23 research outputs found

    ESTUDO EM LABORATÓRIO DE ALTERAÇÃO DE BASALTO: ENSAIOS DE CICLAGEM ÁGUA - ESTUFA: Basalt alteration laboratory study: wetting-drying test

    Get PDF
    Among the numerous applications that rock materials have in engineering is their use as a coarse and fine aggregate in the most different types of infrastructure works, in this context, knowledge of the changing characteristics of rock materials is essential for prevention and maintenance for anyone who be your applications. This work presents the results obtained in a laboratory study with a view to evaluating the alteration of two samples of aggregates of compact massive basalt (BMC) and vesicular basalt (BVA), in the 9.5 to 6.3 mm particle size range, by means of dry-wet cycling tests with evaluation of the degree of alteration based on physical index tests (apparent specific gravity, apparent porosity and absorption water) and the crushing strength test. The results of the physical indices showed values for apparent specific gravity (BMC: 2.85 g/cm³ - BVA: 2.61 g/cm³), apparent porosity (BMC: 7.51 - BVA: 9.59%) and absorbed water ( BMC: 2.67- BVA: 3.59%) which indicate low predisposition to alteration. The crushing strength index for the two lithotypes after the dry-wet cycling tests is in the order of 0.73. According to the results obtained, the aggregates of the two lithotypes present adequate characteristics for their use as aggregates in engineering works.Dentre as inúmeras aplicações dos materiais rochosos na engenharia, está seu uso como agregado graúdo e miúdo nos mais diferentes tipos de obras de infraestrutura. Nesse contexto, o conhecimento das características de alteração dos materiais rochosos é essencial para prevenção e manutenção para quaisquer que sejam suas aplicações. Este trabalho apresenta os resultados obtidos em estudo laboratorial com vista à avaliação da alteração de duas amostras de agregados de basalto maciço compacto (BMC) e basalto vesicular (BVA), na faixa granulométrica de 9,5 a 6,3 mm, por meio de ensaios de ciclagem acelerada do tipo água-estufa com avaliação do grau de alteração a partir dos ensaios de índices físicos (densidade aparente, porosidade aparente e água de absorção) e do ensaio de resistência ao esmagamento. Os resultados dos índices físicos apresentaram valores para densidade aparente (BMC: 2,85 g/cm³ - BVA: 2,61 g/cm³), porosidade aparente (BMC: 7,51 - BVA: 9,59%) e água absorvida (BMC: 2,67- BVA: 3,59%) que indicam baixa predisposição à alteração. O índice de resistência ao esmagamento para os dois litotipos após o ensaio de ciclagem água-estufa é da ordem de 0,73. De acordo com os resultados obtidos, os agregados dos dois litotipos apresentam características adequadas para seu uso como agregados em obras de engenharia

    Sorption aspects for unconsolidated materials of the São Carlos region (SP), Brazil

    Get PDF
    O transporte de poluentes líquidos e gasosos, em meios geológicos porosos, depende das características físicas e químicas dos materiais inconsolidados, rochas, águas, assim como das características dos poluentes. Entre essas características, os aspectos da sorção têm importância fundamental e são função da mineralogia e respectivas proporções, pH, Eh e das características dos vazios. Na região de São Carlos, centro leste do Estado de São Paulo, Brasil, ocorrem 2 tipos de materiais inconsolidados, sendo um residual dos arenitos com cimento constituído de finos e, secundariamente, argilitos, siltitos e conglomerados da Formação Itaqueri, de idade cretácea, e outro sedimento arenoso de idade terciária. Esses materiais geológicos constituem as bases de muitos locais onde são lançados produtos químicos, caracterizados como fontes de poluição difusa ou pontual, e, por este motivo, foi desenvolvido um estudo para avaliá-los quanto aos aspectos de sorção para alguns cátions inorgânicos que são freqüentes nessas fontes, em concentrações variadas. Para tal, foram caracterizados ainda quanto ao peso específico dos sólidos, granulometria, mineralogia e índices físico-químicos. Para avaliar os aspectos de sorção, foram desenvolvidos ensaios de equilíbrio em lote (Batch Test), utilizando soluções químicas de KCl, ZnCl2 e CuCl.H2O, considerando três valores de pH para as soluções constituídas pelos materiais inconsolidados e as espécies químicas, assim como a mistura das três soluções.The transport of liquid and gaseous pollutants through porous geological media depends on the physical and chemical characteristics of the unconsolidated material, rocks and water, associated with the characteristics of the pollutants. Of these characteristics, the sorption aspect is of fundamental importance and is a function of the mineral proportions, pH, Eh and void aspects encountered in the porous media. In the São Carlos region, located in the eastern-central part of the State of São Paulo, Brazil, there are basically two types of unconsolidated materials: the first is a residual from sandstones cemented with fines and the secondarily composed of claystones, siltstones and conglomerates from the Cretaceous Period that constitute the Itaqueri Formation; the second is a sandy sediment of the Tertiary Period. These geological conditions are found in areas where chemical products are disposed of, characterized as either diffuse or point pollutions sources. Because of this situation, a study was developed to evaluate the sorption aspects of some inorganic cations that are frequently found in these sources, in varied concentrations. Taken into consideration were their physical/chemical properties, such as: specific weight, grain size, mineralogy, cationic exchange capacity, pH, hydraulic conductivity. Batch tests were run using solutions of KCl, ZnCl2 and CuCl.H2O at three different pH values, and then with a combined solution (KCl + ZnCl2 + CuCl.H2O), also at three different pH values

