645 research outputs found

    Discovery of an Energetic Pulsar Associated with SNR G76.9+1.0

    Get PDF
    We report the discovery of PSR J2022+3842, a 24 ms radio and X-ray pulsar in the supernova remnant G76.9+1.0, in observations with the Chandra X-ray telescope, the Robert C. Byrd Green Bank Radio Telescope, and the Rossi X-ray Timing Explorer (RXTE). The pulsar's spin-down rate implies a rotation-powered luminosity Edot = 1.2 x 10^{38} erg/s, a surface dipole magnetic field strength B_s = 1.0 x 10^{12} G, and a characteristic age of 8.9 kyr. PSR J2022+3842 is thus the second-most energetic Galactic pulsar known, after the Crab, as well as the most rapidly-rotating young, radio-bright pulsar known. The radio pulsations are highly dispersed and broadened by interstellar scattering, and we find that a large (delta-f / f ~= 1.9 x 10^{-6}) spin glitch must have occurred between our discovery and confirmation observations. The X-ray pulses are narrow (0.06 cycles FWHM) and visible up to 20 keV, consistent with magnetospheric emission from a rotation-powered pulsar. The Chandra X-ray image identifies the pulsar with a hard, unresolved source at the midpoint of the double-lobed radio morphology of SNR G76.9+1.0 and embedded within faint, compact X-ray nebulosity. The spatial relationship of the X-ray and radio emissions is remarkably similar to extended structure seen around the Vela pulsar. The combined Chandra and RXTE pulsar spectrum is well-fitted by an absorbed power-law model with column density N_H = (1.7\pm0.3) x 10^{22} cm^{-2} and photon index Gamma = 1.0\pm0.2; it implies that the Chandra point-source flux is virtually 100% pulsed. For a distance of 10 kpc, the X-ray luminosity of PSR J2022+3842 is L_X(2-10 keV) = 7.0 x 10^{33} erg s^{-1}. Despite being extraordinarily energetic, PSR J2022+3842 lacks a bright X-ray wind nebula and has an unusually low conversion efficiency of spin-down power to X-ray luminosity, L_X/Edot = 5.9 x 10^{-5}.Comment: 8 pages in emulateapj format. Minor changes (including a shortened abstract) to reflect the version accepted for publicatio

    Chandra Confirmation of a Pulsar Wind Nebula in DA 495

    Full text link
    As part of a multiwavelength study of the unusual radio supernova remnant DA 495, we present observations made with the Chandra X-ray Observatory. Imaging and spectroscopic analysis confirms the previously detected X-ray source at the heart of the annular radio nebula, establishing the radiative properties of two key emission components: a soft unresolved source with a blackbody temperature of 1 MK consistent with a neutron star, surrounded by a nonthermal nebula 40'' in diameter exhibiting a power-law spectrum with photon index Gamma = 1.6+/-0.3, typical of a pulsar wind nebula. The implied spin-down luminosity of the neutron star, assuming a conversion efficiency to nebular flux appropriate to Vela-like pulsars, is ~10^{35} ergs/s, again typical of objects a few tens of kyr old. Morphologically, the nebular flux is slightly enhanced along a direction, in projection on the sky, independently demonstrated to be of significance in radio polarization observations; we argue that this represents the orientation of the pulsar spin axis. At smaller scales, a narrow X-ray feature is seen extending out 5'' from the point source, a distance consistent with the sizes of resolved wind termination shocks around many Vela-like pulsars. Finally, we argue based on synchrotron lifetimes in the estimated nebular magnetic field that DA 495 represents a rare pulsar wind nebula in which electromagnetic flux makes up a significant part, together with particle flux, of the neutron star's wind, and that this high magnetization factor may account for the nebula's low luminosity.Comment: 26 pages, 5 figures, AASTeX preprint style. Accepted for publication in The Astrophysical Journa

    PSR J2022 plus 3842: An Energetic Radio and X-Ray Pulsar Associated with SNR G76.9 plus 1.0

    Get PDF
    We present Chandra X-ray Observatory, Robert C. Byrd Green Bank Radio Telescope (GBT), and Rossi X-ray Timing Explorer (RXTE) observations directed toward the radio supernova remnant (SNR) G76.9+1.0. The Chandra investigation reveals a hard, unresolved X-ray source coincident with the midpoint of the double-lobed radio morphology and surrounded by faint, compact X-ray nebulosity. These features suggest that an energetic neutron star is powering a pulsar wind nebula (PWN) seen in synchrotron emission. Indeed, the spatial relationship of the X-ray and radio emissions is remarkably similar to the extended emission around the Vela pulsar. A follow-up pulsation search with the GBT uncovered a highly-dispersed (DM = 427 +/- 1 pc/cu cm) and highly-scattered pulsar with a period of 24 ms. Its subsequently measured spin-down rate implies a characteristic age T(sub c) = 8.9 kyr, making PSR J2022+3842 the most rapidly rotating young radio pulsar known. With a spin-down luminosity E = 1.2 x 10(exp 38) erg/s, it is the second-most energetic Galactic pulsar known, after the Crab pulsar. The 24-ms pulsations have also been detected in the RXTE observation; the combined Chandra and RXTE spectral fit suggests that the Chandra point-source emission is virtually 100% pulsed. The 2-16 keV spectrum of the narrow (0.06 cycles FWHM) pulse is well-fitted by an absorbed power-law model with column density N(sub H) = (1.7 +/- 0.5) x 10(exp 22)/sq cm and photon index Gamma = 1.0 +/- 0.2, strongly suggestive of magnetospheric emission. For an assumed distance of 10 kpc, the 2-10 keV luminosity of L(sub X) = 6.9 x 10(exp 33) erg/s suggests one of the lowest known X-ray conversion efficiencies L(sub X)/ E = 5.8 x 10(exp -5), similar to that of the Vela pulsar. Finally, the PWN around PSR J2022+3842 revealed by Chandra is also underluminous, with F(sub PWN)/ F(sub PSR) < or approx.1 in the 2-10 keV band, a further surprise given the pulsar's high spin-down luminosity

