128 research outputs found

    Spin noise of itinerant fermions

    Full text link
    We develop a theory of spin noise spectroscopy of itinerant, noninteracting, spin-carrying fermions in different regimes of temperature and disorder. We use kinetic equations for the density matrix in spin variables. We find a general result with a clear physical interpretation, and discuss its dependence on temperature, the size of the system, and applied magnetic field. We consider two classes of experimental probes: 1. electron-spin-resonance (ESR)-type measurements, in which the probe response to a uniform magnetization increases linearly with the volume sampled, and 2. optical Kerr/Faraday rotation-type measurements, in which the probe response to a uniform magnetization increases linearly with the length of the light propagation in the sample, but is independent of the cross section of the light beam. Our theory provides a framework for interpreting recent experiments on atomic gases and conduction electrons in semiconductors and provides a baseline for identifying the effects of interactions on spin noise spectroscopy

    The Gradient Expansion for the Free-Energy of a Clean Superconductor

    Full text link
    We describe a novel method for obtaining the gradient expansion for the free energy of a clean BCS superconductor. We present explicit results up to fourth order in the gradients of the order parameter.Comment: 33 pages, Late

    Sturm-Liouville operators on time scales

    Full text link
    We establish the connection between Sturm-Liouville equations on time scales and Sturm--Liouville equations with measure-valued coefficients. Based on this connection we generalize several results for Sturm-Liouville equations on time scales which have been obtained by various authors in the past.Comment: 12 page

    Lobster eye optics for nano-satellite x-ray monitor

    Get PDF
    The Lobster eye design for a grazing incidence X-ray optics provides wide field of view of the order of many degrees, for this reason it would be a convenient approach for the construction of space X-ray monitors. In this paper, we compare previously reported measurements of prototype lobster eye X-ray optics called P-25 with computer simulations and discuss differences between the theoretical end experimentally obtained results. Usability of this prototype lobster eye and manufacturing technology for the nano-satellite mission is assessed. The specific scientific goals are proposed

    Life after eruption - I. Spectroscopic observations of ten nova candidates

    Full text link
    We have started a project to investigate the connection of post-novae with the population of cataclysmic variables. Our first steps in this concern improving the sample of known post-novae and their properties. Here we present the recovery and/or confirmation of the old novae MT Cen, V812 Cen, V655 CrA, IL Nor, V2109 Oph, V909 Sgr, V2572 Sgr, and V728 Sco. Principal photometric and spectroscopic properties of these systems are discussed. We find that V909 Sgr is a probable magnetic CV, and that V728 Sco is a high-inclination system. We furthermore suggest that the two candidate novae V734 Sco and V1310 Sgr have been misclassified and instead are Mira variables.Comment: 11 pages, 7 figures (some of them in lower resolution), to be published in MNRA

    Free Energy of an Inhomogeneous Superconductor: a Wave Function Approach

    Full text link
    A new method for calculating the free energy of an inhomogeneous superconductor is presented. This method is based on the quasiclassical limit (or Andreev approximation) of the Bogoliubov-de Gennes (or wave function) formulation of the theory of weakly coupled superconductors. The method is applicable to any pure bulk superconductor described by a pair potential with arbitrary spatial dependence, in the presence of supercurrents and external magnetic field. We find that both the local density of states and the free energy density of an inhomogeneous superconductor can be expressed in terms of the diagonal resolvent of the corresponding Andreev Hamiltonian, resolvent which obeys the so-called Gelfand-Dikii equation. Also, the connection between the well known Eilenberger equation for the quasiclassical Green's function and the less known Gelfand-Dikii equation for the diagonal resolvent of the Andreev Hamiltonian is established. These results are used to construct a general algorithm for calculating the (gauge invariant) gradient expansion of the free energy density of an inhomogeneous superconductor at arbitrary temperatures.Comment: REVTeX, 28 page

    Quantitative trait loci affecting pathogen resistance and ripening of grapevines

    Get PDF
    Grapevines (Vitis vinifera L.) form the basis of viticulture, and are susceptible to diseases such as downy mildew (Plasmopara viticola) and powdery mildew (Erysiphe necator). Therefore, successful viticulture programs require the use of pesticides. Breeding for resistance is the only eco-friendly solution. Marker-assisted selection is currently widely used for grapevine breeding. Consequently, traits of interest must be tagged with molecular markers linked to quantitative trait loci (QTL). We herein present our findings regarding genetic mapping and QTL analysis of resistance to downy and powdery mildew diseases in the progenies of the GF.GA-47-42 (‘Bacchus’ × ‘Seyval’) × ‘Villard blanc’ cross. Simple sequence repeats and single nucleotide polymorphisms of 151 individuals were analyzed. A map consisting of 543 loci was screened for QTL analyses based on phenotypic variations observed in plants grown in the field or under controlled conditions. A major QTL for downy mildew resistance was detected on chromosome 18. For powdery mildew resistance, a QTL was identified on chromosome 15. This QTL was replaced by a novel QTL on chromosome 18 in 2003 (abnormally high temperatures) and 2004. Subsequently, both QTLs functioned together. Additionally, variations in the timing of the onset of veraison, which is a crucial step during grape ripening, were studied to identify genomic regions affecting this trait. A major QTL was detected on linkage group 16, which was supplemented by a minor QTL on linkage group 18. This study provides useful information regarding novel QTL-linked markers relevant for the breeding of disease-resistant grapevines adapted to current climatic conditions

    Characterization of clastic sedimentary enviroments by clustering algorithm and several statistical approaches — case study, Sava Depression in Northern Croatia

    Get PDF
    Abstract This study demonstrates a method to identify and characterize some facies of turbiditic depositional environments. The study area is a hydrocarbon field in the Sava Depression (Northern Croatia). Its Upper Miocene reservoirs have been proved to represent a lacustrine turbidite system. In the workflow, first an unsupervised neural network was applied as clustering method for two sandstone reservoirs. The elements of the input vectors were the basic petrophysical parameters. In the second step autocorrelation surfaces were used to reveal the hidden anisotropy of the grid. This anisotropy is supposed to identify the main continuity directions in the geometrical analyses of sandstone bodies. Finally, in the description of clusters several parametric and nonparametric statistics were used to characterize the identified facies. Obtained results correspond to the previously published interpretation of those reservoir facies

    A surge of light at the birth of a supernova.

    Get PDF
    It is difficult to establish the properties of massive stars that explode as supernovae. The electromagnetic emission during the first minutes to hours after the emergence of the shock from the stellar surface conveys important information about the final evolution and structure of the exploding star. However, the unpredictable nature of supernova events hinders the detection of this brief initial phase. Here we report the serendipitous discovery of a newly born, normal type IIb supernova (SN 2016gkg), which reveals a rapid brightening at optical wavelengths of about 40 magnitudes per day. The very frequent sampling of the observations allowed us to study in detail the outermost structure of the progenitor of the supernova and the physics of the emergence of the shock. We develop hydrodynamical models of the explosion that naturally account for the complete evolution of the supernova over distinct phases regulated by different physical processes. This result suggests that it is appropriate to decouple the treatment of the shock propagation from the unknown mechanism that triggers the explosion
    corecore