    AVALIAÇÃO DO COMPORTAMENTO DE FRENTE DE CONTAMINAÇÃO EM FUNÇÃO DOS DIFERENTES VALORES DOS COEFICIENTES DE DISPERSIVIDADE

    Get PDF
    This paper presents the results from numeric simulations using the Visual Modflow software for the uncontrolled landfill of Poços de Caldas area (State of Minas Gerais, Brazil). Geological, geotechnical, hydrogeological and climatic investigations were carried out for the area characterization. From these attributes the heterogeneity levels were assessed, and different dispersivity coefficient values were obtained. Based on these data and types of sources of pollutant, 11 sceneries were simulated. The results from each scenario were compared with the geophysical and field data for conformity analysis. The results from scenario 4 which considered vertical and horizontal dispersivity values with smaller differences among scenarios, showed good agreement with the geophysical and field data. The geometry and dimensions of the contamination plume did not change significantly with different dispersivity values considered for the area. Therefore the appropriate geologicalgeotechnical investigations allow for an adequate assessment of the heterogeneity characterization of the area and consequently a good approach of the dispersion parameters.Este trabajo presenta los resultados alcanzados por simulaciones numéricas para el área del relleno sanitario de la ciudad de Poços de Caldas (Estado de Minas Gerais, Brasil), utilizando el programa Visual Modflow. Fueron aplicados diferentes valores de coeficientes de dispersividad considerando las condiciones geológicas, geotécnicas, hidrogeológicas y climáticas. Con base en estas informaciones y con los tipos de fuentes de polución, 11 escenarios fueron creados. Los resultados de cada simulación fueron analizados y confrontados con los resultados provenientes de los métodos geofísicos y trabajos de campo. La simulación (4) que consideró mejor homogeneidad entre valores de dispersividad vertical y horizontal fue la que presentó mejor compatibilidad. La geometría y dimensión de la pluma de contaminación no muestran alteraciones significativas con la aplicación de diferentes valores de dispersividad.Este trabalho apresenta os resultados obtidos por simulações numéricas utilizando o programa Visual Modflow para a área do lixão da cidade de Poços de Caldas (Estado de Minas Gerais, Brasil). Inicialmente, a área foi investigada e caracterizada em termos geológicos, geotécnicos, hidrogeológicos e climáticos. A partir destas características as escalas das heterogeneidades foram avaliadas e diferentes valores de coeficientes de dispersividade foram obtidos, e associados a tipos de fontes de poluentes em 11 cenários. Os resultados de cada simulação foram analisados frente aos dados obtidos por métodos geofísicos e trabalhos de campo. A simulação que considerou as menores diferenças entre valores de dispersividade vertical e horizontal para as diferentes camadas e os coeficientes de sorção segundo Langmuir foi a que apresentou melhor compatibilidade. Os valores de dispersividade longitudinal e das razões entre as dispersividades longitudinal, vertical e horizontal não afetaram, como esperado, as dimensões da frente de contaminação. Portanto as investigações geológico-geotécnicas possibilitam a avaliação do grau de heterogeneidade da área, e conseqüentemente a adoção de parâmetros de dispersividade muito adequados para a simulação de transporte de poluentes

    ESTUDO DE MEIO REATIVO PARA BARREIRAS REATIVAS PERMEÁVEIS (BRP): ENSAIOS LABORATORIAIS: Study of reactive medium for permeable reactive barriers (PRB): laboratory experiments

