48 research outputs found

    Development of phosphatase and dehydrogenase activities in soils of annual cropland and permanent grassland in an organic farm

    Get PDF
    The essential nature of Phosphorus (P) in plant growth and the finite amount of P resources have result in the question: what kind of management in farming systems can lead to P sufficiency in organic farming? The release of acid and alkaline phosphatases of plant and microbes promote the plant availability of soil P. The presented results show a significant higher enzyme activity at permanent grassland (PG) than at arable land with annual crops at an organic farm in Northern Germany. Therefore livestock systems with PG for grazing ruminants seem to have high potential to improve on-farm P-cycles via feed and manure flows even to annual cropland. These systems can profit from the nutrient transfer from PG to arable land through the use of manures. Enhance the soil-plant P cycle by better use of P sources with low availability from PG could be component of sufficiency P management in organic and also conventional production

    Phosphorus bioavailability in soil profiles of a long-term fertilizer experiment: The evaluation of their bioaccessibility

    Get PDF
    Global agricultural productivity depends on the use of finite phosphorus (P) resources of which not only the topsoil, but also subsoil, can hold immense reserves. To assess potential soil contribution to plant nutrition, we compared the P status of Stagnic Cambisol profiles in experimental plots that received different P fertilizer applications (control, triple superphosphate (TSP), compost, compost+TSP) for 16 years. Sequential fractionation was combined with P K-edge X-ray absorption near edge structure (XANES) spectroscopy to identify the chemical P speciation. Fertilized topsoils (21 to 69 kg P ha-1 a-1) showed P reserves larger by a factor of 1.2 to 1.4, and subsoil P reserves larger by a factor of 1.3 to 1.5 than those of the control. P-XANES revealed the predominance of inorganic P species such as moderately labile Fe- (46 to 92%), Al- (0 to 40%), and Ca- (0 to 15%) P compounds besides organic P (0 to 13%) in all treatments. The fertilizer application slightly altered P speciation throughout the profiles, but the type of fertilizer had no significant effect on it. Optimal plant growth requirements are restricted by the exchangeable P from the solid phase within the soil solution. Therefore, ongoing research focuses on the accessibility of P from P loaded amorphous Fe- and Al-hydroxides, previously identified as the predominant abiotic P forms. To assess their P desorption potential, P-33 rhizotron experiments combined with P-33 isotopic exchange kinetics (IEK) are underway. Preliminary results indicated that besides differences in P binding capacity of soil hydroxides, physical soil parameters, such as the matric potential, strongly control soil P availability, thus plant P acquisition rates can vary among different soil types. Our results gained new detailed information about P bioavailability under agricultural practice. The investigations towards P bioaccessibility may contribute to improved interpretation of soil P tests and reduced fertilizer recommendations

    Frequency and predictors of relapses following SARS-CoV-2 vaccination in patients with multiple sclerosis: interim results from a longitudinal observational study

    Get PDF
    Despite protection from severe COVID-19 courses through vaccinations, some people with multiple sclerosis (PwMS) are vaccination-hesitant due to fear of post-vaccination side effects/increased disease activity. The aim was to reveal the frequency and predictors of post-SARS-CoV-2-vaccination relapses in PwMS. This prospective, observational study was conducted as a longitudinal Germany-wide online survey (baseline survey and two follow-ups). Inclusion criteria were age ≄18 years, MS diagnosis, and ≄1 SARS-CoV-2 vaccination. Patient-reported data included socio-demographics, MS-related data, and post-vaccination phenomena. Annualized relapse rates (ARRs) of the study cohort and reference cohorts from the German MS Registry were compared pre- and post-vaccination. Post-vaccination relapses were reported by 9.3% PwMS (247/2661). The study cohort’s post-vaccination ARR was 0.189 (95% CI: 0.167–0.213). The ARR of a matched unvaccinated reference group from 2020 was 0.147 (0.129–0.167). Another reference cohort of vaccinated PwMS showed no indication of increased post-vaccination relapse activity (0.116; 0.088–0.151) compared to pre-vaccination (0.109; 0.084–0.138). Predictors of post-vaccination relapses (study cohort) were missing immunotherapy (OR = 2.09; 1.55–2.79; p < 0.001) and shorter time from the last pre-vaccination relapse to the first vaccination (OR = 0.87; 0.83–0.91; p < 0.001). Data on disease activity of the study cohort in the temporal context are expected for the third follow-up

    Influence of root and leaf traits on the uptake of nutrients in cover crops

    Get PDF
    Aims: Cover crops play an important role in soil fertility as they can accumulate large amounts of nutrients. This study aimed at understanding the nutrient uptake capacity of a wide range of cover crops and at assessing the relevance of acquisition strategies. Methods: A field experiment was conducted to characterize 20 species in terms of leaf and root traits. Plant traits were related to nutrient concentration and shoot biomass production with a redundancy analysis. Acquisition strategies were identified using a cluster analysis. Results: Root systems varied greatly among cover crop species. Five nutrient acquisition strategies were delineated. Significant amounts of nutrients (about 120 kg ha−1 of nitrogen, 30 kg ha−1 of phosphorus and 190 kg ha−1 of potassium) were accumulated by the species in a short period. Nutrient acquisition strategies related to high accumulations of nutrients consisted in either high shoot biomass and root mass and dense tissues, or high nutrient concentrations and root length densities. Species with high root length densities showed lower C/N ratios. Conclusions: The same amounts of nutrients were accumulated by groups with different acquisition strategies. However, their nutrient concentrations offer different perspectives in terms of nutrient release for the subsequent crop and nutrient cycling improvement

