143 research outputs found

    Removing non-stationary, non-harmonic external interference from gravitational wave interferometer data

    Get PDF
    We describe a procedure to identify and remove a class of non-stationary and non-harmonic interference lines from gravitational wave interferometer data. These lines appear to be associated with the external electricity main supply, but their amplitudes are non-stationary and they do not appear at harmonics of the fundamental supply frequency. We find an empirical model able to represent coherently all the non-harmonic lines we have found in the power spectrum, in terms of an assumed reference signal of the primary supply input signal. If this signal is not available then it can be reconstructed from the same data by making use of the coherent line removal algorithm that we have described elsewhere. All these lines are broadened by frequency changes of the supply signal, and they corrupt significant frequency ranges of the power spectrum. The physical process that generates this interference is so far unknown, but it is highly non-linear and non-stationary. Using our model, we cancel the interference in the time domain by an adaptive procedure that should work regardless of the source of the primary interference. We have applied the method to laser interferometer data from the Glasgow prototype detector, where all the features we describe in this paper were observed. The algorithm has been tuned in such a way that the entire series of wide lines corresponding to the electrical interference are removed, leaving the spectrum clean enough to detect signals previously masked by them. Single-line signals buried in the interference can be recovered with at least 75 % of their original signal amplitude.Comment: 14 pages, 5 figures, Revtex, psfi

    Anatomic mapping of the collateral branches of the external carotid artery with regard to daily clinical practice

    Get PDF
    Background: To identify the anatomical variations of the main branches of the external carotid artery (lingual, facial, occipital, ascending pharyngeal and sternocleidomastoid), giving information about the calibers and origins with the aim of creating a new classification useful in clinical practice. Material and methods: 193 human embalmed body-donors were dissected. The data collected were analyzed using the Chi² test. The results of previous studies were reviewed. Results: The majority of the anterior arterial branches (superior thyroid, facial and lingual artery) were observed with an independent origin, respectively, classified as pattern I (80.83%, 156/193). In 17.62% (34/193) a linguofacial trunk, pattern II, has been observed, only in 1,04% (2/193) a thyrolingual trunk, pattern III, has been found and in one case (1/193, 0.52%) one thyrolinguofacial trunk, pattern IV, was found. Depending on the posterior branches (occipital and ascending pharyngeal), four different types could be determined: type a, the posterior arteries originated independently, type b, the posterior arteries originated in a common trunk, type c, the ascending pharyngeal artery was absent, type d, the occipital artery was absent. Conclusion: Anatomical variations in these arteries are relevant in daily clinical practice due to growing applications, e.g., in Interventional Radiology techniques. Knowledge of these anatomical references could help clinicians in the interpretation of the carotid system

    Modular-Level Functional Connectome Alterations in Individuals With Hallucinations Across the Psychosis Continuum

    Get PDF
    Functional connectome alterations, including modular network organization, have been related to the experience of hallucinations. It remains to be determined whether individuals with hallucinations across the psychosis continuum exhibit similar alterations in modular brain network organization. This study assessed functional connectivity matrices of 465 individuals with and without hallucinations, including patients with schizophrenia and bipolar disorder, nonclinical individuals with hallucinations, and healthy controls. Modular brain network organization was examined at different scales of network resolution, including (1) global modularity measured as Qmax and Normalised Mutual Information (NMI) scores, and (2) within- and between-module connectivity. Global modular organization was not significantly altered across groups. However, alterations in within- and between-module connectivity were observed for higher-order cognitive (e.g., central-executive salience, memory, default mode), and sensory modules in patients with schizophrenia and nonclinical individuals with hallucinations relative to controls. Dissimilar patterns of altered within- and between-module connectivity were found bipolar disorder patients with hallucinations relative to controls, including the visual, default mode, and memory network, while connectivity patterns between visual, salience, and cognitive control modules were unaltered. Bipolar disorder patients without hallucinations did not show significant alterations relative to controls. This study provides evidence for alterations in the modular organization of the functional connectome in individuals prone to hallucinations, with schizophrenia patients and nonclinical individuals showing similar alterations in sensory and higher-order cognitive modules. Other higher-order cognitive modules were found to relate to hallucinations in bipolar disorder patients, suggesting differential neural mechanisms may underlie hallucinations across the psychosis continuum.publishedVersio

    Functional connectome differences in individuals with hallucinations across the psychosis continuum

    Get PDF
    Hallucinations may arise from an imbalance between sensory and higher cognitive brain regions, reflected by alterations in functional connectivity. It is unknown whether hallucinations across the psychosis continuum exhibit similar alterations in functional connectivity, suggesting a common neural mechanism, or whether different mechanisms link to hallucinations across phenotypes. We acquired resting-state functional MRI scans of 483 participants, including 40 non-clinical individuals with hallucinations, 99 schizophrenia patients with hallucinations, 74 bipolar-I disorder patients with hallucinations, 42 bipolar-I disorder patients without hallucinations, and 228 healthy controls. The weighted connectivity matrices were compared using network-based statistics. Non-clinical individuals with hallucinations and schizophrenia patients with hallucinations exhibited increased connectivity, mainly among fronto-temporal and fronto-insula/cingulate areas compared to controls (P < 0.001 adjusted). Differential effects were observed for bipolar-I disorder patients with hallucinations versus controls, mainly characterized by decreased connectivity between fronto-temporal and fronto-striatal areas (P = 0.012 adjusted). No connectivity alterations were found between bipolar-I disorder patients without hallucinations and controls. Our results support the notion that hallucinations in non-clinical individuals and schizophrenia patients are related to altered interactions between sensory and higher-order cognitive brain regions. However, a different dysconnectivity pattern was observed for bipolar-I disorder patients with hallucinations, which implies a different neural mechanism across the psychosis continuum.publishedVersio

    Impact of diets with different proportions of linseed and sunflower oils on the growth, liver histology, immunological and chemical blood parameters, and proximate composition of pikeperch Sander lucioperca (L.)