    Get PDF
    This study presents results of laboratory studies to evaluate the assessment of zeolites as a reactive medium of Permeable Reactive Barriers (BRPs) in 3 particle size ranges (4.0x10-4 a 1.0x10-3 m, 1.0x10-3 a 2.0x10-3 m e 1.0x10-3 a 3.0x10-3 m). Studies were developed through physical, chemical, mineralogical, permeability and sorption characterization. The characterized zeolite is Clinoptilolite species, with specific weight of the solids of 22.87 kN/m3, Si/Al ratio of 6.8 and cation exchange capacity of 180 cmolc/kg. The different volumetric arrangements of the particles generated values ​​of dry bulk density ranging from 10.01 to 11.00 kN/m3 and saturated hydraulic conductivities from 1x10-5 to 3x10-4 m/s, which result in arrangements compatible with different geological media. In terms of sorption, Langmuir isotherm adjust with r2 of 0.997 and for the adsorption kinetics, the behavior occurs through the sharing of electrons between zeolite and solute, with first order reaction coefficients ranging from 0.06 to 0.4 h-1 depending on the time of percolation. The results show that the zeolites in the studied particle size ranges are suitable for use as a reactive BRP medium in economically viable thicknesses for contaminated areas inserted in geological materials related to the Botucatu Formation.Esse manuscrito apresenta resultados de estudos laboratoriais para avaliar a adequabilidade de zeólitas como meio reativo de Barreiras Reativas Permeáveis (BRPs), em 3 faixas granulométricas (4,0x10-4 a 1,0x10-3 m, 1,0x10-3 a 2,0x10-3 m e 1,0x10-3 a 3,0x10-3 m). Estudos foram desenvolvidos por meio da caracterização física, química, mineralógica, permeabilidade e de sorção. A zeólita caracterizada é da espécie Clinoptilolita, com peso específico dos sólidos de 22,87 kN/m3, razão Si/Al de 6,8 e capacidade de troca catiônica de 180 cmolc/kg. Os diferentes arranjos volumétricos das partículas geraram valores de peso específico aparente seco de 10,01 a 11,00 kN/m3 e condutividades hidráulica saturada de 1x10-5 a 3x10-4 m/s, o que compatibiliza os arranjos com diferentes meios geológicos. Em termos de sorção, a isoterma do tipo Langmuir ajusta com r2 de 0,997 e, quanto a cinética de adsorção, o comportamento ocorre por meio do compartilhamento de elétrons entre zeólita e soluto, com coeficientes de reação de primeira ordem variando de 0,06 a 0,4h-1 em função do tempo de percolação. Os resultados mostram que as zeólitas nas faixas granulométricas estudadas são adequadas para uso como meio reativo de BRP em espessuras economicamente viáveis para áreas contaminadas inseridas em materiais geológicos relativos à Formação Botucatu

    Estudo da recuperação de áreas degradadas por erosão no Município de Franca, São Paulo, Brasil

    Get PDF
    O presente trabalho trata do estudo realizado em sete áreas degradadas por processos erosivos, no município de Franca, Estado deSão Paulo, Brasil; que foram recuperadas através da adoção diferentes medidas. Seu desenvolvimento seguiu uma série de etapas,sendo a primeira a identificação das áreas degradadas, seguida da avaliação temporal e espacial do processo erosivo, e dacaracterização geológico-geotécnica. Em sequência, foram realizados trabalhos de campo, com o objetivo principal de identificaras medidas de recuperação implantadas em cada área, e também de avaliar seu desempenho. Finalmente, foi realizada umaanálise conjunta de todas as informações obtidas, buscando-se avaliar a adequação das técnicas utilizadas, assim como suaeficiência. Pode-se concluir através desse trabalho que, apesar da melhora nos cenários de degradação avaliados, vários problemasocorreram associados às técnicas de recuperação, sendo estes consequentes da não consideração de informações geológicas,geotécnicas, ambientais e até mesmo sociais

    Avaliação de alterações na compactação de solos por usos e manejo agrícolas por meio de ensaio dinâmico de penetração

    Get PDF
    O presente trabalho apresenta o estudo sobre compactação do solo sob uso agrícola na Bacia do Ribeirão do Pinheirinho, Estado de São Paulo, Brasil. Realizaram-se ensaios de resistência do solo a penetração com um penetrômetro dinâmico em diversos pontos da área de estudo, verificando-se, na maioria dos casos, elevados valores de resistência à penetração, sobretudo nos 20-40 cm superficiais. Em decorrência do tráfego de veículos e máquinas, as estradas secundárias e carreadores apresentaram valores de resistência mais elevados que os encontrados nas áreas de cultivo,  condicionando o desenvolvimento de processos erosivos em decorrência da geração de alto escoamento superficial. Tanto o uso agrícola intensivo na bacia quanto as características dos materiais geológicos podem ser apontadas como os fatores principais para o processo de compactação do solo verificado na bacia, bem como outros cenários decorrentes da degradação ambiental, como feições erosivas e alteração da dinâmica de águas superficiais e subsuperficiais

    ANÁLISE EXPERIMENTAL E VALIDAÇÃO DE CURVAS BIMODAIS DE RETENÇÃO DE ÁGUA NO SOLO PARA SOLOS ARENO-ARGILOSOS RESIDUAIS DA FORMAÇÃO ITAQUERI EM SÃO CARLOS – SP : Experimental analysis and validation of bimodal water retention curves in the soil for residual sandy clay soils of the Itaqueri Formation in São Carlos - SP