    Opportunities and challenges in the use of coal fly ash for soil improvements – a review

    Get PDF
    Coal fly ash (CFA), a by-product of coal combustion has been regarded as a problematic solid waste, mainly due to its potentially toxic trace elements, PTEs (e.g. Cd, Cr, Ni, Pb) and organic compounds (e.g. PCBs, PAHs) content. However, CFA is a useful source of essential plant nutrients (e.g. Ca, Mg, K, P, S, B, Fe, Cu and Zn). Uncontrolled land disposal of CFA is likely to cause undesirable changes in soil conditions, including contamination with PTEs, PAHs and PCBs. Prudent CFA land application offers considerable opportunities, particularly for nutrient supplementation, pH correction and ameliorating soil physical conditions (soil compaction, water retention and drainage). Since CFA contains little or no N and organic carbon, and CFA-borne P is not readily plant available, a mixture of CFA and manure or sewage sludge (SS) is better suited than CFA alone. Additionally, land application of such a mixture can mitigate the mobility of SS-borne PTEs, which is known to increase following cessation of SS application. Research analysis further shows that application of alkaline CFA with or without other amendments can help remediate at least marginally metal contaminated soils by immobilisation of mobile metal forms. CFA land application with SS or other source of organic carbon, N and P can help effectively reclaim/restore mining-affected lands. Given the variability in the nature and composition of CFA (pH, macro- and micro-nutrients) and that of soil (pH, texture and fertility), the choice of CFA (acidic or alkaline and its application rate) needs to consider the properties and problems of the soil. CFA can also be used as a low cost sorbent for the removal of organic and inorganic contaminants from wastewater streams; the disposal of spent CFA however can pose further challenges. Problems in CFA use as a soil amendment occur when it results in undesirable change in soil pH, imbalance in nutrient supply, boron toxicity in plants, excess supply of sulphate and PTEs. These problems, however, are usually associated with excess or inappropriate CFA applications. The levels of PAHs and PCBs in CFA are generally low; their effects on soil biota, uptake by plants and soil persistence, however, need to be assessed. In spite of this, co-application of CFA with manure or SS to land enhances its effectiveness in soil improvements

    Dynamics of dry matter production and potassium uptake of maize in a long-term field experiment on chernozem soil

    No full text
    The effects of genotypes, nutrient and water supply on the dry matter production and potassium uptake dynamics of maize (Zea mays L.) were studied on chernozem soil in the Debrecen-LĂĄtĂłkĂ©p long-term field experiment (Eastern Hungary).According to the experimental results and calculations it can be concluded that — in addition to the previously used and considered soil and plant nutrient contents — the calculation of the plant-extracted nutrient amount (depending on the applied hybrid, NPK nutrient levels and water supply) is suggested to enable the characterization of the growth and nutrient demand dynamics of maize genotypes. This parameter gives information not only about the available nutrient amount at a given sampling time, but about the supply level of plants up to the sampling time as well. For the proper characterization of the mentioned dynamics of maize plants authors suggest to take the following sampling times into consideration: the intensive vegetative growth period, the switch between the vegetative and generative growth phases (silking), and the grain filling phase

    Effect of triple superphosphate and biowaste compost on mycorrhizal colonization and enzymatic P mobilization under maize in a long-term field experiment.

    No full text
    Phosphorus (P) fertilizers and mycorrhiza formation can both significantly improve the P supply of plants, but P fertilizers might inhibit mycorrhiza formation and change the microbial P cycling. To test the dimension and consequences of P fertilizer impacts under maize (Zea mays L.), three fertilizer treatments (1) triple superphosphate (TSP, 21-30 kg P ha(-1) annually), biowaste compost (ORG, 30 Mg ha(-1) wet weight every third year) and a combination of both (OMI) were compared to a non-P-fertilized control (C) in 2015 and 2016. The test site was a long-term field experiment on a Stagnic Cambisol in Rostock (NE Germany). Soil microbial biomass P (P-mic) and soil enzyme activities involved in P mobilization (phosphatases and ss-glucosidase), plant-available P content (double lactate-extract; P-DL), mycorrhizal colonization, shoot biomass, and shoot P concentrations were determined. P deficiency led to decreased P immobilization in microbial biomass, but the maize growth was not affected. TSP application alone promoted the P uptake by the microbial biomass but reduced the mycorrhizal colonization of maize compared to the control by more than one third. Biowaste compost increased soil enzyme activities in the P cycling, increased P-mic and slightly decreased the mycorrhizal colonization of maize. Addition of TSP to biowaste compost increased the content of P-DL in soil to the level of optimal plant supply. Single TSP supply decreased the ratio of P-DL:P-mic to 1:1 from about 4:1 in the control. Decreased plant-benefits from mycorrhizal symbiosis were assumed from decreased mycorrhizal colonization of maize with TSP supply. The undesirable side effects of TSP supply on the microbial P cycling can be alleviated by the use of compost. Thus, it can be concluded that the plant-availability of P from soil amendments is controlled by the amendment-specific microbial P cycling and, likely, P transfer to plants
    corecore