    Get PDF
    The aim of the study was to determine the impact of applying different proportions of linseed (LO) and sunflower (SFO) oils in pikeperch diets on growth, histological changes in the liver, immunological and blood chemical parameters. The fish were fed isoenergetic and isoprotein feeds containing SFO (group 100SFO) or LO (group 100LO) in quantities of 67 g kg/feed, and a mixture of oils: 47 g SFO and 20 g LO kg/feed (group 70SFO/30LO) and 20 g SFO and 47 g LO kg/feed (group 30SFO/70LO). Dietary ratios of polyunsaturated fatty acids from the n-3 and n-6 series (n3/n6 index) were 0.36–2.15. Pikeperch were reared for 56 days in three replicates for each dietary treatment. Various dietary oils and ratios of n3/n6 did not impact fish growth, feed conversion ratio, viscerosomatic and hepatosomatic index, and size of the hepatocytes. Feeding the fish high quantities of LO and SO oils (groups 100LO and 100SFO) reduced the immunological response of the phagocytes and lymphocytes in the fish. Moreover, this resulted in significant differences among groups in the quantity of linolenic and linoleic acid in whole fish bodies, viscera, fillets, and livers. Various quantities of vegetable oils in the fish diets did not impact the quantity of arachidonic, eicosapentaenoic and docosahexaenoic acid in the fillets and livers. The immunological index and low quantities of linoleic acid in the fillets obtained in group 30SFO/70LO indicate that the n3/n6 dietary ratio of 1.35 was the most advantageous for feeding juvenile pikeperch feeds with vegetable oils

    Subcortical volumetric abnormalities in bipolar disorder.

    Get PDF
    Considerable uncertainty exists about the defining brain changes associated with bipolar disorder (BD). Understanding and quantifying the sources of uncertainty can help generate novel clinical hypotheses about etiology and assist in the development of biomarkers for indexing disease progression and prognosis. Here we were interested in quantifying case-control differences in intracranial volume (ICV) and each of eight subcortical brain measures: nucleus accumbens, amygdala, caudate, hippocampus, globus pallidus, putamen, thalamus, lateral ventricles. In a large study of 1710 BD patients and 2594 healthy controls, we found consistent volumetric reductions in BD patients for mean hippocampus (Cohen's d=-0.232; P=3.50 × 10(-7)) and thalamus (d=-0.148; P=4.27 × 10(-3)) and enlarged lateral ventricles (d=-0.260; P=3.93 × 10(-5)) in patients. No significant effect of age at illness onset was detected. Stratifying patients based on clinical subtype (BD type I or type II) revealed that BDI patients had significantly larger lateral ventricles and smaller hippocampus and amygdala than controls. However, when comparing BDI and BDII patients directly, we did not detect any significant differences in brain volume. This likely represents similar etiology between BD subtype classifications. Exploratory analyses revealed significantly larger thalamic volumes in patients taking lithium compared with patients not taking lithium. We detected no significant differences between BDII patients and controls in the largest such comparison to date. Findings in this study should be interpreted with caution and with careful consideration of the limitations inherent to meta-analyzed neuroimaging comparisons.Molecular Psychiatry advance online publication, 9 February 2016; doi:10.1038/mp.2015.227

    Open-access quantitative MRI data of the spinal cord and reproducibility across participants, sites and manufacturers

    Get PDF
    In a companion paper by Cohen-Adad et al. we introduce the spine generic quantitative MRI protocol that provides valuable metrics for assessing spinal cord macrostructural and microstructural integrity. This protocol was used to acquire a single subject dataset across 19 centers and a multi-subject dataset across 42 centers (for a total of 260 participants), spanning the three main MRI manufacturers: GE, Philips and Siemens. Both datasets are publicly available via git-annex. Data were analysed using the Spinal Cord Toolbox to produce normative values as well as inter/intra-site and inter/intra-manufacturer statistics. Reproducibility for the spine generic protocol was high across sites and manufacturers, with an average inter-site coefficient of variation of less than 5% for all the metrics. Full documentation and results can be found at https://spine-generic.rtfd.io/. The datasets and analysis pipeline will help pave the way towards accessible and reproducible quantitative MRI in the spinal cord

    Generic acquisition protocol for quantitative MRI of the spinal cord

    Get PDF
    Quantitative spinal cord (SC) magnetic resonance imaging (MRI) presents many challenges, including a lack of standardized imaging protocols. Here we present a prospectively harmonized quantitative MRI protocol, which we refer to as the spine generic protocol, for users of 3T MRI systems from the three main manufacturers: GE, Philips and Siemens. The protocol provides guidance for assessing SC macrostructural and microstructural integrity: T1-weighted and T2-weighted imaging for SC cross-sectional area computation, multi-echo gradient echo for gray matter cross-sectional area, and magnetization transfer and diffusion weighted imaging for assessing white matter microstructure. In a companion paper from the same authors, the spine generic protocol was used to acquire data across 42 centers in 260 healthy subjects. The key details of the spine generic protocol are also available in an open-access document that can be found at https://github.com/spine-generic/protocols. The protocol will serve as a starting point for researchers and clinicians implementing new SC imaging initiatives so that, in the future, inclusion of the SC in neuroimaging protocols will be more common. The protocol could be implemented by any trained MR technician or by a researcher/clinician familiar with MRI acquisition
    corecore