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Polymer Flow Through Porous Media: Numerical

Prediction of the Contribution of Slip to the Apparent

Viscosity

F. Zami-Pierre1,2
· R. de Loubens2

· M. Quintard1
·

Y. Davit1

Abstract The flow of polymer solutions in porous media is often described using Darcy’s

law with an apparent viscosity capturing the observed thinning or thickening effects. While

the macroscale form is well accepted, the fundamentals of the pore-scale mechanisms, their

link with the apparent viscosity, and their relative influence are still a matter of debate.

Besides the complex effects associated with the rheology of the bulk fluid, the flow is also

deeply influenced by the mechanisms occurring close to the solid/liquid interface, where

polymer molecules can arrange and interact in a complex manner. In this paper, we focus

on a repulsive mechanism, where polymer molecules are pushed away from the interface,

yielding a so-called depletion layer in the vicinity of the wall. This depletion layer acts as

a lubricating film that may be represented by an effective slip boundary condition. Here,

our goal is to provide a simple mean to evaluate the contribution of this slip effect to the

apparent viscosity. To do so, we solve the pore-scale flow numerically in idealized porous

media with a slip length evaluated analytically in a tube. Besides its simplicity, the advantage

of our approach is also that it captures relatively well the apparent viscosity obtained from

core-flood experiments, using only a limited number of inputs. Therefore, it may be useful

in many applications to rapidly estimate the influence of the depletion layer effect over the

macroscale flow and its relative contribution compared to other phenomena, such as non-

Newtonian effects.
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List of symbols

δ Depletion layer thickness

∆µXP
app Experimental apparent viscosity drop

ℓ Slip length

ǫ Porosity

µ0 Newtonian plateau of the bulk viscosity

µapp Apparent viscosity used in the Darcy’s law

µCFD
app Numerical apparent viscosity calculated on the generated packings

µXP
app Experimental apparent viscosity measured on the core-flood packings

̺ Viscosity ratio between the bulk and the depletion layer

Aβσ Solid/liquid interface

k0 Intrinsic permeability (without a depletion layer)

kCFD
0 Numerical intrinsic permeability (calculated with a no-slip condition at Aβσ )

kXP
0 Experimental intrinsic permeability (measured with the flow of a solvent)

Req Equivalent radius, defined as
√

8k0/ǫ

RCFD
eq Numerical equivalent radius, defined as

√

8kCFD
0 /ǫ

RXP
eq Experimental equivalent radius, defined as

√

8kXP
0 /ǫ

1 Introduction

One of the hallmarks of porous media is the relatively large value of the specific area,

i.e., the surface-to-volume ratio, therefore making interfacial phenomena of great impor-

tance in the study of mass and momentum transport. This is particularly true for the flow

of polymer molecules that are relatively large (up to 100 nm) and can interact with the

solid surface in a variety of ways. In general, repulsion (Agarwal et al. 1994) and attraction

(Gennes 1981) mechanisms can have significant impacts on momentum transport in porous

media. For instance, sorption mechanisms associated with electrostatic forces often lead to

a cushion of polymer molecules that can strongly affect the macroscale flow (see Brochard

and Gennes (1992)) for a description of different regimes). On the other hand, repulsion

mechanisms—originating from a variety of phenomena such as steric hindrance (Joanny et al.

1979), electrostatic repulsion (Uematsu 2015), or migration of polymer molecules away from

high-shear regions (Cuenca and Bodiguel 2013)—can lead to a depletion layer close to the

solid/liquid interface ((see Auvray (1981)) and the very good reviews from Barnes (1995) or

Sochi (2011) for more details). The concentration of polymer is then lower in the depletion

layer than in the bulk, leading to a lower viscosity in the vicinity of the wall. Consequently,

this layer acts as a lubricating film, over which the polymer molecules slip. The properties

of this depletion layer depend on parameters such as pH (Sorbie and Huang 1992), polymer

concentration, or even the flexibility of the molecules (Gennes 1981; Ausserre et al. 1986).

For diluted solutions, the depletion layer thickness, which we call δ in the remainder of this

paper, is often estimated using the gyration radius for flexible molecules and using the length

of the molecules for rigid polymers.

How does this depletion layer affect the flow on larger scales? To describe the macroscale

flow, a modified version of the isotropic Darcy’s law (Gogarty 1967) is often used,



U = −
k0

µapp
(∇ P − ρg) , (1)

with U the superficial average velocity, k0 the intrinsic permeability (associated with the

flow of a Newtonian fluid which does not induce a depletion layer or any other particular

phenomena), ∇ P the gradient of the intrinsic average pressure, ρg the gravitational force

and µapp the apparent viscosity. The effects of slip at the pore scale are usually included in

this apparent viscosity, which decreases as slip increases. The apparent viscosity drop has

been observed experimentally with rigid or flexible polymer molecules over a wide range of

porous media (Fletcher et al. 1991; Aubert and Tirrell 1982; Agarwal et al. 1994).

