71 1.52E− 02 − 

ITGA5 11.20 64.46 5.75 1.52E− 02 integrin, alpha 5 (fibronectin 
receptor, alpha polypeptide)

GGA1 24.08 179.54 7.46 1.52E− 02
golgi-associated, gamma adaptin 

ear containing, ARF binding 
protein 1

Unknow14 1.14 9.05 7.93 1.52E− 02 − 

Unknow15 6713.48 55068.8 8.2 1.52E− 02 − 

CYP1A1 0.97 8.18 8.45 1.52E− 02 cytochrome P450, family 1, 
subfamily A, polypeptide 1

Unknow16 5.41 146.35 27.03 1.52E− 02 − 

Table 2.  List of 20 muscle differentially expressed genes (DEGs) between Yorkshire pigs with low and 
high RFI.
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Pathway analysis of differentially expressed miRNAs. To better understand the biological func-
tions of the 25 differentially expressed miRNAs identified, we predicted the potential target genes of these 
miRNAs. There were 12,687 terms of target genes returned, including 6,744 unique genes (Supplementary 
Table S5). Through the miRNA-targeted pathway union analysis, we found 55 KEGG pathways signif-
icantly (Fisher Exact Probability Test, p <  0.05) related with genes targeted by up or down-regulated 
miRNAs (Supplementary Table S6). A lot of pathways were involved in energy metabolism and skeletal 
muscle growth, including the TGF-beta signaling pathway, PI3K-Akt signaling pathway, mTOR signaling 
pathway, GnRH signaling pathway and Hypertrophic cardiomyopathy (HCM).

To further classify and predict the function of differentially expressed miRNAs, we also performed 
hierarchical clustering of differentially expressed miRNAs and their target pathways (Fig. 2). Some miR-
NAs with the same regulation pattern or similar function were clustered together, for example miR-
130a-3p and miR-301b-3p were clustered together. After checking the mature sequences of these two 
miRNAs, we found they have exactly the same seed sequences and both of them are in the same miRNA 
family.

The mRNA – miRNA Regulatory network analysis. We investigated the miRNA-gene interactions 
between 54 well annotated differentially expressed genes and 25 differentially expressed miRNAs. There 
were 6 significantly enriched pathways (Fisher Exact Probability Test, p <  0.05, Supplementary Table S7), 
including Adipocytokine signaling pathway, Insulin signaling pathway, Hypertrophic cardiomyopathy 
(HCM), Bacterial invasion of epithelial cells, Viral carcinogenesis, and Phagosome.

Figure 1. Validation of differentially expressed genes in LD muscles from high and low RFI pigs. (a) 
qPCR results for IGF2, FABP3, RCAN, PRKAG2 and PPARGC1I genes, analyzed by the ∆ ∆  Ct method. * 
significant difference between RFI_H and RFI_L pigs. (b) The log2FC expression levels of mitochondrial 
DNA encoded genes. (c) qPCR results for mir1, mir30e, mir10b and mir145, analyzed by the ∆ ∆ Ct 
method. * * significant difference between RFI_H and RFI_L pigs.
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The genes and miRNAs related to those KEGG pathways are listed in Table 5. These pathways were 
mainly related to energy metabolism and skeletal muscle growth, and include PPARGC1A, PIK3R1, 
PRKAG2, hsa-miR-130a-3p, hsa-miR-30e-5p, and hsa-miR-335-3p.

A key network of mRNA and miRNA in pig muscle potentially regulates RFI in pigs. Cytoscape 
v3.0.1 was used to integrate a potential network of differentially expressed genes and miRNAs interacting 
in pig skeletal muscle that might lead to differences in RFI (Fig. 3). When looking into the differentially 
expressed genes, we found that most of those genes were involved in mitochondrial activity, glycolysis or 
myogenesis pathways and were actually connected directly or indirectly through just one or two genes. 
In this network, the mitochondrial activity was separated into 3 parts: the uncoupling reaction, the 
mitochondria respiratory control and the mitochondria transcriptional control.

In mitochondrial activity, the expression levels of PGC-1, ESRRB and TFAM were down-regulated 
in the low RFI pigs more than other genes, which suggests that the down-regulation of mitochondrial 
activity might possibly be through mitochondria transcriptional control.

