8 research outputs found

    The Hyaluronan Receptor for Endocytosis Mediates Hyaluronan-Dependent Signal Transduction via Extracellular Signal-Regulated Kinases

    Get PDF
    The hyaluronan (HA) receptor for endocytosis (HARE) mediates the endocytotic clearance of HA and other glycosaminoglycans from lymph and blood. Two isoforms of human HARE, 315- and 190-kDa, are highly expressed in sinusoidal endothelial cells of liver, lymph node, and spleen; HARE is also in specialized cells in the eye, heart, brain, and kidney. Here we determined whether HA binding to HARE initiates intracellular signaling in Flp-In 293 cells stably expressing either the 315- and 190-kDa HARE or the 190-kDa HARE alone. HARE was co-immunoprecipitated with extracellular signal-regulated kinase 1 and 2 (ERK1/2), c-Jun N-terminal protein kinase (JNK), and p38 members of the mitogen-activated protein kinase signaling cascade. ERK phosphorylation increased in a dose- and time-dependent manner when HA was added to cells expressing full-length or 190-kDa HARE, but not cells with vector-only or a HARE(ΔLink) construct with greatly decreased (~90%) HA uptake. HA did not induce phosphorylation of JNK or p38. A maximum increase in phospho-ERK1/2 occurred within 30 min at 5 μg/ml HA, and the response was dampened at \u3e20 μg/ml HA. HA binding did not increase the level of HARE-ERK complexes, but did increase HARE phosphorylation. These findings demonstrate a novel functional response, when HARE binds HA, that leads to activation of ERK1/2, important mediators of intracellular signal transduction

    Targeting MAPK Signaling in Age-Related Macular Degeneration

    No full text
    Age-related macular degeneration (AMD) is a major cause of irreversible blindness affecting elderly people in the world. AMD is a complex multifactorial disease associated with demographic, genetics, and environmental risk factors. It is well established that oxidative stress, inflammation, and apoptosis play critical roles in the pathogenesis of AMD. The mitogen-activated protein kinase (MAPK) signaling pathways are activated by diverse extracellular stimuli, including growth factors, mitogens, hormones, cytokines, and different cellular stressors such as oxidative stress. They regulate cell proliferation, differentiation, survival, and apoptosis. This review addresses the novel findings from human and animal studies on the relationship of MAPK signaling with AMD. The use of specific MAPK inhibitors may represent a potential therapeutic target for the treatment of this debilitating eye disease

    Expression, Processing, and Glycosaminoglycan Binding Activity of the Recombinant Human 315-kDa Hyaluronic Acid Receptor for Endocytosis (HARE)

    Get PDF
    The hyaluronic acid (HA) receptor for endocytosis (HARE; also designated stabilin-2 and FEEL-2) mediates systemic clearance of glycosaminoglycans from the circulatory and lymphatic systems via coated pit-mediated uptake. HARE is primarily found as two isoforms (315- and 190-kDa) in sinusoidal endothelial cells of the liver, lymph node, and spleen. Here we characterize the ligand specificity and function of the large stably expressed 315-HARE isoform in Flp-In 293 cell lines. Like human spleen sinusoidal endothelial cells, Flp-In 293 cell lines transfected with a single cDNA encoding the full-length 315-HARE express both the 315-kDa and the proteolytically truncated 190-kDa isoforms in a ratio of ~3–4:1. The 190- kDa HARE isoform generated from the 315-kDa HARE and the 315-kDa HARE specifically bound 125I-HA. Like the 190- kDa HARE expressed alone (Harris, E. N., Weigel, J. A., and Weigel, P. H. (2004) J. Biol. Chem. 279, 36201–36209), the 190- and 315-kDa HARE isoforms expressed in 315-HARE cell lines were recognized by anti-HARE monoclonal antibodies 30, 154, and 159. All 315-HARE cell lines could endocytose and degrade 125I-HA. Competition studies with live cells indicate that 190-HARE and 315-HARE bind HA with higher apparent affinity (Kd ~10–20 nm) than chondroitin sulfate (CS) types A, C, D, or E. Only slight competition of HA endocytosis was observed with CS-B (dermatan sulfate) and chondroitin. Direct binding assays with the 315-HARE ectodomain revealed high affinity HA binding, and lower binding affinities for CS-C, CS-D, and CS-E. A majority of each HARE isoform was intracellular, within the endocytic system, suggesting transient surface residency typical of an active endocytic recycling receptor

    Cerium Oxide Nanoparticles Inhibit Map Kinases Activation In The Retina Of Vldlr Mouse Model Of Age-Related Macular Degeneration