However, the physics of polymer flow in porous media is very rich and complex (De

Gennes 1979) so that this apparent viscosity also includes a variety of other important, often

even predominant, phenomena. These include non-Newtonian rheology, retention mecha-

nisms (Huh et al. 1990), thermochemical or mechanical degradation of polymer chains (Gao

2013; Maerker 1975) or inaccessible pore volume (Lund 1992). Due to the combined effects

of these phenomena, µapp includes rock geometrical and structural effects and may be very

different from the bulk viscosity µbulk, with apparent thinning or thickening effects. These

effects can be extremely complex, a striking example of this being elastic turbulence at low

Reynolds numbers, resulting in apparent thickening for the flow of rigid and flexible polymer

molecules through porous media (Amundarain et al. 2009; González et al. 2005; Groisman

and Steinberg 2000).

We focus in this work on the link between slip at the pore scale and the apparent viscosity

at the Darcy scale. We consider the bulk fluid rheology as Newtonian and overlook all the

other complex features of polymer flows, including non-Newtonian effects in the rheology.

The rationale for doing so is twofold. Firstly, there are many situations in which interfacial

effects are predominant in the control of the flow. One of the practical cases where this occurs

is enhanced oil recovery (EOR), where polymer solutions are often injected into oil-bearing

reservoirs (Morel et al. 2008). The idea of the technology is to benefit from an increase in the

bulk fluid viscosity in the reservoir compared to just water, which increases sweep efficiency

by a number of mechanisms including a reduction of hydrodynamic instabilities (Sorbie

1991). In field applications, a significant portion of the reservoir is composed of regions with

relatively small velocities where the polymer solution essentially behaves as a Newtonian

fluid. In the Newtonian regime, core-flood experiments further show that the flow of polymer

solutions through typical sandstones yields an apparent viscosity drop that can reach 20%

(Fletcher et al. 1991; Chauveteau 1982), which is consistent with a predominance of slip.

Furthermore, different effects are known to reduce the non-Newtonian effects under typical

reservoir conditions, such as mechanical degradation or the presence of salt ions (these are

further discussed in Sect. 2). Therefore, there is a clear engineering and practical interest in

determining the impact of slip on the macroscopic flow assuming a Newtonian rheology.

The second reason for using a Newtonian rheology is on a more fundamental level. The

approach using an apparent viscosity is mostly empirical and, as we have discussed before,

it is used successfully as a black box to describe a variety of phenomena at the pore scale.

However, there is little fundamental understanding of the relative contributions of these

phenomena in different configurations. To make progress in this direction, we believe that

it is necessary to evaluate the influence of each effect separately, so that we can understand

better the physics of multiscale polymer flows in porous media. For example, we recently

studied the Newtonian to non-Newtonian transition without slip effects using a digital rock

physics approach (Zami-Pierre et al. 2016). This fundamental understanding of the physics

may ultimately lead to better models of polymer flows that accurately combine the different



(a) (b) (c)

Fig. 1 Different scales for different models: a molecular-scale description, b mesoscale where the curves
describe the concentration field that decreases near the wall (according to a continuous or discontinuous
model) and c pore scale at which an effective condition can be used

effects, with potential applications in many engineering problems such as EOR. Therefore,

we need to propose a tool to evaluate simply the impact of the depletion layer.

How can we study the depletion layer phenomenon and the associated slip effect? To do so,

different tools are available. Molecular dynamics approaches, often with simple molecules,

are useful to understand the fundamental physics at the molecular level (Rouse 1953; Joshi

et al. 2000; Sochi 2011). However, simulations cannot yet be performed on sufficiently large

volumes to model flow in porous media, especially in the case of polymer solutions. There-

fore, mesoscale models are usually adopted (see Fig. 1a, b). The so-called two-fluid model

proposed by Chauveteau (1982), whereby the concentration of polymer and the viscosity are

piecewise constant (see the red dotted curve in Fig. 1b), is probably the simplest way to rep-

resent the depletion layer (other models use continuous and linear (Sorbie and Huang 1991)

or nonlinear (Aubert and Tirrell 1982) concentration fields, see the black curve in Fig. 1b).

In the two-fluid model, the viscosity is µlayer inside the depletion layer of thickness δ and

µbulk outside, with µbulk > µlayer.

How can this two-fluid model be used to calculate the apparent viscosity of a polymer

solution flowing through a porous medium? One way to proceed is to exploit the simplicity of

the two-fluid model to obtain an analytic solution for the flow through a single capillary and

then go on to apply the obtained analytic solution to represent more complex structures in

order to predict the apparent viscosity (Sorbie 1990; Fletcher et al. 1991; Omari et al. 1989;

Chauveteau 1982). To do so, a characteristic length must be defined and used instead of the

radius of the capillary. For complex structures, the choice of this characteristic length is not

obvious. More generally, in porous media sciences, the definition of a single characteristic

length is a frequent issue. In this case, according to the choice that is made, the prediction

of the apparent viscosity might be inaccurate. For instance, in the article from Chauveteau

(1982), the apparent viscosity prediction is accurate in beads packing, where the capillary

analogy is relevant, and fails in natural rocks like sandstones.