    DA495 - an aging pulsar wind nebula

    Full text link
    We present a radio continuum study of the pulsar wind nebula (PWN) DA 495 (G65.7+1.2), including images of total intensity and linear polarization from 408 to 10550 MHz based on the Canadian Galactic Plane Survey and observations with the Effelsberg 100-m Radio Telescope. Removal of flux density contributions from a superimposed \ion{H}{2} region and from compact extragalactic sources reveals a break in the spectrum of DA 495 at 1.3 GHz, with a spectral index α=0.45±0.20{\alpha}={-0.45 \pm 0.20} below the break and α=0.87±0.10{\alpha}={-0.87 \pm 0.10} above it (Sννα{S}_\nu \propto{\nu^{\alpha}}). The spectral break is more than three times lower in frequency than the lowest break detected in any other PWN. The break in the spectrum is likely the result of synchrotron cooling, and DA 495, at an age of \sim20,000 yr, may have evolved from an object similar to the Vela X nebula, with a similarly energetic pulsar. We find a magnetic field of \sim1.3 mG inside the nebula. After correcting for the resulting high internal rotation measure, the magnetic field structure is quite simple, resembling the inner part of a dipole field projected onto the plane of the sky, although a toroidal component is likely also present. The dipole field axis, which should be parallel to the spin axis of the putative pulsar, lies at an angle of {\sim}50\degr east of the North Celestial Pole and is pointing away from us towards the south-west. The upper limit for the radio surface brightness of any shell-type supernova remnant emission around DA 495 is Σ1GHz5.4×1023\Sigma_{1 GHz} \sim 5.4 \times 10^{-23} OAWatt m2^{-2} Hz1^{-1} sr1^{-1} (assuming a radio spectral index of α=0.5\alpha = -0.5), lower than the faintest shell-type remnant known to date.Comment: 25 pages, accepted by Ap

    On identifying the neutron star that was born in the supernova that placed 60Fe onto the Earth

    Get PDF
    Recently, 60Fe was found in the Earth crust formed in a nearby recent supernova (SN). If the distance to the SN and mass of the progenitor of that SN was known, then one could constrain SN models. Knowing the positions, proper motions, and distances of dozens of young nearby neutron stars, we can determine their past flight paths and possible kinematic origin. Once the birth place of a neutron star in a SN is found, we would have determined the distance of the SN and the mass of the SN progenitor star.Comment: refereed NPA5 conference proceedings, in pres

    A uniform treatment of the orbital effects due to a violation of the Strong Equivalence Principle in the gravitational Stark-like limit

    Full text link
    We analytically work out several effects which a violation of the Strong Equivalence Principle (SEP) induces on the orbital motion of a binary system constituted of self-gravitating bodies immersed in a constant and uniform external field. We do not restrict to the small eccentricity limit. Moreover, we do not select any specific spatial orientation of the external polarizing field. We explicitly calculate the SEP-induced mean rates of change of all the osculating Keplerian orbital elements of the binary, the perturbation of the projection of the binary orbit onto the line-of-sight, the shift of the radial velocity, and the range and range-rate signatures and as well. We find that the ratio of the SEP precessions of the node and the inclination of the binary depends only on and the pericenter of the binary itself, being independent on both the magnitude and the orientation of the polarizing field, and on the semimajor axis, the eccentricity and the node of the binary. Our results, which do not depend on any particular SEP-violating theoretical scheme, can be applied to quite general astronomical and astrophysical scenarios. They can be used to better interpret present and future SEP experiments, especially when several theoretical SEP mechanisms may be involved, and to suitably design new dedicated tests.Comment: LaTex2e, 14 pages, no figures, no tables, 42 references. To appear in Classical and Quantum Gravity (CQG

    Timing of the 2008 Outburst of SAX J1808.4-3658 with XMM-Newton: A Stable Orbital Period Derivative over Ten Years