In the glycolysis pathway, the upstream genes of CREB were also involved in mitochondria tran-
scriptional control. Most of these genes were down-regulated in low RFI pigs, such as PGC1, PPAR and 
PRKAG2. HK2, the gene downstream of CREB, was also down-regulated in low RFI pigs. HK2 is a hex-
okinase that phosphorylates glucose to produce glucose 6-phosphate18. Hexokinase regulates glycolysis as 
the first rate-limiting enzyme19. Moreover, the miRNAs, which were reported or predicted to target and 
therefore inhibit these genes, were all up-regulated in low RFI pigs, including mir-30e, mir-301b, mir-
130a, mir-335 and mir-199b. This suggests an overall decrease in glycolysis and mitochondrial activity 
in skeletal muscle of low RFI pigs.

In contrast, most genes involved in the myogenesis pathway were up-regulated in low RFI pigs, 
such as IGF-2, ITGA5, PIK3R1 and MYHCs. Also, TGF-β, which is an inhibitor of myogenesis, was 
down-regulated in low RFI pigs. Interestingly, mir-141, which targets IGF-2, was down-regulated and 

Ssc miRNA Ref miRNA FC(L/H) p-value q-value Mature Sequence

ssc-miR-215-5p hsa-miR-215-5p − 673.96 4.57E-27 1.48E-24 augaccuaugaauugacagaca

ssc-new-1 hsa-miR-141-3p − 23.34 2.12E-04 1.73E-02 uaacacugucugguaaagaug

ssc-miR-194-5p hsa-miR-194-5p − 19.66 8.87E-09 1.44E-06 uguaacagcgacuccauguggac

ssc-miR-365-3p hsa-miR-365a-3p − 1.94 0.09 1 uaaugccccuaaaaauccuuau

ssc-new-2 hsa-miR-1249 − 1.74 0.41 1 acgcccuucccccccuucuuca

ssc-miR-486-5p hsa-miR-486-5p − 1.69 0.04 1 uccuguacugagcugccccgag

ssc-miR-1271-5p hsa-miR-1271-5p − 1.64 0.13 1 cuuggcaccuaguaagcacuca

ssc-miR-145-5p hsa-miR-145-5p − 1.6 0.18 1 guccaguuuucccaggaaucccu

ssc-miR-99b-5p hsa-miR-99b-5p − 1.51 0.17 1 cacccguagaaccgaccuugcg

ssc-miR-191-5p hsa-miR-191-5p − 1.5 0.15 1 caacggaaucccaaaagcagcug

ssc-miR-10b-5p hsa-miR-10b-5p − 1.45 0.14 1 uacccuguagaaccgaauuugu

ssc-miR-29c-3p hsa-miR-29c-3p 1.48 0.35 1 uagcaccauuugaaaucgguua

ssc-miR-92b-3p hsa-miR-92b-3p 1.5 0.44 1 uauugcacucgucccggccucc

ssc-miR-101-3p hsa-miR-101-3p 1.55 0.19 1 uacaguacugugauaacugaag

ssc-miR-338-3p hsa-miR-338-3p 1.56 0.37 1 uccagcaucagugauuuuguu

ssc-miR-199b-3p hsa-miR-199b-3p 1.61 0.15 1 acaguagucugcacauugguu

ssc-new-3 hsa-miR-130a-3p 1.73 0.25 1 cagugcaauaguauugucaaagc

ssc-miR-208b-3p hsa-miR-208b-3p 1.74 0.11 1 auaagacgaacaaaagguuugu

ssc-miR-1-3p hsa-miR-1 1.81 0.09 1 uggaauguaaagaaguauguau

ssc-miR-30e-5p hsa-miR-30e-5p 1.83 0.04 1 uguaaacauccuugacuggaagcu

ssc-miR-335-3p hsa-miR-335-3p 1.89 0.28 1 uuuuucauuauugcuccugacc

ssc-miR-136-3p hsa-miR-136-3p 1.93 0.12 1 caucaucgucucaaaugagucu

ssc-new-4 hsa-miR-144-3p 2.1 0.32 1 uacaguauagaugauguacu

ssc-new-5 hsa-miR-301b 2.15 0.46 1 cagugcaaugauauugucaaagc

ssc-new-6 hsa-miR-190a 2.28 0.34 1 ugauauguuugauauauuagguug

Table 3. List of 25 DE miRNAs in LD muscle between Yorkshire pigs with low and high RFI. The 
p-value was calculated by the formula: ( )

)(
( ) =

( + ) !