    No full text
    Age-related macular degeneration (AMD) damages the central region of the retina and is the leading cause of blindness in the elderly. The retina provides an ideal environment for the generation of toxic reactive oxygen species (ROS) and resultant oxidative damage due to the retina’s specific anatomical and metabolic characteristics. Decreasing ROS is, therefore, a target in the prevention and treatment of AMD. Cerium oxide nanoparticles or nanoceria are antioxidants that catalytically scavenge ROS. We have previously shown that a single intravitreal injection of nanoceria into the eye of a P28 Vldlr-/-mouse, an AMD model, inhibits the activation of mitogen-activated protein (MAP) kinases ERK, JNK, and p38 within one week. In this study we extended the endpoint for analysis to 3 months and demonstrated that injection of nanoceria in P28 Vldlr-/-mice produced sustained inhibition of the three MAP kinases down to the level of control wild type mice

    Nanoceria Inhibit Expression Of Genes Associated With Inflammation And Angiogenesis In The Retina Of Vldlr Null Mice

    No full text
    Oxidative stress and inflammation are important pathological mechanisms in many neurodegenerative diseases, including age-related macular degeneration (AMD). The very low-density lipoprotein receptor knockout mouse (Vldlr-/-) has been identified as a model for AMD and in particular for retinal angiomatous proliferation (RAP). In this study we examined the effect of cerium oxide nanoparticles (nanoceria) that have been shown to have catalytic antioxidant activity, on expression of 88 major cytokines in the retinas of Vldlr-/- mice using a PCR array. A single intravitreal injection of nanoceria at P28 caused inhibition of pro-inflammatory cytokines and pro-angiogenic growth factors including Tslp, Lif, Il3, Il7, Vegfa, Fgf1, Fgf2, Fgf7, Egf, Efna3, Lep, and up-regulation of several cytokines and anti-angiogenic genes in the Vldlr-/- retina within one week. We used the Ingenuity Pathway Analysis software to search for biological functions, pathways, and interrelationships between gene networks. Many of the genes whose activities were affected are involved in cell signaling, cellular development, growth and proliferation, and tissue development. Western blot analysis revealed that nanoceria inhibit the activation of ERK 1/2, JNK, p38 MAP kinase, and Akt. These data suggest that nanoceria may represent a novel therapeutic strategy to treat AMD, RAP, and other neurodegenerative diseases. © 2013 Elsevier Ltd

    Development, validation, and potential applications of biotinylated red blood cells for posttransfusion kinetics and other physiological studies: evidenced-based analysis and recommendations

    No full text
    The current reference method in the United States for measuring in vivo population red blood cell (RBC) kinetics utilizes chromium-51 (51Cr) RBC labeling for determining RBC volume, 24-hour posttransfusion RBC recovery, and long-term RBC survival. Here we provide evidence supporting adoption of a method for kinetics that uses the biotin-labeled RBCs (BioRBCs) as a superior, versatile method for both regulatory and investigational purposes. RBC kinetic analysis using BioRBCs has important methodologic, analytical, and safety advantages over 51Cr-labeled RBCs. We critically review recent advances in labeling human RBCs at multiple and progressively lower biotin label densities for concurrent, accurate, and sensitive determination of both autologous and allogeneic RBC population kinetics. BioRBC methods valid for RBC kinetic studies, including successful variations used by the authors, are presented along with pharmacokinetic modeling approaches for the accurate determination of RBC pharmacokinetic variables in health and disease. The advantages and limitations of the BioRBC method—including its capability of determining multiple BioRBC densities simultaneously in the same individual throughout the entire RBC life span—are presented and compared with the 51Cr method. Finally, potential applications and limitations of kinetic BioRBC determinations are discussed

    Nanoceria inhibit expression of genes associated with inflammation and angiogenesis in the retina of Vldlr null mice

    No full text
    Oxidative stress and inflammation are important pathological mechanisms in many neurodegenerative diseases, including age-related macular degeneration (AMD). The Very Low-Density Lipoprotein Receptor knockout mouse (Vldlr−/−) has been identified as a model for AMD and in particular for Retinal Angiomatous Proliferation (RAP). In this study we examined the effect of cerium oxide nanoparticles (nanoceria) that have been shown to have catalytic antioxidant activity, on expression of 88 major cytokines in the retinas of Vldlr−/− mice using a PCR array. A single intravitrial injection of nanoceria at P28 caused inhibition of pro-inflammatory cytokines and pro-angiogenic growth factors including Tslp, Lif, Il-3, Il-7, Vegfa, Fgf1, Fgf2, Fgf7, Egf, Efna 3, Lep, and up-regulation of several cytokines and anti-angiogenic genes in the Vldlr−/−retina within one week. We used the Ingenuity Pathway Analysis software to search for biological functions, pathways, and interrelationships between gene networks. Many of the genes whose activities were affected are involved in cell signaling, cellular development, growth and proliferation, and tissue development. Western blot analysis revealed that nanoceria inhibit the activation of ERK 1/2, JNK, p38 MAP kinase, and Akt. These data suggest that nanoceria may represent a novel therapeutic strategy to treat AMD, RAP, and other neurodegenerative diseases
    corecore