371 research outputs found

    Structure of Charged Polymer Chains in Confined Geometry

    Get PDF
    The intra- and interchain structure of sodium poly(styrenesulphonate) when free and when confined in contrast matched porous Vycor has been investigated by SANS. When confined, a peak is observed whose intensity increases with molecular weight and the 1/q scattering region is extended compared to the bulk. We infer that the chains are sufficiently extended, under the influence of confinement, to highlight the large scale disordered structure of Vycor. The asymptotic behavior of the observed interchain structure factor is = 1/q{sup 2} and = 1/q for free and confined chains respectively

    Membranes in rod solutions: a system with spontaneously broken symmetry

    Full text link
    We consider a dilute solution of infinitely rigid rods near a curved, perfectly repulsive surface and study the contribution of the rod depletion layer to the bending elastic constants of membranes. We find that a spontaneous curvature state can be induced by exposure of BOTH sides of the membrane to a rod solution. A similar result applies for rigid disks with a diameter equal to the rod's length. We also study the confinement of rods in spherical and cylindrical repulsive shells. This helps elucidate a recent discussion on curvature effects in confined quantum mechanical and polymer systems.Comment: 10 pages, 2 figures, 1 table; submitted to PR

    Field-effect transistors assembled from functionalized carbon nanotubes

    Full text link
    We have fabricated field effect transistors from carbon nanotubes using a novel selective placement scheme. We use carbon nanotubes that are covalently bound to molecules containing hydroxamic acid functionality. The functionalized nanotubes bind strongly to basic metal oxide surfaces, but not to silicon dioxide. Upon annealing, the functionalization is removed, restoring the electronic properties of the nanotubes. The devices we have fabricated show excellent electrical characteristics.Comment: 5 pages, 6 figure

    Seeing ‘Where’ through the Ears: Effects of Learning-by-Doing and Long-Term Sensory Deprivation on Localization Based on Image-to-Sound Substitution

    Get PDF
    BACKGROUND: Sensory substitution devices for the blind translate inaccessible visual information into a format that intact sensory pathways can process. We here tested image-to-sound conversion-based localization of visual stimuli (LEDs and objects) in 13 blindfolded participants. METHODS AND FINDINGS: Subjects were assigned to different roles as a function of two variables: visual deprivation (blindfolded continuously (Bc) for 24 hours per day for 21 days; blindfolded for the tests only (Bt)) and system use (system not used (Sn); system used for tests only (St); system used continuously for 21 days (Sc)). The effect of learning-by-doing was assessed by comparing the performance of eight subjects (BtSt) who only used the mobile substitution device for the tests, to that of three subjects who, in addition, practiced with it for four hours daily in their normal life (BtSc and BcSc); two subjects who did not use the device at all (BtSn and BcSn) allowed assessment of its use in the tasks we employed. The impact of long-term sensory deprivation was investigated by blindfolding three of those participants throughout the three week-long experiment (BcSn, BcSn/c, and BcSc); the other ten subjects were only blindfolded during the tests (BtSn, BtSc, and the eight BtSt subjects). Expectedly, the two subjects who never used the substitution device, while fast in finding the targets, had chance accuracy, whereas subjects who used the device were markedly slower, but showed much better accuracy which improved significantly across our four testing sessions. The three subjects who freely used the device daily as well as during tests were faster and more accurate than those who used it during tests only; however, long-term blindfolding did not notably influence performance. CONCLUSIONS: Together, the results demonstrate that the device allowed blindfolded subjects to increasingly know where something was by listening, and indicate that practice in naturalistic conditions effectively improved "visual" localization performance

    Sensory substitution information informs locomotor adjustments when walking through apertures

    Get PDF
    The study assessed the ability of the central nervous system (CNS) to use echoic information from sensory substitution devices (SSDs) to rotate the shoulders and safely pass through apertures of different width. Ten visually normal participants performed this task with full vision, or blindfolded using an SSD to obtain information regarding the width of an aperture created by two parallel panels. Two SSDs were tested. Participants passed through apertures of +0%, +18%, +35%, and +70% of measured body width. Kinematic indices recorded movement time, shoulder rotation, average walking velocity across the trial, peak walking velocities before crossing, after crossing and throughout a whole trial. Analyses showed participants used SSD information to regulate shoulder rotation, with greater rotation associated with narrower apertures. Rotations made using an SSD were greater compared to vision, movement times were longer, average walking velocity lower and peak velocities before crossing, after crossing and throughout the whole trial were smaller, suggesting greater caution. Collisions sometimes occurred using an SSD but not using vision, indicating that substituted information did not always result in accurate shoulder rotation judgements. No differences were found between the two SSDs. The data suggest that spatial information, provided by sensory substitution, allows the relative position of aperture panels to be internally represented, enabling the CNS to modify shoulder rotation according to aperture width. Increased buffer space indicated by greater rotations (up to approximately 35% for apertures of +18% of body width), suggests that spatial representations are not as accurate as offered by full vision