Another method would be to use computational fluid dynamics (CFD) to solve the Stokes

equations at the pore scale in complex porous structures. However, this approach requires

a large number of mesh elements to capture gradients in the thin depletion layer and, in

most cases, it is not computationally tractable. A way to overcome this issue is to further

simplify the representation and use a slip boundary condition at the solid/liquid interface

(see Fig. 1b–c). The slip coefficient can be obtained from the solution in a capillary tube

and then applied to more complex pore-scale structures. The idea is that computations where



only the slip length is estimated using the capillary tube model may be more accurate than

models where the whole porous medium is treated as a capillary tube. This is because it deals

with the realistic pore-scale structure instead of simplifying it and there is no requirement of

characteristic length estimation. However, there is no strong theoretical basis for estimating

differences in accuracy, and therefore, the validity of such an effective condition must be

tested.

In this paper, we revisit the use of a pore-scale slip effective condition to model a wall

repulsion mechanism. The derivation of this pore-scale effective condition is detailed in

Sect. 3, and the slip length that we obtain is directly related to parameters of the depletion layer.

In order to validate the expression of the slip length, we compare the apparent viscosity (see

Eq. 1) obtained from several core-flood experiments from the literature (Chauveteau 1982;

Sorbie and Huang 1991) and CFD calculations that we perform on associated geometries;

see Sect. 4. We show that our model provides an estimation of the apparent viscosity within

an accuracy of about 10% in most cases. The main contribution of this paper is to show that

this computational approach is a simple way to estimate the contribution of the depletion

layer to the macroscale flow. This method also lays the foundation for further improvements,

such as accounting for a non-Newtonian rheology that could be easily implemented in the

numerical model.

2 The Newtonian Framework in EOR

In this section, we go beyond the qualitative discussion of the Introduction and further justify

the Newtonian framework in which this study is set for EOR applications.

The bulk rheology of a polymer solution, as measured for example by a rheometer, exhibits

non-Newtonian effects. For most polymer fluids, the solution has a Newtonian behavior in

the limit of low shear rates, i.e., µbulk = µ0 (except yield stress fluids that are not considered

in this study), and, in most cases, a shear-thinning behavior under moderate shear rates (for

γ̇ > γ̇c , µbulk ∝ γ̇ n−1, see Fig. 2). Various laws exist to describe the shear-thinning rheology.

The viscosity usually drops according to a power-law (Bird et al. 1977), as is the case for

xanthan or partially hydrolyzed polyacrylamide (HPAM) polymers, which are commonly

used in EOR (Sorbie 1991). As discussed in the Introduction, under higher shear rates elastic

turbulence may occur for HPAM or xanthan, yielding an apparent shear-thickening. This

effect is not represented in Fig. 2.

In a porous medium, there exists a complex coupling between this bulk rheology and

the multiscale geometry of the porous structure. Despite this apparent complexity, it is well

accepted (Chauveteau 1982; Morais et al. 2009) that there is a critical value of the Darcy

velocity, or equivalently the pressure gradient, that controls the transition from a Newtonian

to a non-Newtonian regime at the macroscale. Below this critical velocity, the flow behaves

in a Newtonian manner. Fundamental aspects of this transition are discussed in Zami-Pierre

et al. (2016). In EOR modeling, this is often considered via an apparent viscosity µapp (the

limitations of this approach are discussed in the Introduction) that is treated as a function of

an equivalent shear rate γ̇eq that is usually calculated as

γ̇eq = α
4 ‖U‖ /ǫ

Req
, (2)

with α an empirical parameter that characterizes the impact of the medium structure and

Req =
√

8k0

ǫ
, (3)



10−2 1 102
10−1

100

∆µapp

non-Newtonian regimeNewtonian regime

γ̇/γ̇c

µ
/
µ

0

Bulk viscosity
µapp in a porous medium

Fig. 2 Simplified representation of the viscosity dependence upon the shear rate [the viscosity is calculated
with a Bird–Carreau model (Bird and Carreau 1968)] for a xanthan polymer solution. For HPAM, the apparent
shear-thinning is often not observed, as elastic effects rapidly become predominant in the non-Newtonian
regime (Seright et al. 2008). In a porous medium, the apparent viscosity (µapp in Eq. 1) is plotted versus an
apparent shear rate γ̇eq (Chauveteau 1984). The apparent and bulk viscosities are represented with the same
slope in the non-Newtonian regime. This might not always be the case in practical situations (Sorbie 1991)
where different slopes have been observed. The parameter α in Eq. 2 is used to superpose the apparent and
bulk viscosity curves in the non-Newtonian regime. This leads to a shift in the transition from the Newtonian
to the non-Newtonian regime between the bulk and apparent viscosities. For example, α is about 2 for beads
packings (Zitha et al. 1995) and rises up to 10 for sandstones (Fletcher et al. 1991)

with ǫ the porosity (Chauveteau 1984). The definition of the equivalent radius Req, sometimes

called the “pore throat radius”, results from an analogy with the flow through a capillary tube.