    Get PDF
    This experimental study offers parameters to validate and adjust four models of soil water retention curve (SWRC) present in the literature. The experiment was performed in the soil of the campus of the Federal University of São Carlos, State of São Paulo, using tensiometers to monitor soil matrix suction and water content at different depths. Soil samples were collected to build the SWRCs using three Whatman No. 42 filter paper calibration techniques to obtain the matrix suction by soil moisture ratio. The SWRC models were used to adjust the water content values according to the bimodal SWRC proposal. The experiment was validated in the laboratory by measuring the moisture of the samples at each depth, obtained at different dates, and then correlating them with the respective suction pressure values obtained at the time of sampling. Van Genuchten's Bourdine-restricted SWRC model and filter paper from Oliveira and Marinho obtained the best fit in representing the water dynamics in the profile in terms of the global coefficients: R², Nash-Sutcliffe, EAPM and RMSE.Esse estudo experimental oferece parâmetros para validar e ajustar quatro modelos de curva de retenção da água no solo (CRA) presentes na literatura. O experimento foi realizado no solo do campus da Universidade Federal de São Carlos, Estado de São Paulo, utilizou-se tensiômetros para monitorar a sucção matricial do solo e o conteúdo de água em diferentes profundidades. Amostras de solo foram coletadas para construir as CRAs por meio de três técnicas de calibração de papel filtro Whatman n°42 e assim obter a relação sucção matricial por umidade do solo. Os modelos de CRA foram utilizados para ajustar os valores de teor de água segundo a proposta de CRA bimodais. O experimento foi validado em laboratório medindo-se a umidade das amostras em cada profundidade, obtidas em datas diferentes e então correlaciona-las com os respectivos valores de pressão de sucção obtidas no instante de cada amostragem. O modelo de CRA de Van Genuchten com restrição de Bourdine e calibração de papel filtro de Oliveira e Marinho foi o que obteve melhor ajuste na representação da dinâmica da água no perfil em termos dos coeficientes globais: R², Nash-Sutcliffe, EAPM e RMSE

    Scale effect on hydraulic conductivity and solute transport: Small and large-scale laboratory experiments and field experiments

    Full text link
    [EN] Hydraulic conductivity (K), dispersivity (alpha) and partition coefficient (K-d) can change according to the measurement support (scale) and that is referred to as scale effect. However, there is no clear consensus about the behavior of these parameters with the change in the scale. Comparison between results obtained in different support of measurements in the field and in the laboratory can promote the discussion about scale effects on K, alpha, and K-d, and contribute to understanding how these parameters behave with the change in the scale of measurement, the main objectives of the present paper. Small and large-scale laboratory tests using undisturbed soil samples and field experiments at different scales were performed. Results show that for the same measurement condition, K, alpha, and K-d increase with scale in all studied magnitudes. Caution should be taken when using K, alpha, and K-d values in numerical models with no concern about the scale effect. The lack of consideration of the difference of scale between field and laboratory measurements and numerical model may compromise the reliability of the predictions and misrepresent the responses.The authors thank the financial support by the Brazilian National Council for Scientific and Technological Development (CNPq) (Project 401441/2014-8). The doctoral fellowship awarded to the first author by the Coordination of Improvement of Higher Level Personnel (CAPES) is gratefully acknowledged. The first author also thanks the international mobility grant awarded by CNPq, through the Science Without Borders program (grant number: 200597/2015-9), and the international mobility grant awarded by Santander Mobility in cooperation with the University of Sao Paulo.Almeida De-Godoy, V.; Zuquette, L.; Gómez-Hernández, JJ. (2018). Scale effect on hydraulic conductivity and solute transport: Small and large-scale laboratory experiments and field experiments. Engineering Geology. 243:196-205. https://doi.org/10.1016/j.enggeo.2018.06.020S19620524

    Stochastic analysis of three-dimensional hydraulic conductivity upscaling in a heterogeneous tropical soil

    Full text link
    [EN] Hydraulic conductivity (K) heterogeneity is seldom considered in geotechnical practice for the impossibility of sampling the entire area of interest and for the difficulty of accounting for scale effects. Stochastic three-dimensional K upscaling can tackle these two problems, and a workflow is described with an application in a tropical soil. The application shows that K heterogeneity can be incorporated in the daily practice of the geotechnical modeler while discussing the aspects to consider when performing the upscaling so that the upscaled models reproduce the average fluxes at the fine scale.The authors thank the financial support by the Brazilian National Council for Scientific and Technological Development (CNPq) (Project 401441/2014-8). The doctoral fellowship award to the first author by the Coordination of Improvement of Higher Level Personnel (CAPES) is gratefully acknowledged. The first author thanks the International Mobility Grant awarded by CNPq (200597/2015-9) and Santander mobility. The authors also thank DHI-WASI for providing a FEFLOW Software license.Almeida De-Godoy, V.; Zuquette, L.; Gómez-Hernández, JJ. (2018). Stochastic analysis of three-dimensional hydraulic conductivity upscaling in a heterogeneous tropical soil. Computers and Geotechnics. 100:174-187. https://doi.org/10.1016/j.compgeo.2018.03.004S17418710