    On the zero-Hopf bifurcation of the Lotka-Volterra systems in R3

    Get PDF
    Here we study the Lotka-Volterra systems in R3, i.e. the differential systems of the form dxi/dt = xi(ri - Σ3j=1 aijxj), i = 1, 2, 3. It is known that some of these differential systems can have at least four periodic orbits bifurcating from one of their equilibrium points. Here we prove that there are some of these differential systems exhibiting at least six periodic orbits bifurcating from one of their equilibrium points. The tool for proving this result is the averaging theory of third order

    Evaluation of the MOCAGE Chemistry Transport Model during the ICARTT/ITOP Experiment

    Get PDF
    We evaluate the Meteo-France global chemistry transport 3D model MOCAGE (MOdele de Chimie Atmospherique a Grande Echelle) using the important set of aircraft measurements collected during the ICARRT/ITOP experiment. This experiment took place between US and Europe during summer 2004 (July 15-August 15). Four aircraft were involved in this experiment providing a wealth of chemical data in a large area including the North East of US and western Europe. The model outputs are compared to the following species of which concentration is measured by the aircraft: OH, H2O2, CO, NO, NO2, PAN, HNO3, isoprene, ethane, HCHO and O3. Moreover, to complete this evaluation at larger scale, we used also satellite data such as SCIAMACHY NO2 and MOPITT CO. Interestingly, the comprehensive dataset allowed us to evaluate separately the model representation of emissions, transport and chemical processes. Using a daily emission source of biomass burning, we obtain a very good agreement for CO while the evaluation of NO2 points out incertainties resulting from inaccurate ratio of emission factors of NOx/CO. Moreover, the chemical behavior of O3 is satisfactory as discussed in the paper

    Tactual perception: a review of experimental variables and procedures

    Get PDF
    This paper reviews literature on tactual perception. Throughout this review we will highlight some of the most relevant variables in touch literature: interaction between touch and other senses; type of stimuli, from abstract stimuli such as vibrations, to two- and three-dimensional stimuli, also considering concrete stimuli such as the relation between familiar and unfamiliar stimuli or the haptic perception of faces; type of participants, separating studies with blind participants, studies with children and adults, and an analysis of sex differences in performance; and finally, type of tactile exploration, considering conditions of active and passive touch, the relevance of movement in touch and the relation between exploration and time. This review intends to present an organised overview of the main variables in touch experiments, attending to the main findings described in literature, to guide the design of future works on tactual perception and memory.This work was funded by the Portuguese “Foundation for Science and Technology” through PhD scholarship SFRH/BD/35918/2007

    Reversible Integration of Microfluidic Devices with Microelectrode Arrays for Neurobiological Applications

    Get PDF
    The majority of current state-of-the-art microfluidic devices are fabricated via replica molding of the fluidic channels into PDMS elastomer and then permanently bonding it to a Pyrex surface using plasma oxidation. This method presents a number of problems associated with the bond strengths, versatility, applicability to alternative substrates, and practicality. Thus, the aim of this study was to investigate a more practical method of integrating microfluidics which is superior in terms of bond strengths, reversible, and applicable to a larger variety of substrates, including microfabricated devices. To achieve the above aims, a modular microfluidic system, capable of reversible microfluidic device integration, simultaneous surface patterning and multichannel fluidic perfusion, was built. To demonstrate the system’s potential, the ability to control the distribution of A549 cells inside a microfluidic channel was tested. Then, the system was integrated with a chemically patterned microelectrode array, and used it to culture primary, rat embryo spinal cord neurons in a dynamic fluidic environment. The results of this study showed that this system has the potential to be a cost effective and importantly, a practical means of integrating microfluidics. The system’s robustness and the ability to withstand extensive manual handling have the additional benefit of reducing the workload. It also has the potential to be easily integrated with alternative substrates such as stainless steel or gold without extensive chemical modifications. The results of this study are of significant relevance to research involving neurobiological applications, where primary cell cultures on microelectrode arrays require this type of flexible integrated solution
    corecore