In this paper, we will also use the length Req as a characteristic length of the medium, in order

to evaluate the impact of the depletion layer of thickness δ. This definition of γ̇eq is derived

from models based on a tube (α = 1 corresponding to the expression of the maximum shear

rate in a capillary tube) and a similar expression is used in petroleum engineering simulators

(UTCHEM 2000). In these simulators, the flow is also considered Newtonian for γ̇eq � γ̇c.

Figure 2 represents a simplified view of the bulk and apparent viscosities dependence upon

the shear rate for a xanthan solution. In an ideal situation where all the phenomena described

in the Introduction are not occurring, the apparent viscosity drop in the Newtonian regime,

∆µapp in Fig. 2, is only induced by the depletion layer.

We now ask the question of whether the situation γ̇eq � γ̇c actually occurs in EOR? For

the xanthan polymer, γ̇c values are typically in the range 1–10 s−1 for concentrations used

in EOR (Sorbie and Huang 1991; Omari et al. 1989; Sorbie 1991). This range of γ̇c must be

compared to the values of γ̇eq associated with the flow through reservoirs. To estimate γ̇eq,

we perform a simple order of magnitude estimation. Let us consider two wells at a distance

of about 500 m [in off-shore fields the well spacing may even reach 1500 m (Morel et al.

2008)]. The thickness of the reservoir is supposed to be 10 m and the injection flow rate is

about 20 m3 h−1 (Morel et al. 2008). By mass flux conservation, the velocity deep into the

reservoir, i.e., halfway between the two wells, can be estimated to about 3 cm day−1. Using

typical values of the permeability (1 Darcy), porosity (0.20), and α (2.5 Morel et al. (2015)),

Eq. 2 yields an order of magnitude for γ̇eq of 0.5 s−1. This value is consistent with real oil

fields applications (Morel et al. 2015). This suggests that, in a significant part of the reservoir,

the flow is primarily Newtonian.



Moreover, several other effects may limit the impact of non-Newtonian rheology. For

instance, in some regions of the reservoir, low polymer concentrations may exist (due for

instance to a transient regime), which may also limit non-Newtonian effects (Skauge et al.

2015). Concerning HPAM, the strong degradation that polymer molecules undergo when they

penetrate the reservoir results in a breakage of the chains, hence lowering the non-Newtonian

effects in the bulk rheology of the fluid (Stavland et al. 2010). Finally, the salt hardness

and concentration may affect the rheological properties of the solution if the polymer is

charged (which is the case for HPAM) (Sorbie 1991). As shown by Seright (2011), the salt

concentration in the injected polymer slug can lead to Newtonian-like behavior deep into the

reservoir. Under these circumstances, the flow is likely Newtonian in a significant portion of

the reservoir.

From the order of magnitude calculation of γ̇eq combined with these remarks, we conclude

that setting the study under the Newtonian flow framework is both fundamentally important

and relevant for petroleum engineering applications.

3 The Slip Boundary Condition

The goal of this section is to revisit an effective condition at the pore scale that is derived

from the two-fluid model (Blake 1990; Cohen and Metzner 1985). To this end, we will study

a model for the flow in a single capillary tube. First, let us consider the flow of a Newtonian

fluid through a tube of radius R and length L oriented along ez . In this tube, the viscosity is

described as

µ (r) =
{

µlayer if R − δ ≤ r ≤ R,

µ0 if 0 ≤ r ≤ R − δ,
(4)

where µ0 and µlayer are constant. From Eq. 4, it is assumed that the depleted layer thickness

is uniform in the porous medium. In addition, a no-slip condition is imposed at the solid

surface. Under these circumstances, as demonstrated by Chauveteau (1982), the filtration

velocity of the two-fluid model U2f is given by

U2f =
R2∆P

8µappL
, with µapp =

µ0

1 + (̺ − 1)
[

1 −
(

1 − δ
R

)4
] , (5)

where ̺ is the ratio µ0/µlayer and ∆P is the pressure drop (∆P > 0). The absence of a

depletion layer, δ = 0, is a limiting case that leads back to the no-slip case (µapp = µ0 in

Eq. 5).

The goal now is to upscale the two-fluid model (Fig. 1b) into an equivalent one-fluid

model along with an effective boundary condition (Fig. 1c). The choice for this boundary

condition is a Navier slip, which has been widely used in different geometries (Navier 1823;

Lasseux et al. 2014). The slip length, which may be considered constant (Brochard and

Gennes 1992) or shear rate dependent (Hatzikiriakos and Dealy 1991; Kalyon 2005), is the

only control parameter of the boundary condition. To connect this slip length to the mesoscale

representation, i.e., the two-fluid model, we compare the flow of a two-fluid model through

a single tube and the flow of a one-fluid model with a Navier slip boundary condition. Let us

now consider an equivalent fluid with uniform viscosity, µ0, and a slip boundary condition

in the form

uwall = −ℓ
d u

d r

∣

∣

∣

∣

wall

, (6)



where ℓ is the slip length. The analytic solution of the velocity profile is the sum of the

classical Poiseuille flow and a velocity offset. It reads

u (r) = uwall +
R2∆P

4µ0 L

(

1 −
( r

R

)2
)