    Stochastic upscaling of hydrodynamic dispersion and retardation factor in a physically and chemically heterogeneous tropical soil

    Full text link
    [EN] Stochastic upscaling of flow and reactive solute transport in a tropical soil is performed using real data collected in the laboratory. Upscaling of hydraulic conductivity, longitudinal hydrodynamic dispersion, and retardation factor were done using three different approaches of varying complexity. How uncertainty propagates after upscaling was also studied. The results show that upscaling must be taken into account if a good reproduction of the flow and transport behavior of a given soil is to be attained when modeled at larger than laboratory scales. The results also show that arrival time uncertainty was well reproduced after solute transport upscaling. This work represents a first demonstration of flow and reactive transport upscaling in a soil based on laboratory data. It also shows how simple upscaling methods can be incorporated into daily modeling practice using commercial flow and transport codes.The authors thank the financial support by the Brazilian National Council for Scientific and Technological Development (CNPq) (Project 401441/2014-8). The doctoral fellowship award to the first author by the Coordination of Improvement of Higher Level Personnel (CAPES) is acknowledged. The first author also thanks the international mobility grant awarded by CNPq, through the Sciences Without Borders program (Grant Number: 200597/2015-9). The international mobility grant awarded by Santander Mobility in cooperation with the University of Sao Paulo is also acknowledged. DHI-WASI is gratefully thanked for providing a FEFLOW license.Almeida De-Godoy, V.; Zuquette, L.; Gómez-Hernández, JJ. (2019). Stochastic upscaling of hydrodynamic dispersion and retardation factor in a physically and chemically heterogeneous tropical soil. Stochastic Environmental Research and Risk Assessment. 33(1):201-216. https://doi.org/10.1007/s00477-018-1624-zS201216331Ahuja LR, Naney JW, Green RE, Nielsen DR (1984) Macroporosity to characterize spatial variability of hydraulic conductivity and effects of land management. Soil Sci Soc Am J 48:699. https://doi.org/10.2136/sssaj1984.03615995004800040001xBellin A, Lawrence AE, Rubin Y (2004) Models of sub-grid variability in numerical simulations of solute transport in heterogeneous porous formations: three-dimensional flow and effect of pore-scale dispersion. Stoch Environ Res Risk Assess 18:31–38. https://doi.org/10.1007/s00477-003-0164-2Brent RP (1973) Algorithms for minimization without derivatives. Prentice Hall, Englewood CliffsBrusseau ML (1998) Non-ideal transport of reactive solutes in heterogeneous porous media: 3. model testing and data analysis using calibration versus prediction. J Hydrol 209:147–165. https://doi.org/10.1016/S0022-1694(98)00121-8Brusseau ML, Srivastava R (1999) Nonideal transport of reactive solutes in heterogeneous porous media: 4. Analysis of the cape cod natural-gradient field experiment. Water Resour Res 35:1113–1125. https://doi.org/10.1029/1998WR900019Brutsaert W (1967) Some methods of calculating unsaturated permeability. Trans ASAE 10:400–404Cadini F, De Sanctis J, Bertoli I, Zio E (2013) Upscaling of a dual-permeability Monte Carlo simulation model for contaminant transport in fractured networks by genetic algorithm parameter identification. Stoch Environ Res Risk Assess 27:505–516. https://doi.org/10.1007/s00477-012-0595-8Cambardella CA, Moorman TB, Parkin TB, Karlen DL, Novak JM, Turco RF, Konopka AE (1994) Field-scale variability of soil properties in central iowa soils. Soil Sci Soc Am J 58:1501. https://doi.org/10.2136/sssaj1994.03615995005800050033xCapilla JE, Rodrigo J, Gómez-Hernández JJ (1999) Simulation of non-Gaussian transmissivity fields honoring piezometric data and integrating soft and secondary information. Math Geol 31:907–927. https://doi.org/10.1023/A:1007580902175Cassiraga EF, Fernàndez-Garcia D, Gómez-Hernández JJ (2005) Performance assessment of solute transport upscaling methods in the context of nuclear waste disposal. Int J Rock Mech Min Sci 42:756–764. https://doi.org/10.1016/j.ijrmms.2005.03.013Corey AT (1977) Mechanics of heterogeneous