! ! +
( + + )p x y N

N

y x y

x y

2
1

1 N
N

X Y2
1

1  with a Python script. The q-value 

was calculated by “fdrtool” in R, and FDR (false discovery rate) ≤  0.05 for DEG significant determination.
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mir-30e, which targets TGF-β , was upregulated in low RFI pigs. These results indicate that the increased 
efficiency of low RFI pigs is associated with enhanced skeletal muscle growth.

Discussion
Two groups of pigs were identified which had either high or low residual feed intake. Those pigs in the 
RFI_L group were more efficient, having a lower FCR than the RFI_H group, due to lower DFI and 
slightly higher ADG. A common observation in these types of study is that selection for greater feed effi-
ciency often targets reduced feed intake, which has been reported as undesirable as it can reduce growth 
and reproductive performance20,21. However in this study there was trend for a positive effect on ADG 
in the RFI_L pigs, despite a reduction in feed intake. From the estimates of fat deposition, there were 

Genes
RFI_L/H 

high
RFI_L/H 

low Term ID Term name P-Value

Genes relating to biosynthetic processes

PRKAG2 ATP6V0D2 ATP8A1

1 2 GO:0009260 ribonucleotide biosynthetic process 4.73E-02

GO:0009152 purine ribonucleotide biosynthetic process 4.26E-02

GO:0009142 nucleoside triphosphate biosynthetic 
process 3.32E-02

GO:0009145 purine nucleoside triphosphate biosynthetic 
process 3.14E-02

GO:0009201 ribonucleoside triphosphate biosynthetic 
process 3.14E-02

GO:0009206 purine ribonucleoside triphosphate 
biosynthetic process 3.08E-02

GO:0006754 ATP biosynthetic process 2.58E-02

GM2A, HK2, MDH1 1 2 GO:0016052 carbohydrate catabolic process 3.75E-02

Genes relating to cell differentiation

NOS1, RCAN1, MYH6 1 2
GO:0051146 striated muscle cell differentiation 2.53E-02

GO:0042692 muscle cell differentiation 4.53E-02

ESRRB, JUNB 0 2 GO:0001829 trophectodermal cell differentiation 4.40E-02

Genes relating to lipid metabolism

GM2A, LIPG, FABP3, ATP8A1 3 1
GO:0010876 lipid localization 9.61E-03

GO:0006869 lipid transport 7.73E-03

GM2A, LIPG 2 0 GO:0044242 cellular lipid catabolic process 8.62E-02

Genes relating to energy metabolism

PRKAG2, HK2, ATP6V0D2, 
GLRX, MDH1 0 5 GO:0006091 generation of precursor metabolites and 

energy 1.12E-02

LIPG, FABP3, SYNJ2, PIK3R1 0 4
GO:0019637 organophosphate metabolic process 1.84E-02

GO:0006644 phospholipid metabolic process 1.60E-02

FABP3, SYNJ2, PIK3R1 0 3 GO:0006650 glycerophospholipid metabolic process 4.33E-02

Genes relating to general metabolism

PRKAG2, MYH6, ATP6V0D2, 
ATP8A1 2 2

GO:0009259 ribonucleotide metabolic process 8.03E-03

GO:0006163 purine nucleotide metabolic process 1.52E-02

GO:0009150 purine ribonucleotide metabolic process 6.75E-03

GO:0009141 nucleoside triphosphate metabolic process 5.85E-03

GO:0009144 purine nucleoside triphosphate metabolic 
process 4.80E-03

GO:0009199 ribonucleoside triphosphate metabolic 
process 4.37E-03

GO:0009205 purine ribonucleoside triphosphate 
metabolic process 4.27E-03

GO:0046034 ATP metabolic process 3.15E-03

Table 4.  Gene ontologies of DE genes in LD muscles from low and high RFI Yorkshire pigs. RFI_L/H 
high: the number of genes expressed higher in LD muscle of low RFI pigs compared to RFI high group. 
RFI_L/H low: the number of genes expressed lower in LD muscle of low RFI pigs compared to RFI high 
group.
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no changes in body fat, although the values for back fat and IMF tended to be lower in the RFI_L pigs. 
In addition the AMBW of the RFI_L was higher than RFI_H, but this was not statistically significant. 
When combined with the assessment of body fat, this suggests an increase in lean tissue growth and a 
corresponding decrease in fat in the more efficient RFI_L pigs.