. (7)

As already calculated by Churaev et al. (1984), the mean velocity over the cross section of

the tube in the one-fluid model U1f is then

U1f =
R2∆P

8µ0 L

(

1 +
4ℓ

R

)

. (8)

We now seek ℓ so that the average velocity is the same for the one- and two-fluid models in

Eqs. 5 and 8. After some simple algebra, U1f = U2f yields

ℓ =
R

4
(̺ − 1)

[

1 −
(

1 −
δ

R

)4
]

. (9)

A key step now consists in assuming that the thickness of the depletion layer is much

smaller than the tube radius, which is correct if the pores are much larger than the polymer

molecules. This assumption, δ ≪ R, is widely used in the development of mesoscale models

and is often verified in practical situations, where R may be estimated for a porous medium by

the equivalent radius Req (see Eq. 3). As explained earlier, in this study, we do not recognize

Req as a precise geometrical length, but rather as an order of magnitude estimate of a typical

pore size. With the assumption δ ≪ R, we can use a Taylor series expansion in Eq. 9 to

obtain

ℓ = δ (̺ − 1)

(

1 + O

(

δ

R

))

≃ δ (̺ − 1) . (10)

We also recover the limiting case δ = 0 that yields a no-slip condition. Many studies assume

further that ̺ ≫ 1, so that the slip length reduces to ℓ = δ̺ (Cuenca and Bodiguel 2013).

However, if incorrect, this simplification could greatly overestimate the slip length, so that we

do not use it here. The formulation ℓ = δ (ρ − 1) is not novel. This formulation has actually

already been derived, using either molecular kinetic theory as demonstrated by Tolstoi (1952)

[the original paper is in Russian, a translation can be found in Blake (1990)] or, in a similar

manner to what we did here, using a creeping flow through a tube (Cohen and Metzner 1985).

This expression has also been directly used in the literature (Ma and Graham 2005; Priezjev

and Troian 2004; Cuenca and Bodiguel 2013).

With this expression, how do we link ℓ to an apparent viscosity? At this point, considering

that δ and ̺ are known, two options are available to predict the apparent viscosity drop for

a given sandstone. The first option consists in using the formulation of Chauveteau (1982)

(Eq. 5), replacing R by a characteristic length of the porous medium. The major drawback of

this approach is that the choice of this characteristic length is somewhat arbitrary. We could

choose, by analogy with a capillary tube, the value
√

8k0/ǫ, but we might as well choose

a geometrical chord length or any other similar metric. We draw the reader’s attention to

the fact that, in the paper from Chauveteau (1982), the characteristic length that replaces

R in Eq. 5 is calculated such as the apparent viscosity prediction matches the experimental

measurements. While for beads packings,
√

8k0/ǫ works quite well to predict µapp; for more

complex media (such as the Fontainebleau sandstone), the use of this length predicts very

poorly the apparent viscosity. This approach is hence limited to simple porous media where

the capillary analogy holds.



The second option consists in performing numerical simulations on the image of the

sandstone with a Navier slip condition at the interface, where the slip length is defined by

Eq. 10. Since the slip length expression is independent from the tube radius, this approach

is free of any characteristic length estimation. Despite the fact that both approaches have a

similar origin, i.e., assimilating the porous medium to a capillary tube and using a slip length

derived from the simple flow in a tube, it is absolutely not obvious that they will lead to

the same apparent viscosity prediction. In particular, the slip approach captures the complex

geometry of the porous medium, whereas the approach based on a capillary simplifies it.

Moreover, the effective slip condition lends itself very well to future improvements. Among

them, we could modify the slip length and use a non-uniform expression in the porous

medium. In a tube, since the shear rate does not vary along ez, considering a uniform slip

length is indeed relevant. However, in a real porous medium, under locally high shear rates,

polymer molecules may align along the wall with the orientation of the flow field, therefore

potentially decreasing the parameter δ (Auvray 1981; Sorbie and Huang 1991). In the same

manner, the non-Newtonian effects might modify the parameter ̺ (Omari et al. 1989). These

are possible mechanisms that could be taken into account using an effective description of

the depletion layer.

To the best of our knowledge, the accuracy of the Navier slip as an effective condition to

represent the depletion layer has never been evaluated for numerical applications. Besides, an

effective slip condition is commonly used for a variety of interface phenomena to represent

the macroscale effects. For instance, microfluidic experiments have shown that red blood cells

tend to create a cell-depleted layer near the wall, that also induces an apparent slip effect

(Fåhræus and Lindqvist 1931; Sherwood et al. 2012). Gas flow through porous media under

low Knudsen number might also be accurately characterized with an effective slip condition

(Lasseux et al. 2014). From a fundamental and general point of view, it is hence important

to test the validity of such a boundary condition regarding the depletion layer effect.