fluids in porous media. Water Resources Publications, Fort Collins, CO, p 259Dagan G (1989) Flow and transport in porous formations. Springer, Berlin. https://doi.org/10.1007/978-3-642-75015-1Dagan G (2004) On application of stochastic modeling of groundwater flow and transport. Stoch Environ Res Risk Assess. https://doi.org/10.1007/s00477-004-0191-7de Azevedo AAB, Pressinotti MMN, Massoli M (1981) Sedimentological studies of the Botucatu and Pirambóia formations in the region of Santa Rita do Passa Quatro (In portuguese). Rev do Inst Geológico 2:31–38. https://doi.org/10.5935/0100-929X.19810003Deng H, Dai Z, Wolfsberg AV, Ye M, Stauffer PH, Lu Z, Kwicklis E (2013) Upscaling retardation factor in hierarchical porous media with multimodal reactive mineral facies. Chemosphere 91:248–257. https://doi.org/10.1016/j.chemosphere.2012.10.105Diersch H-JG (2014) Finite element modeling of flow, mass and heat transport in porous and fractured media. Springer, Berlin. https://doi.org/10.1007/978-3-642-38739-5Dippenaar MA (2014) Porosity reviewed: quantitative multi-disciplinary understanding, recent advances and applications in vadose zone hydrology. Geotech Geol Eng 32:1–19. https://doi.org/10.1007/s10706-013-9704-9Fagundes JRT, Zuquette LV (2011) Sorption behavior of the sandy residual unconsolidated materials from the sandstones of the Botucatu Formation, the main aquifer of Brazil. Environ Earth Sci 62:831–845. https://doi.org/10.1007/s12665-010-0570-yFenton GA, Griffiths DV (2008) Risk assessment in geotechnical engineering. Wiley, p 463Fernàndez-Garcia D, Gómez-Hernández JJ (2007) Impact of upscaling on solute transport: Traveltimes, scale dependence of dispersivity, and propagation of uncertainty. Water Resour Res. https://doi.org/10.1029/2005WR004727Fernàndez-Garcia D, Llerar-Meza G, Gómez-Hernández JJ (2009) Upscaling transport with mass transfer models: mean behavior and propagation of uncertainty. Water Resour Res. https://doi.org/10.1029/2009WR007764Feyen L, Gómez-Hernández JJ, Ribeiro PJ, Beven KJ, De Smedt F (2003a) A Bayesian approach to stochastic capture zone delineation incorporating tracer arrival times, conductivity measurements, and hydraulic head observations. Water Resour Res. https://doi.org/10.1029/2002WR001544Feyen L, Ribeiro PJ, Gómez-Hernández JJ, Beven KJ, De Smedt F (2003b) Bayesian methodology for stochastic capture zone delineation incorporating transmissivity measurements and hydraulic head observations. J Hydrol 271:156–170. https://doi.org/10.1016/S0022-1694(02)00314-1Forsythe GE, Malcolm MA, Moler CB (1976) Computer methods for mathematical computations. Prentice-Hall, Englewood Cliffs, p 259Freeze R, Cherry J (1979) Groundwater. PrenticeHall Inc, Englewood cliffs, p 604Frippiat CC, Holeyman AE (2008) A comparative review of upscaling methods for solute transport in heterogeneous porous media. J Hydrol 362:150–176. https://doi.org/10.1016/j.jhydrol.2008.08.015Fu J, Gómez-Hernández JJ (2009) Uncertainty assessment and data worth in groundwater flow and mass transport modeling using a blocking Markov chain Monte Carlo method. J Hydrol 364:328–341. https://doi.org/10.1016/j.jhydrol.2008.11.014Gelhar LW, Axness CL (1983) Three-dimensional stochastic analysis of macrodispersion in aquifers. Water Resour Res 19:161–180. https://doi.org/10.1029/WR019i001p00161Gelhar LW, Welty C, Rehfeldt KR (1992) A critical review of data on field-scale dispersion in aquifers. Water Resour Res 28:1955–1974. https://doi.org/10.1029/92WR00607Giacheti HL, Rohm SA, Nogueira JB, Cintra JCA (1993) Geotechnical properties of the Cenozoic sediment (in protuguese). In: Albiero JH, Cintra JCA (eds) Soil from the interior of São Paulo. ABMS, Sao Paulo, pp 143–175Gómez-Hernandez JJ (1990) A stochastic approach to the simulation of block conductivity fields conditional upon data measured at a smaller scale. Stanford University, StanfordGómez-Hernández JJ, Gorelick SM (1989) Effective groundwater model parameter values: influence of spatial variabiity of hydraulic conductivity, leackance, and recharge. Water Resour Res 25:405–419Gómez-Hernández JJ, Journel A (1993) Joint sequential simulation of multigaussian fields. In: Geostatistics Tróia’92. pp 85–94. https://doi.org/10.1007/978-94-011-1739-5_8Gómez-Hernández