We identified 99 differentially expressed genes and 25 differentially expressed miRNAs in LD muscle 
from pigs with significantly different RFI. These genes and miRNAs corresponded to two key pathways/
functions, one related to mitochondria and energy metabolism and the other related to skeletal muscle 
growth. The energy metabolism and growth of skeletal muscle may be the two key factors responsible 
for low RFI and therefore increased efficiency of pigs.

Figure 2. Heat map and Cluster patterns of the differentially expressed miRNAs and target gene related 
pathways. Heat map of miRNAs versus pathways, miRNAs are clustered together by exhibiting similar 
pathway targeting patterns, and pathways are clustered together by related miRNAs. As porcine genes were 
not included in the current version of DIANA miRPath, prediction was performed using human miRNAs.
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Mitochondria produce more than 90% of cellular energy through oxidative phosphorylation 
(OXPHOS), but also waste energy and generate heat through uncoupling reactions22. In our study, both 
the uncoupling reactions and OXPHOS were down-regulated in low RFI pigs. Uncoupling proteins (UCP) 
play a critical role in energy-dissipating uncoupling reactions through [H+ ] leakage in mitochondria. 
It has been reported that overexpression of UCP3 in skeletal muscle increases energy expenditure and 
decreases feed efficiency in mice23,24. In our study, we found UCP2, the ubiquitously expressed isoform of 
UCP, was down regulated in muscle from low RFI pigs. Also miR-30e, which directly targets UCP2, was 
up regulated in RFI_L pigs. We also found that genes associated with OXPHOS and ATP synthesis and 
mitochondria transcriptional control were all down-regulated in low RFI pigs, including COX-I, COX-III, 
COX-IV, COX-V, PGC-1, PRKAG2, ESRRGB, and HK2. MiR-338 has been confirmed to inhibit COXIV 
at mRNA and protein levels25 and miR-338 was up-regulated in low RFI pigs.

PGC-1, also called PPARGC1 or PPARGC1A, plays an important role in mitochondrial biogenesis, by 
activating cAMP response element binding protein (CREB) and nuclear respiratory factors (NRFs). These 
nuclear factors then increase the transcription of mitochondrial transcription factors (TFAM, TFB1M, 
TFB2M) which promote mitochondrial biogenesis26. Overexpression of PGC-1 has been reported to 
increase energy expenditure and mitochondrial number27. In our study, PGC-1 and all these down-stream 
genes related to mitochondrial biogenesis were down-regulated in the low RFI pigs. Also, we found 
that expression of almost all the genes located in the mitochondrial DNA were down-regulated in low 
RFI pigs, suggesting either a reduction in the number of mitochondria or a general down-regulation 
of mitochondrial function. In addition, CREB has been reported to be targeted by miR-335, which was 

miRNA/Pathway

Target 
gene 

counts Gene Name Gene Ensembl id

Adipocytokine signaling pathway (hsa04920)

hsa-miR-130a-3p 1 PPARGC1A ENSG00000109819

hsa-miR-30e-5p 1 PPARGC1A ENSG00000109819

hsa-miR-335-3p 1 PRKAG2 ENSG00000106617

hsa-miR-301b 1 PPARGC1A ENSG00000109819

Insulin signaling pathway (hsa04910)

hsa-miR-486-5p 1 PIK3R1 ENSG00000145675

hsa-miR-29c-3p 1 PIK3R1 ENSG00000145675

hsa-miR-130a-3p 1 PPARGC1A ENSG00000109819

hsa-miR-30e-5p 1 PPARGC1A ENSG00000109819

hsa-miR-335-3p 2
PIK3R1 ENSG00000145675

PRKAG2 ENSG00000106617

hsa-miR-301b 1 PPARGC1A ENSG00000109819

Hypertrophic cardiomyopathy (HCM) (hsa05410)

hsa-miR-92b-3p 1 ITGA5 ENSG00000161638

hsa-miR-335-3p 1 PRKAG2 ENSG00000106617

Bacterial invasion of epithelial cells (hsa05100)

hsa-miR-486-5p 1 PIK3R1 ENSG00000145675

hsa-miR-29c-3p 1 PIK3R1 ENSG00000145675

hsa-miR-92b-3p 1 ITGA5 ENSG00000161638

hsa-miR-335-3p 1 PIK3R1 ENSG00000145675

Viral carcinogenesis (hsa05203)

