1,367 research outputs found

    Aggregation of dipolar colloidal particles: Geometric effects

    Get PDF
    To understand the importance of confinement and the influence of translational degrees of freedom on aggregation of dipolar colloidal particles, we calculate numerically-exact values for the mean encounter time for two nonspherically symmetric molecules to form a two-molecule cluster, regarded here as a precursor to aggregation. A lattice model is formulated in which the asymmetry of the molecules is accounted for by representing each as a "dimer" in the sense that each molecule is specified to occupy two adjacent lattice sites. The two dimers undergo simultaneous translation, and the mean times for their encounter are determined. Exact numerical results are obtained via application of the theory of finite Markov processes. The results allow one to examine in a detailed way the interplay among such factors as geometrical confinement, system size, translational motion, and specific orientational effects in influencing the aggregation event. The results are compared with previously reported theoretical predictions and experiments on the behavior of dipolar colloidal particles in the presence of an applied magnetic field

    The Lick AGN Monitoring Project: Photometric Light Curves and Optical Variability Characteristics

    Get PDF
    The Lick AGN Monitoring Project targeted 13 nearby Seyfert 1 galaxies with the intent of measuring the masses of their central black holes using reverberation mapping. The sample includes 12 galaxies selected to have black holes with masses roughly in the range 10^6-10^7 solar masses, as well as the well-studied AGN NGC 5548. In conjunction with a spectroscopic monitoring campaign, we obtained broad-band B and V images on most nights from 2008 February through 2008 May. The imaging observations were carried out by four telescopes: the 0.76-m Katzman Automatic Imaging Telescope (KAIT), the 2-m Multicolor Active Galactic Nuclei Monitoring (MAGNUM) telescope, the Palomar 60-in (1.5-m) telescope, and the 0.80-m Tenagra II telescope. Having well-sampled light curves over the course of a few months is useful for obtaining the broad-line reverberation lag and black hole mass, and also allows us to examine the characteristics of the continuum variability. In this paper, we discuss the observational methods and the photometric measurements, and present the AGN continuum light curves. We measure various variability characteristics of each of the light curves. We do not detect any evidence for a time lag between the B- and V-band variations, and we do not find significant color variations for the AGNs in our sample.Comment: 16 pages, 20 figures, 8 tables, accepted for publication in ApJ

    The Lick AGN Monitoring Project: Alternate Routes to a Broad-line Region Radius

    Get PDF
    It is now possible to estimate black hole masses across cosmic time, using broad emission lines in active galaxies. This technique informs our views of how galaxies and their central black holes coevolve. Unfortunately, there are many outstanding uncertainties associated with these "virial" mass estimates. One of these comes from using the accretion luminosity to infer a size for the broad-line region. Incorporating the new sample of low-luminosity active galaxies from our recent monitoring campaign at Lick Observatory, we recalibrate the radius-luminosity relation with tracers of the accretion luminosity other than the optical continuum. We find that the radius of the broad-line region scales as the square root of the X-ray and Hbeta luminosities, in agreement with recent optical studies. On the other hand, the scaling appears to be marginally steeper with narrow-line luminosities. This is consistent with a previously observed decrease in the ratio of narrow-line to X-ray luminosity with increasing total luminosity. The radius of the broad-line region correlates most tightly with Hbeta luminosity, while the X-ray and narrow-line relations both have comparable scatter of a factor of two. These correlations provide useful alternative virial BH masses in objects with no detectable optical/UV continuum emission, such as high-redshift galaxies with broad emission lines, radio-loud objects, or local active galaxies with galaxy-dominated continua.Comment: 8 pages, 1 figure, accepted for publication in Ap

    The Lick AGN Monitoring Project: Broad-Line Region Radii and Black Hole Masses from Reverberation Mapping of Hbeta