4 Accuracy of the Effective Model

Here, we assess the accuracy of our model by comparing CFD results to core-flood experi-

mental data obtained from the literature, where the fluid injected into the core is a polymer

solution and the apparent viscosity drop has been measured. In this section, parameters related

to experimental data are denoted with the superscript XP, while the corresponding parameters

related to numerical results are denoted with the superscript CFD.

4.1 Experimental Data from the Literature

Among all the data sets available, we chose to limit our comparison to xanthan flow in beads

packings in the studies of Chauveteau (1982) and Sorbie and Huang (1991). We chose beads

packings because the complexity of the porous structure is described by a limited number

of parameters (primarily, beads size and porosity), therefore allowing us to easily reproduce

geometrical features of the system in CFD simulations. For more complex structures, such

as Berea, Clashach, or Bentheimer sandstones (Fletcher et al. 1991; Chauveteau 1984), used

in experiments where apparent viscosities have actually been measured, we lack information

regarding the geometry of these particular structures, which may be fundamental in evaluat-

ing the macroscale effect of the depletion layer. We also chose xanthan mainly because the

polymer molecules are semi-rigid, as opposed to HPAM molecules for example that are flex-

ible. Flexible molecules yield more complicated physical phenomena [such as entanglement



or elasticity as shown by Groisman and Steinberg (2000)]. Obviously, our simple slip model

would not be able to capture such complicated effects. In addition, for the selected studies,

the sorption of xanthan molecules to the wall was negligible so that the repulsion mechanism

dominates and the two-fluid model is relevant.

Finally, we chose the works of Chauveteau (1982) and Sorbie and Huang (1991) because

Chauveteau (1982) uses the same polymer solution and changes the characteristics of the

porous medium while Sorbie and Huang (1991) always use the same porous medium but

with different solutions. Hence, comparison with Chauveteau (1982) allows us to test the

robustness of the slip model with respect to the distribution of pore sizes, in particular in the

limit where Req = O (δ), whereas comparison with Sorbie and Huang (1991) allows us to

evaluate the impact of the depletion layer.

For all the configurations considered, we report in Table 1 the main experimental param-

eters, i.e., the porous medium characteristics (the minimum DXP
min and maximum DXP

max beads

diameters, the intrinsic permeability kXP
0 which is measured for the flow of the solvent, i.e.,

without a depletion layer, and porosity ǫ), the properties of the depletion layer (δ and ̺)

and the measured apparent viscosity, µXP
app. We note that different methods exist to estimate

the thickness of the depletion layer, δ, and the viscosity ratio, ̺. To be consistent, for all

experimental data sets, we use δ = 0.7b (where b is the molecular length, valid approxima-

tion at low shear rates for rigid molecules (Chauveteau 1984)), and µlayer as (µ0+µsolvent)/2

to calculate ̺ = µ0/µlayer [proposed by Chauveteau (1982)]. In the paper from Sorbie and

Huang (1991), the polymer concentration is different for all the experimental configurations,

implying that ̺ varies, but the molecular length is always the same, meaning that δ remains

constant. The slip length associated with each configuration is also calculated according to

Eq. 10.

In Table 1, we also report the experimental apparent viscosity drop, ∆µXP
app =

(

µ0−µXP
app

)

/µ0.

As expected, we observe with the cases from Sorbie and Huang (1991) that the appar-

ent viscosity drop increases with the slip length. On the other hand, in the cases from

Chauveteau (1982), the slip length is fixed and kXP
0 , or the experimental equivalent radius

RXP
eq =

√

8kXP
0 /ǫ, varies. We observe that small values of kXP

0 , or RXP
eq , correspond to large

values of ∆µXP
app. This is because, for a fixed average velocity, the shear rates close to the

wall will be larger for the smallest values of RXP
eq , hence inducing a higher slip velocity.

4.2 CFD Simulations

For CFD simulations, we approximate the flow in the beads packings using face-centered

cubic (FCC) packings. In the standard FCC, the porosity is about 0.26 and the beads are

in contact. The beads diameter of the generated FCC is denoted by DCFD. To generate a

geometry close to the packings used in the experiments, we first shrank the beads, which

are not in contact anymore (see Fig. 3a), until we match the porosity (ǫXP = ǫCFD = ǫ).

Then, we scaled the beads diameter so that DCFD =
(

DXP
max+DXP

min

)

/2 (see Tables 1, 2), while

preserving the correct porosity.

We could have used other methods to produce more realistic beads packings, e.g., gener-

ating the packings randomly (Adams and Matheson 1972) or imaging an actual packing via

X-ray microtomography. Compared to the experiments, we would have probably obtained a

more realistic geometry than the FCC packings (in terms of disorder or tortuosity). However,

the aim here is to keep the procedure as simple as possible in order to evaluate whether a

Navier slip condition captures the characteristics of the macroscopic flow. Moreover, slip is

known to strongly depend on the distribution of pore sizes. For instance, if the slip length
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Fig. 3 a Typical porous structure used in the CFD simulations and b grid convergence study, with the error
E (k0) plotted against the normalized number of cells N/Nmax. The final meshes are chosen for an acceptable
relative error of about 0.5%

is too small compared to the typical geometrical length, the slip effect becomes negligible.