    Full text link
    We report on a timing analysis performed on a 62-ks long XMM-Newton observation of the accreting millisecond pulsar SAX J1808.4-3658 during the latest X-ray outburst that started on September 21, 2008. By connecting the time of arrivals of the pulses observed during the XMM observation, we derived the best-fit orbital solution and a best-fit value of the spin period for the 2008 outburst. Comparing this new set of orbital parameters and, in particular, the value of the time of ascending-node passage with the orbital parameters derived for the previous four X-ray outbursts of SAX J1808.4-3658 observed by the PCA on board RXTE, we find an updated value of the orbital period derivative, which turns out to be P˙orb=(3.89±0.15)×1012\dot P_{\rm orb} = (3.89 \pm 0.15) \times 10^{-12} s/s. This new value of the orbital period derivative agrees with the previously reported value, demonstrating that the orbital period derivative in this source has remained stable over the past ten years. Although this timespan is not sufficient yet for confirming the secular evolution of the system, we again propose an explanation of this behavior in terms of a highly non-conservative mass transfer in this system, where the accreted mass (as derived from the X-ray luminosity during outbursts) accounts for a mere 1% of the mass lost by the companion.Comment: 4 pages, 3 figures. Final version, including editing corrections, to appear on A&A Letter

    What determines the density structure of molecular clouds? A case study of Orion B with <i>Herschel</i>

    Get PDF
    A key parameter to the description of all star formation processes is the density structure of the gas. In this Letter, we make use of probability distribution functions (PDFs) of Herschel column density maps of Orion B, Aquila, and Polaris, obtained with the Herschel Gould Belt survey (HGBS). We aim to understand which physical processes influence the PDF shape, and with which signatures. The PDFs of Orion B (Aquila) show a lognormal distribution for low column densities until AV ~ 3 (6), and a power-law tail for high column densities, consistent with a ρα r-2 profile for the equivalent spherical density distribution. The PDF of Orion B is broadened by external compression due to the nearby OB stellar aggregates. The PDF of a quiescent subregion of the non-star-forming Polaris cloud is nearly lognormal, indicating that supersonic turbulence governs the density distribution. But we also observe a deviation from the lognormal shape at AV > 1 for a subregion in Polaris that includes a prominent filament. We conclude that (1) the point where the PDF deviates from the lognormal form does not trace a universal AV -threshold for star formation, (2) statistical density fluctuations, intermittency, and magnetic fields can cause excess from the lognormal PDF at an early cloud formation stage, (3) core formation and/or global collapse of filaments and a non-isothermal gas distribution lead to a power-law tail, and (4) external compression broadens the column density PDF, consistent with numerical simulations

    Modelling the spinning dust emission from dense interstellar clouds

    Full text link
    Electric dipole emission arising from PAHs is often invoked to explain the anomalous microwave emission (AME). This assignation is based on an observed tight correlation between the mid-IR emission of PAHs and the AME; and a good agreement between models of spinning dust and the broadband AME spectrum. So far often detected at large scale in the diffuse interstellar medium, the AME has recently been studied in detail in well-known dense molecular clouds with the help of Planck data. While much attention has been given to the physics of spinning dust emission, the impact of varying local physical conditions has not yet been considered in detail. Our aim is to study the emerging spinning dust emission from interstellar clouds with realistic physical conditions and radiative transfer. We use the DustEM code from Compiegne et al. to describe the extinction and IR emission of all dust populations. The spinning dust emission is obtained with SpDust, as described by Silsbee et al., that we have coupled to DustEM. We carry out full radiative transfer simulations and carefully estimate the local gas state as a function of position within interstellar clouds. We show that the spinning dust emission is sensitive to the abundances of the major ions and we propose a simple scheme to estimate these abundances. We also investigate the effect of changing the cosmic-ray rate. In dense media, where radiative transfer is mandatory, we show that the relationship between the spinning and mid-IR emissivities of PAHs is no longer linear and that the spinning dust emission may actually be strong at the centre of clouds where the mid-IR PAH emission is weak. These results provide new ways to trace grain growth from diffuse to dense medium and will be useful for the analysis of AME at the scale of interstellar clouds.Comment: 7 pages, 10 figures, accepted by A&

    New Pulsars from an Arecibo Drift Scan Search

    Full text link
    We report the discovery of pulsars J0030+0451, J0711+0931, and J1313+0931 that were found in a search of 470 square degrees at 430 MHz using the 305m Arecibo telescope. The search has an estimated sensitivity for long period, low dispersion measure, low zenith angle, and high Galactic latitude pulsars of ~1 mJy, comparable to previous Arecibo searches. Spin and astrometric parameters for the three pulsars are presented along with polarimetry at 430 MHz. PSR J0030+0451, a nearby pulsar with a period of 4.8 ms, belongs to the less common category of isolated millisecond pulsars. We have measured significant polarization in PSR J0030+0451 over more than 50% of the period, and use these data for a detailed discussion of its magnetospheric geometry. Scintillation observations of PSR J0030+0451 provide an estimate of the plasma turbulence level along the line of sight through the local interstellar medium.Comment: 21 pages, 4 figures, Accepted for Publication in Ap
    corecore