JJ, Wen X-H (1994) Probabilistic assessment of travel times in groundwater modeling. Stoch Hydrol Hydraul 8:19–55. https://doi.org/10.1007/BF01581389Gómez-Hernández JJ, Fu J, Fernandez-Garcia D (2006) Upscaling retardation factors in 2-D porous media. In: Bierkens MFP, Gehrels JC, Kovar K (eds) Calibration and reliability in groundwater modelling: from uncertainty to decision making: proceedings of the ModelCARE 2005 conference held in The Hague, The Netherlands, 6–9 June, 2005. IAHS Publication, pp 130–136Goovaerts P (1999) Geostatistics in soil science: state-of-the-art and perspectives. Geoderma 89:1–45. https://doi.org/10.1016/S0016-7061(98)00078-0Jarvis NJ (2007) A review of non-equilibrium water fl ow and solute transport in soil macropores: principles, controlling factors and consequences for water quality. Eur J Soil Sci 58:523–546. https://doi.org/10.4141/cjss2011-050Jellali S, Diamantopoulos E, Kallali H, Bennaceur S, Anane M, Jedidi N (2010) Dynamic sorption of ammonium by sandy soil in fixed bed columns: evaluation of equilibrium and non-equilibrium transport processes. J Environ Manag 91:897–905. https://doi.org/10.1016/j.jenvman.2009.11.006Journel AG, Gomez-Hernandez JJ (1993) Stochastic imaging of the wilmington clastic sequence. SPE Form Eval 8:33–40. https://doi.org/10.2118/19857-PAJournel A, Deutsch C, Desbarats A (1986) Power averaging for block effective permeability. Proc SPE Calif Reg Meet. https://doi.org/10.2118/15128-MSKronberg BI, Fyfe WS, Leonardos OH, Santos AM (1979) The chemistry of some Brazilian soils: element mobility during intense weathering. Chem Geol 24:211–229. https://doi.org/10.1016/0009-2541(79)90124-4Lake LW (1988) The origins of anisotropy (includes associated papers 18394 and 18458). J Pet Technol 40:395–396. https://doi.org/10.2118/17652-PALawrence AE, Rubin Y (2007) Block-effective macrodispersion for numerical simulations of sorbing solute transport in heterogeneous porous formations. Adv Water Resour 30:1272–1285. https://doi.org/10.1016/j.advwatres.2006.11.005Lemke LD, Barrack WA II, Abriola LM, Goovaerts P (2004) Matching solute breakthrough with deterministic and stochastic aquifer models. Groundwater 42:920–934Li L, Zhou H, Gómez-Hernández JJ (2011a) A comparative study of three-dimensional hydraulic conductivity upscaling at the macro-dispersion experiment (MADE) site, Columbus Air Force Base, Mississippi (USA). J Hydrol 404:278–293. https://doi.org/10.1016/j.jhydrol.2011.05.001Li L, Zhou H, Gómez-Hernández JJ (2011b) Transport upscaling using multi-rate mass transfer in three-dimensional highly heterogeneous porous media. Adv Water Resour 34:478–489. https://doi.org/10.1016/j.advwatres.2011.01.001Logsdon Keller KE, Moorman TB (2002) Measured and predicted solute leaching from multiple undisturbed soil columns. Soil Sci Soc Am J 66:686–695. https://doi.org/10.2136/sssaj2002.6860Lourens A, van Geer FC (2016) Uncertainty propagation of arbitrary probability density functions applied to upscaling of transmissivities. Stoch Environ Res Risk Assess 30:237–249. https://doi.org/10.1007/s00477-015-1075-8Mahapatra IC, Singh KN, Pillai KG, Bapat SR (1985) Rice soils and their management. Indian J Agron 30:R1–R41Morakinyo JA, Mackay R (2006) Geostatistical modelling of ground conditions to support the assessment of site contamination. Stoch Environ Res Risk Assess 20:106–118. https://doi.org/10.1007/s00477-005-0015-4Moslehi M, de Barros FPJ, Ebrahimi F, Sahimi M (2016) Upscaling of solute transport in disordered porous media by wavelet transformations. Adv Water Resour 96:180–189. https://doi.org/10.1016/j.advwatres.2016.07.013Osinubi KJ, Nwaiwu CM (2005) Hydraulic conductivity of compacted lateritic soil. J Geotech Geoenviron Eng 131:1034–1041. https://doi.org/10.1061/(ASCE)1090-0241(2005)131:8(1034)Remy N (2004) SGeMS: stanford geostatistical modeling software. Softw Man. https://doi.org/10.1007/978-1-4020-3610-1_89Renard P, de Marsily G (1997) Calculating equivalent permeability: a review. Adv Water Resour 20:253–278. https://doi.org/10.1016/S0309-1708(96)00050-4Robin MJL, Sudicky EA, Gillham RW, Kachanoski RG (1991) Spatial variability of strontium distribution coefficients and their correlation with hydraulic