hsa-miR-141-3p 1 ATP6V0D2 ENSG00000147614

hsa-miR-486-5p 1 PIK3R1 ENSG00000145675

hsa-miR-29c-3p 1 PIK3R1 ENSG00000145675

hsa-miR-335-3p 1 PIK3R1 ENSG00000145675

Phagosome (hsa04145)

hsa-miR-141-3p 1 ATP6V0D2 ENSG00000147614

hsa-miR-92b-3p 1 ITGA5 ENSG00000161638

Table 5.  List of miRNAs and their target Genes which were both differentially expressed in LD muscle 
from low and high RFI pigs.
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up-regulated in low RFI pigs28. Therefore, these results indicate that mitochondrial biogenesis/function 
and energy expenditure were reduced in low RFI pigs.

AMPK is a key regulator of cellular and whole-body energy balance, which is activated by an increase 
in the AMP/ATP ratio29,30. AMPK can also increase mitochondrial proteins of oxidative metabolism, as 
well as promote the expression of Hexokinase II (HK2) through CREB in skeletal muscle31. In our study, 
we found that HK2 and Protein kinase, AMP-activated, gamma 2 non-catalytic subunit (PRKAG2), which 
is a member of AMPK gamma subunit family, were both down regulated in low RFI pigs. Also, miR-144, 
which has been reported to inhibit the phosphorylation of AMPK alpha (AMPKα), was increased in low 
RFI pigs32. These results indicate that the level of energy metabolism in skeletal muscle was probably 
reduced in low RFI pigs compared to high RFI pigs.

Further KEGG pathway analyses indicated that PGC-1 and PRKAG2 are involved in the adipocy-
tokine signaling pathway (KEGG hsa04920). In this pathway, mitochondrial fatty acid β -oxidation is 
increased by the expression of PGC-1, while PRKAG2 increases appetite by up-regulating AGRP and 
NPY. Recently, Lindholm-Perry found the expression level PRKAG2 in the rumen was associated with 
ADFI in cattle33, although the direction of the association depended upon season. Thus, PGC-1 and 
PRKAG2 are potentially key genes in the molecular regulation of feed efficiency. Although this pathway 
is termed the “adipocytokine signaling pathway”, the genes are expressed in lots of tissues/ cell types 
where they have similar functions.

As a PPARα coactivator, PGC-1 plays a key role in the transcriptional control of genes encoding mito-
chondrial fatty acid β -oxidation (FAO)34. It is reported that PPARα/PGC-1 signaling pathway can be acti-
vated by chronic overnutrition and obesity, resulting in the up regulation of fatty acid β -oxidation related 
genes, such as FATP1, FACS1, UCP2 and UCP335. PRKAG2 also plays a critical role in regulating cellular 
fatty acid metabolic pathways36. Thus, the down regulation of these genes indicate that mitochondrial 
fatty acid β -oxidation was reduced in low RFI pigs compared to high RFI pigs. Hence we propose that 
the pathway is more to do with regulating whole body energy balance via effects on energy expenditure 
or appetite, rather than relating to adipose tissue metabolism per se.

A number of miRNAs related to skeletal muscle growth and development were differentially expressed 
between low and high RFI pigs, including miR-208b, miR-499, miR-29c, miR-1 and miR-99b. The trans-
forming growth factor-beta (TGF-β) signalling pathway, which includes Myostatin (MSTN), is considered 
the most potent negative regulator of skeletal muscle growth and development37. It has been reported 
that, miR-29 and miR-30b are both inhibitors of TGF-beta38–40, while miR-208b and miR-499 inhibit the 
MSTN gene41. Also, overexpression of miR-29 promotes myogenic differentiation in C2C12 cells, due to 
the reduction in TGF-beta, which inhibits differentiation42. Furthermore, miR-99b has been reported to 

Figure 3. The key network of genes and miRNAs found to be differentially expressed in skeletal muscle 
from low RFI compared with high RFI pigs. The network diagram was made using Cytoscape.
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be directly stimulated by the TGF-β signaling pathway43 and miR-99b is reported to inhibit IGF-1/mTOR 
signaling by targeting AKT1, IGF1R and mTOR44,45.

In the present study, we found miR-29c, miR-30b, miR-208b and miR-499 were all up-regulated in 
low RFI pigs, while miR-99b was down-regulated. All these results suggest that muscle growth and devel-
opment was increased in low RFI pigs via the inhibition of the TGF-β signaling pathway and stimulation 
of the IGF-1/mTOR signaling pathway. We also found IGF-2 and MYHCs were up-regulated in low RFI 
pigs. It appears from the pig growth performance data that these changes were associated with a slightly 
increased ADG, even though DFI was reduced, suggesting that the RFI_L pigs were able to sustain their 
growth whilst reducing their feed intake.