Therefore, we expect that to correctly estimate the slip effect, matching the pore size may be

more important than matching the spatial organization of the beads or the permeability.

In the liquid phase, denoted by subscript β, the flow is described by the incompressible

Stokes equations

∇ ·
[

µ0

(

∇vβ +
(

∇vβ

)T
)]

− ∇ pβ + f = 0, (11)

along with ∇ · vβ = 0, where f is a source term, playing the role of −(∇ P − ρg) in Eq. 1.

For the solid/liquid interface, which we note Aβσ (σ is the solid), we use the Navier (1823)

slip boundary condition,

vβ = −ℓ
[

n ·
(

∇vβ +
(

∇vβ

)T
)]

· (I − nn) , (12)

where n is the unit normal vector to the surface directed from β to σ . For the external

boundaries, periodic conditions are applied to both the velocity and pressure.

These equations are solved using the finite volume toolbox OpenFOAM (Weller et al.

1998) via a SIMPLE algorithm originally developed by Patankar (1980). Since the grids

are collocated (pressure and velocity are calculated at the same point), a Rhie–Chow type

interpolation (Rhie and Chow 1983) is employed during the pressure correction steps in

OpenFOAM, by estimating the pressure gradient on the cell faces with the pressure values of

the neighboring cell centers. This Rhie-Chow method prevents the solution from becoming

unstable, by enforcing the pressure/velocity coupling in the course of the SIMPLE algorithm

[see a detailed description in Nordlund et al. (2016)].

To assess numerical convergence, several unstructured hex-dominant meshes (from coarse

to fine) were generated, and the accuracy of the associated solutions is evaluated using a

convergence error estimate of the no-slip permeability kCFD
0 ,

E (k0) =
kCFD

0 − kCFD
0finest

kCFD
0finest

, (13)

where kCFD
0finest corresponds to the finest calculation of the intrinsic permeability. The number

of cells in the finest grid is denoted as Nmax and is about 26 millions. Figure 3b shows the error
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Fig. 4 Comparison of experimental and numerical results via the dimensionless viscosity E (µ) =
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app −µXP
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app

. The averaged value of E (µ) is about −4.4% for Chauveteau (1982) and 3.5% for Sorbie and

Huang (1991)

estimate decreasing with the number of cells. The final chosen grids for our CFD simulations

contain about 3 million cells.

Using the final chosen grids, we calculated for each case of Table 2 the intrinsic perme-

ability tensor KCFD
0

, defined with a no-slip boundary condition at Aβσ . Since the medium

is isotropic and the momentum transport operator is linear (Eq. 11), the permeability ten-

sor can be written as K0 = kCFD
0 I. In the CFD simulations, we impose the source term f

along the spatial direction ez , f = f ez , yielding an average velocity U = Uez . The apparent

permeability is then simply calculated with Eq. 1 as kCFD
0 f/U .

4.3 Results and Discussion

Numerical simulations with and without slip are used to estimate the apparent viscosity

µCFD
app and perform a comparison with its experimental value µXP

app. We calculate the relative

difference

E (µ) =
µCFD

app − µXP
app

µXP
app

. (14)

Results are summarized in Table 2 and E (µ) is plotted in Fig. 4. Since our porous medium

is idealized in the CFD simulations, we further introduce uncertainties to facilitate the com-

parison with experiments:

– First, in the FCC packings, the beads are perfectly ordered which is not the case in the

experiments. In order to evaluate the uncertainty induced by this, we randomly shifted

the position of the beads, authorizing contact between beads, and simulated the flow

through these geometries. We find that the influence of disorder is rather small (less than

1% change in the apparent viscosity).



– Second, there is a distribution of beads sizes in the experiments (unknown since only a

range is reported in the papers) that is not captured by the FCC structures. To estimate the

uncertainty associated with the distribution of sizes, we simulated the flow through FCC

packings with beads size DCFD corresponding to DXP
min and DXP

max reported in the papers.

We find that the influence of the beads size on µCFD
app can be significant, with differences

up to 12%.

Figure 4 shows that, for the mean values, CFD simulations in FCC packings provide an

accurate estimation of the apparent viscosity, with an error below 10% for most cases. We

also emphasize that, even though the estimation of the apparent viscosity is accurate, the

permeability prediction is less accurate. We observe indeed that the ratio of permeability

between CFD and experiments varies between 0.75 and 1.20 for the study of Chauveteau

(1982) and is about 2 for the paper from Sorbie and Huang (1991). We note that in the paper

from Sorbie and Huang (1991), the accuracy of the intrinsic permeability measurement is

lower than in the paper from Chauveteau (1982).