conductivity in the Canadian forces base borden aquifer. Water Resour Res 27:2619–2632. https://doi.org/10.1029/91WR01107Salamon P, Fernàndez-Garcia D, Gómez-Hernández JJ (2007) Modeling tracer transport at the MADE site: the importance of heterogeneity. Water Resour Res. https://doi.org/10.1029/2006WR005522Sánchez-Vila X, Carrera J, Girardi JP (1996) Scale effects in transmissivity. J Hydrol 183:1–22. https://doi.org/10.1016/S0022-1694(96)80031-XScheibe T, Yabusaki S (1998) Scaling of flow and transport behavior in heterogeneous groundwater systems. Adv Water Resour 22:223–238. https://doi.org/10.1016/S0309-1708(98)00014-1Selvadurai PA, Selvadurai APS (2014) On the effective permeability of a heterogeneous porous medium: the role of the geometric mean. Philos Mag 94:2318–2338. https://doi.org/10.1080/14786435.2014.913111Shackelford CD (1994) Critical concepts for column testing. J Geotech Eng 120:1804–1828. https://doi.org/10.1016/0148-9062(95)96996-OŠimůnek J, van Genuchten MT, Šejna M, Toride N, Leij FJ (1999) The STANMOD computer software for evaluating solute transport in porous media using analytical solutions of convection-dispersion equation. Riverside, CaliforniaTaskinen A, Sirviö H, Bruen M (2008) Modelling effects of spatial variability of saturated hydraulic conductivity on autocorrelated overland flow data: linear mixed model approach. Stoch Environ Res Risk Assess 22:67–82. https://doi.org/10.1007/s00477-006-0099-5Tuli A, Hopmans JW, Rolston DE, Moldrup P (2005) Comparison of air and water permeability between disturbed and undisturbed soils. Soil Sci Soc Am J 69:1361. https://doi.org/10.2136/sssaj2004.0332Tyukhova AR, Willmann M (2016) Conservative transport upscaling based on information of connectivity. Water Resour Res 52:6867–6880. https://doi.org/10.1002/2015WR018331van Genuchten MTh (1980) Determining transport parameters from solute displacement experiments. Research Report 118. U.S. Salinity Lab., Riverside, CAVanderborght J, Timmerman A, Feyen J (2000) Solute transport for steady-state and transient flow in soils with and without macropores. Soil Sci Soc Am J 64:1305–1317. https://doi.org/10.2136/sssaj2000.6441305xVanmarcke E (2010) Random fields: analysis and synthesis. World Scientific. MIT Press, Cambridge, MA, p 364Vishal V, Leung JY (2017) Statistical scale-up of 3D particle-tracking simulation for non-Fickian dispersive solute transport modeling. Environ Res Risk Assess, Stoch. https://doi.org/10.1007/s00477-017-1501-1Wen X-H, Gómez-Hernández JJ (1996) Upscaling hydraulic conductivities in heterogeneous media: an overview. J Hydrol 183:ix–xxxii. https://doi.org/10.1016/S0022-1694(96)80030-8Wen XH, Gómez-Hernández JJ (1998) Numerical modeling of macrodispersion in heterogeneous media: a comparison of multi-Gaussian and non-multi-Gaussian models. J Contam Hydrol 30:129–156. https://doi.org/10.1016/S0169-7722(97)00035-1Wen XH, Capilla JE, Deutsch CV, Gómez-Hernández JJ, Cullick AS (1999) A program to create permeability fields that honor single-phase flow rate and pressure data. Comput Geosci 25:217–230. https://doi.org/10.1016/S0098-3004(98)00126-5Wilding LP, Drees LR (1983) Spatial variability and pedology. In: Wilding LP, Smeck NE, Hall GF (eds) Pedogenesis and soil taxonomy: the soil orders. Elsevier, Amsterdam, pp 83–116Willmann M, Carrera J, Guadagnini A (2006) Block-upscaling of transport in heterogeneous aquifers. h2ogeo.upc.edu 1–7Xu Z, Meakin P (2013) Upscaling of solute transport in heterogeneous media with non-uniform flow and dispersion fields. Appl Math Model 37:8533–8542. https://doi.org/10.1016/j.apm.2013.03.070Zech A, Attinger S, Cvetkovic V, Dagan G, Dietrich P, Fiori A, Rubin Y, Teutsch G (2015) Is unique scaling of aquifer macrodispersivity supported by field data? Water Resour Res 51:7662–7679. https://doi.org/10.1002/2015WR017220Zhou H, Li L, Gómez-Hernández JJ (2010) Three-dimensional hydraulic conductivity upscaling in groundwater modeling. Comput Geosci 36:1224–1235. https://doi.org/10.1016/j.cageo.2010.03.008Zhou H, Li L, Hendricks Franssen H-J, Gómez-Hernández JJ (2012) Pattern recognition in a bimodal aquifer using the normal-score ensemble Kalman filter. Math Geosci 44:169–185. https://doi.org/10.1007/s11004-011-9372-
    corecore