Thus, based on the entire expression profiles of both mRNAs and miRNAs, we conclude that the 
improvements in feed efficiency in low RFI pigs are due to inhibition of skeletal muscle mitochondrial 
activity through PGC-1/TFAM and PRKAG2 combined with the stimulation of muscle growth through 
TGF-β and IGF-1/2 signaling pathways.

Conclusions
Overall, we identified 99 mRNAs and 25 miRNAs that were differentially expressed in skeletal muscle 
from pigs with different RFI. These genes were functionally related to metabolism, particularly energy 
and lipid metabolism, as well as biosynthetic processes and muscle cell growth and differentiation. A 
number of genes involved in energy metabolism were down-regulated, whereas quite a few miRNAs that 
target energy metabolism genes were up-regulated in muscle from low RFI pigs. Similarly, a number of 
genes and miRNAs which stimulate skeletal muscle differentiation and proliferation were up-regulated. 
We propose that feed efficiency in pigs can be improved by reducing energy metabolism in muscle, 
particularly mitochondrial metabolism, and/or by enhancing skeletal muscle growth and we identify a 
number of miRNAs and genes that might be targets for manipulation. This study enhances our under-
standing of molecular mechanisms regulating feed efficiency in pigs.

Materials and Methods
Animals and tissues. In this study, 238 castrated purebred Yorkshire boars were grown from 30 
to 90 Kg, the average period of study was 67.35 days. Pigs were slaughtered at 90 kg according to a 
standard procedure approved by Biological Studies Animal Care and Use Committee46, Hubei Province, 
P. R. China. They were individually fed ad libitum a complete mixed commercial feedlot ration (see 
Supplementary Table S8), using ACEMA 64 automated individual feeding systems in the Agricultural 
Ministry Breeding Swine Quality Supervision Inspecting and Testing Center (Wuhan). All the meth-
ods in this study were carried out in accordance with the approved guidelines from Regulation of the 
Standing Committee of Hubei People’s Congress . All experimental protocols were approved by the Ethics 
Committee of Huazhong Agricultural University.

For RNA sequencing, the 3 pigs with the highest RFI (named RFI_H group) and the 3 pigs with low-
est RFI (named RFI_L group) were selected from the 238 pigs, each RFI group having no difference in 
starting body weight (Table 1). For miRNA sequencing, the 5 pigs with the highest RFI (named RFI_H 
group) and the 5 pigs with the lowest RFI (named RFI_L group) were selected.

Within 30 minutes after slaughter, a piece of longissimus dorsi muscle of each animal was sampled at 
the thoracolumbar junction. All tissue samples were immediately frozen in liquid nitrogen and stored at 
− 80 °C for RNA isolation.

Phenotypes. RFI was calculated by a linear regression model according to the records of daily feed 
intake (DFI), average daily gain (ADG) and mid-test metabolic body weight (MBW) of all the pigs.

The base model used was Yj =  β 0 +  β 1MBWj +  β 2ADGj +  ej , where Yj is the DMI of the jth animal, β 0 
is the regression intercept, β 1 is the regression coefficient on MBW, β 2 is the regression coefficient on 
ADG, and ej is the uncontrolled error of the jth animal.

RNA preparation and sequencing. Total RNA was extracted with Trizol reagent (Invitrogen, USA), 
according to the manufacturer’s instructions. RNA sequencing libraries were prepared for each RNA-seq 
sample using “TruSeq®  Stranded Total RNA Sample Preparation kit (Illumina® )” and all of the pro-
cedures and standards were performed according to the manual supplied with this kit. For miRNA 
sequencing, the RNA samples from the 5 different pigs in the same group were pooled together based on 
an equal RNA quantity. TruSeq®  Small RNA Sample Prep Kit (Illumina® ) was used for miRNA sequenc-
ing library preparation and all of the procedures and standards were performed according to the manual 
supplied with this kit. After quality control, sequencing of all the libraries was performed by HiSeq2000. 
Solexa sequencing was performed at the Beijing Genomics Institute (BGI), Beijing, China.