    Get PDF
    We have recently completed a 64-night spectroscopic monitoring campaign at the Lick Observatory 3-m Shane telescope with the aim of measuring the masses of the black holes in 12 nearby (z < 0.05) Seyfert 1 galaxies with expected masses in the range ~10^6-10^7 M_sun and also the well-studied nearby active galactic nucleus (AGN) NGC 5548. Nine of the objects in the sample (including NGC 5548) showed optical variability of sufficient strength during the monitoring campaign to allow for a time lag to be measured between the continuum fluctuations and the response to these fluctuations in the broad Hbeta emission. We present here the light curves for the objects in this sample and the subsequent Hbeta time lags for the nine objects where these measurements were possible. The Hbeta lag time is directly related to the size of the broad-line region, and by combining the lag time with the measured width of the Hbeta emission line in the variable part of the spectrum, we determine the virial mass of the central supermassive black hole in these nine AGNs. The absolute calibration of the black hole masses is based on the normalization derived by Onken et al. We also examine the time lag response as a function of velocity across the Hbeta line profile for six of the AGNs. The analysis of four leads to ambiguous results with relatively flat time lags as a function of velocity. However, SBS 1116+583A exhibits a symmetric time lag response around the line center reminiscent of simple models for circularly orbiting broad-line region (BLR) clouds, and Arp 151 shows an asymmetric profile that is most easily explained by a simple gravitational infall model. Further investigation will be necessary to fully understand the constraints placed on physical models of the BLR by the velocity-resolved response in these objects.Comment: 24 pages, 16 figures and 13 tables, submitted to Ap

    Synchronous vs. asynchronous dynamics of diffusion-controlled reactions

    Full text link
    An analytical method based on the classical ruin problem is developed to compute the mean reaction time between two walkers undergoing a generalized random walk on a 1d lattice. At each time step, either both walkers diffuse simultaneously with probability pp (synchronous event) or one of them diffuses while the other remains immobile with complementary probability (asynchronous event). Reaction takes place through same site occupation or position exchange. We study the influence of the degree of synchronicity pp of the walkers and the lattice size NN on the global reaction's efficiency. For odd NN, the purely synchronous case (p=1p=1) is always the most effective one, while for even NN, the encounter time is minimized by a combination of synchronous and asynchronous events. This new parity effect is fully confirmed by Monte Carlo simulations on 1d lattices as well as for 2d and 3d lattices. In contrast, the 1d continuum approximation valid for sufficiently large lattices predicts a monotonic increase of the efficiency as a function of pp. The relevance of the model for several research areas is briefly discussed.Comment: 21 pages (including 12 figures and 4 tables), uses revtex4.cls, accepted for publication in Physica

    Glimmerglass Volume 47 Number 12 (1988)

    Get PDF
    Official Student Newspaper Issue is 8 pages long

    Glimmerglass Volume 47 Number 13 (1988)

    Get PDF
    Official Student Newspaper Issue is 8 pages long

    The Lick AGN Monitoring Project: Reverberation Mapping of Optical Hydrogen and Helium Recombination Lines

    Get PDF
    We have recently completed a 64-night spectroscopic monitoring campaign at the Lick Observatory 3-m Shane telescope with the aim of measuring the masses of the black holes in 12 nearby (z < 0.05) Seyfert 1 galaxies with expected masses in the range ~10^6-10^7M_sun and also the well-studied nearby active galactic nucleus (AGN) NGC 5548. Nine of the objects in the sample (including NGC 5548) showed optical variability of sufficient strength during the monitoring campaign to allow for a time lag to be measured between the continuum fluctuations and the response to these fluctuations in the broad Hbeta emission, which we have previously reported. We present here the light curves for the Halpha, Hgamma, HeII 4686, and HeI 5876 emission lines and the time lags for the emission-line responses relative to changes in the continuum flux. Combining each emission-line time lag with the measured width of the line in the variable part of the spectrum, we determine a virial mass of the central supermassive black hole from several independent emission lines. We find that the masses are generally consistent within the uncertainties. The time-lag response as a function of velocity across the Balmer line profiles is examined for six of the AGNs. Finally we compare several trends seen in the dataset against the predictions from photoionization calculations as presented by Korista & Goad. We confirm several of their predictions, including an increase in responsivity and a decrease in the mean time lag as the excitation and ionization level for the species increases. Further confirmation of photoionization predictions for broad-line gas behavior will require additional monitoring programs for these AGNs while they are in different luminosity states. [abridged]Comment: 37 pages, 18 figures and 15 tables, accepted for publication in the Astrophysical Journa

    Glimmerglass Volume 47 Number 14 (1988)

    Get PDF
    Official Student Newspaper Issue is 12 pages long

    Glimmerglass Volume 47 Number 16 (1988)

    Get PDF
    Official Student Newspaper Issue is 8 pages long
    • …
    corecore