The question then arises: What would have been the apparent viscosity prediction if we had

chosen DCFD such as kCFD
0 = kXP

0 ? We tested this configuration and found that the predictions

were always in the range of the error bars plotted in Fig. 4 (except for medium C1, where the

error is extremely small anyway). For instance, for the media in Sorbie and Huang (1991),

tuning DCFD so that the experimental and numerical permeabilities are matched actually

leads to DCFD ≃ DXP
min, which corresponds to the lowest part of the error bar. While this

choice improves the prediction for some media, it also makes it worse for other media. The

arbitrary choice of DCFD such as kCFD
0 = kXP

0 is thus not better than DCFD =
(

DXP
max+DXP

min

)

/2.

For the reason explained above, we prefer to compare porous media that have the same

geometrical characteristic length rather than the same permeability.

Interestingly, the only case for which the error is over 10% corresponds to a configura-

tion where RCFD
eq is small and for which we have the largest uncertainty. For the results of

Chauveteau (1982), Fig. 4 also shows that the accuracy of the model is the poorest for media

C6 and C7 and tends to increase with RCFD
eq . While the assumption δ ≪ RCFD

eq is necessary

to obtain the expression of the slip length, the ratio δ/RCFD
eq gets close to unity for media C6

and C7 (see Table 2). We hypothesize that this is the cause of the observed inaccuracies.

When the polymer size is close to the size of the pores (RCFD
eq = O (δ)), the physics involved

might indeed be very different, and a pore-scale description of the polymer solution as a

continuum could be irrelevant. On the other hand, in the configurations from Sorbie and

Huang (1991), RCFD
eq is fixed and the assumption δ ≪ RCFD

eq is always verified. Hence, we

can focus on the dependence of E (µ) on the slip length. We observe no clear trend of E (µ)

with respect to ℓ. We conclude that the accuracy of the model is not sensitive to the slip

length.

Finally, it is important to keep in mind the following. Firstly, other phenomena may occur

that are not described by our model, such as the retention of polymer molecules (Huh et al.

1990), or microgels (Chauveteau and Kohler 1984). Moreover, when the flow regime is high

enough, non-Newtonian effects should be taken into account. This would result in E (µ) being

a function of the average velocity. Secondly, the effective condition is based on the two-fluid

model that is a relatively crude description of the depletion layer (because of the discontinuous

concentration field). Finally, experimental uncertainties were not clearly quantified in the

studies of Chauveteau (1982) and Sorbie and Huang (1991). Despite this, values of E (µ) are

below 10% in most cases, and we conclude that our approach for calculating the slip length

provides a good first-order estimation of the apparent viscosity.



5 Summary and Conclusions

Polymer molecules can arrange and interact with the solid/liquid interface in a variety of

ways. At the molecular scale, one of these rearrangements is a repulsion mechanism of

polymer molecules from the wall, creating a depletion layer acting as a lubricating film. At

the macroscale, this effect can be described using an apparent viscosity in Darcy’s law that

is lower than the bulk viscosity. There are several practical situations where this interfacial

effect is predominant in the macroscale flow behavior, such as polymer injection for EOR.

Therefore, it is important to have available a rapid and simple tool to quantify the relative

contribution of the depletion layer with respect to other phenomena associated to polymer.

In this paper, we have investigated the accuracy of an effective slip condition in capturing

the apparent viscosity drop. We first revisited the formulation ℓ = δ (̺ − 1), where δ is

the thickness of the depletion layer and ̺ the ratio of viscosity between the bulk fluid and

the depletion layer. We then assessed the accuracy of this effective condition by comparing

viscosity drops obtained in core-flood experiments in Chauveteau (1982) and Sorbie and

Huang (1991) to CFD calculations in model geometries. We found that in most cases the

effective condition predicts the apparent viscosity with an error below 10%. This method

only requires the parameters δ, ̺ and an image of the porous medium. Therefore, this simple

expression of the slip length in the Navier boundary condition may be used as a quick way

to evaluate the macroscale apparent viscosity drop.

Several subsequent investigations may follow from the proposed numerical methodol-

ogy. For instance, we validated the proposed methodology with beads packing, where the

complexity of the porous structure is moderate compared to natural media, such as sand-

stones. However, the main advantage of the effective condition approach is that it deals with

the actual pore-scale structure instead of simplifying it. Therefore, if the geometry of the

medium is available, we assume that the effective slip condition would yield a similar accu-

racy when applied to natural porous media. However, this is a conjecture, and it requires

further investigations.

A step further would also be to assess the impact of non-Newtonian effects on the Navier

slip length and the impact of this effective slip on the macroscale transition between New-

tonian and non-Newtonian regimes (Zami-Pierre et al. 2016). In addition, an advantage of

the slip formulation, as opposed to the two-fluid model, is its ability to deal with a non-

uniform depletion layer. For instance, the viscosity ratio ̺ may be treated as a function of the

local concentration field or profile (Ausserre et al. 1986; Chauveteau 1982) in future work.

Likewise, as suggested by Sorbie and Huang (1991), δ may vary with the local wall shear

rate.
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