Analyses of RNA-Seq data. Having transferred the RNA-Seq results from Illumina fastq format to 
standard Sanger fastq format with fq_all2std.pl, data were processed with the Tophat-Cufflinks pipeline47. 
The porcine reference genome and gtf annotation file were downloaded from Ensembl (Sscrofa10.2.72) 
and build index with bowtie version 2.1.0. TOPHAT (version 2.0.9) was used to align reads to the 



www.nature.com/scientificreports/

1 2Scientific RepoRts | 5:11953 | DOi: 10.1038/srep11953

genome with the option --library-type fr-firststrand. Cufflinks (version 2.1.1) was used for transcriptome 
assembling, and Cuffdiff script from Cufflinks was used for gene expression analysis with the option 
-classic-fpkm. The expression level of each gene was represented by the FPKM value, which means frag-
ments per kilobase of exon per million fragments mapped, and was calculated by the following formula48:

=
× , ,

× ( )
.

( )
reads count

total reads map to genome gene length Kb
FPKM 1 000 000

1

Finally, q ≤  0.05 was set as the threshold for differentially expressed (DE) gene selection.

Analyses of miRNA-Seq data. Firstly, miRNA-Seq data were transferred from Illumina fastq format 
to fasta format and then the miRNA-seq datasets analyzed with mirDeep (v2.0.0.5)49,50. The porcine 
genome (Sscrofa10.2.72) was downloaded from Ensembl, and the miRNA reference was obtained from 
the miRBase database (version 20)51–55.

The miRNA expression level of each library was normalized by the following formula56:

=
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The P-value between the two libraries was calculated using the following formulas57:
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N1 and N2 represent the total numbers of clean reads in the two small RNA libraries. The q-value was 
calculated by fdrtool in R58. Finally, |log2FC| ≥  1, total reads count ≥ 20, p ≤  0.05 was set as the threshold 
for selection of differentially expressed (DE) miRNA.

Q-RT-PCR validation of differentially expressed genes and miRNAs. Relative expression levels 
of the differentially expressed genes and miRNAs in muscle were quantified by real-time PCR. The RPL4 
gene and 18S RNA were selected as the internal controls for qRT-PCR validation because of their stable 
expression in skeletal muscle tissues. The poly(A)-tailed RT-PCR method59 was performed for miRNA 
reverse transcription. Primer sequences and PCR conditions for analyzed genes and miRNAs are listed in 
Supplementary Table S9. The reactions were performed on a Roche Lightcycler 480 Sequence Detection 
System using SYBR Green PCR Master Mix (TOYOBO, QPK201), following the instruction manual. The 
50 μ L reaction mixture consisted of 5 μ L cDNA, 25 μ L 2 ×  SYBR Green PCR Master Mixture, 0.5 μ M each 
primers and water. The qPCR profiles began with initial denaturation at 95 °C for 10 min, and then fol-
lowed by 40 cycles of 95 °C denaturation for 15s, annealed at 60 °C for 15s, and 72 °C for 15s extension. 
A dissociation curve was generated at the end of the last cycle by collecting the fluorescence data from 
58 °C to 95 °C. The 2-∆ ∆  Ct method was employed for relative gene expression level analysis. For each 
gene, the average ∆ Ct value of the RFI_L group was used as reference to calculate the ∆ ∆ Ct value, and 
Student’s t-test was used to analyze the expression difference between the 2 groups59.

Potential target gene prediction of miRNAs. To explore the potential function of miRNAs with 
significant differential expression in the two groups, potential target genes and pathways of miRNAs were 
predicted by DIANA miRPath (v.2.0)60. As porcine genes were not included in the current version of 
DIANA miRPath, prediction was performed using human miRNAs. The P-value threshold was 0.05 and 
MicroT threshold was 0.860 (http://www.microrna.gr/miRPathv2).

Gene ontology and pathway analyses. The human homologous Ensembl Gene IDs of the iden-
tified DE genes and miRNA target genes were utilized for the following bioinformatics analysis. Gene 
enrichment in gene ontology (GO) biological processes and pathways were performed with the DAVID 
Bioinformatics Resources v6.7 (http://david.abcc.ncifcrf.gov/)61,62. Cutoff criteria were EASE scores less 
than 0.01 (GO enrichment) or 0.05 (Gene enrichment in pathways). EASE score were given by DAVID, 
which is a modified Fisher’s exact test. Cytoscape (v3.0.1) was used to create the potential important 
network(s) of DE genes and miRNAs63.
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