17 research outputs found
The mTORC1 inhibitor everolimus prevents and treats Eμ-Myc lymphoma by restoring oncogene-induced senescence
MYC deregulation is common in human cancer. IG-MYC translocations that are modeled in EμMyc mice occur in almost all cases of Burkitt lymphoma as well as in other B-cell lymphoproliferative disorders. Deregulated expression of MYC results in increased mTOR complex 1 (mTORC1) signaling. As tumors with mTORC1 activation are sensitive to mTORC1 inhibition, we used everolimus, a potent and specific mTORC1 inhibitor, to test the requirement for mTORC1 in the initiation and maintenance of EμMyc lymphoma. Everolimus selectively cleared premalignant B cells from the bone marrow and spleen, restored a normal pattern of B-cell differentiation, and strongly protected against lymphoma development. Established EμMyc lymphoma also regressed after everolimus therapy. Therapeutic response correlated with a cellular senescence phenotype and induction of p53 activity. Therefore, mTORC1-dependent evasion of senescence is critical for cellular transformation and tumor maintenance by MYC in B lymphocytes
Tumor-specific expression of αvβ3 integrin promotes spontaneous metastasis of breast cancer to bone
INTRODUCTION: Studies in xenograft models and experimental models of metastasis have implicated several β3 integrin-expressing cell populations, including endothelium, platelets and osteoclasts, in breast tumor progression. Since orthotopic human xenograft models of breast cancer are poorly metastatic to bone and experimental models bypass the formation of a primary tumor, however, the precise contribution of tumor-specific αvβ3 to the spontaneous metastasis of breast tumors from the mammary gland to bone remains unclear. METHODS: We used a syngeneic orthotopic model of spontaneous breast cancer metastasis to test whether exogenous expression of αvβ3 in a mammary carcinoma line (66cl4) that metastasizes to the lung, but not to bone, was sufficient to promote its spontaneous metastasis to bone from the mammary gland. The tumor burden in the spine and the lung following inoculation of αvβ3-expressing 66cl4 (66cl4beta3) tumor cells or control 66cl4pBabe into the mammary gland was analyzed by real-time quantitative PCR. The ability of these cells to grow and form osteolytic lesions in bone was determined by histology and tartrate-resistant acid phosphatase staining of bone sections following intratibial injection of tumor cells. The adhesive, migratory and invasive properties of 66cl4pBabe and 66cl4beta3 cells were evaluated in standard in vitro assays. RESULTS: The 66cl4beta3 tumors showed a 20-fold increase in metastatic burden in the spine compared with 66cl4pBabe. A similar trend in lung metastasis was observed. αvβ3 did not increase the proliferation of 66cl4 cells in vitro or in the mammary gland in vivo. Similarly, αvβ3 is not required for the proliferation of 66cl4 cells in bone as both 66cl4pBabe and 66cl4beta3 proliferated to the same extent when injected directly into the tibia. 66cl4beta3 tumor growth in the tibia, however, increased osteoclast recruitment and bone resorption compared with 66cl4 tumors. Moreover, αvβ3 increased 66cl4 tumor cell adhesion and αvβ3-dependent haptotactic migration towards bone matrix proteins, as well as their chemotactic response to bone-derived soluble factors in vitro. CONCLUSION: These results demonstrate for the first time that tumor-specific αvβ3 contributes to spontaneous metastasis of breast tumors to bone and suggest a critical role for this receptor in mediating chemotactic and haptotactic migration towards bone factors
Finishing the euchromatic sequence of the human genome
The sequence of the human genome encodes the genetic instructions for human physiology, as well as rich information about human evolution. In 2001, the International Human Genome Sequencing Consortium reported a draft sequence of the euchromatic portion of the human genome. Since then, the international collaboration has worked to convert this draft into a genome sequence with high accuracy and nearly complete coverage. Here, we report the result of this finishing process. The current genome sequence (Build 35) contains 2.85 billion nucleotides interrupted by only 341 gaps. It covers ∼99% of the euchromatic genome and is accurate to an error rate of ∼1 event per 100,000 bases. Many of the remaining euchromatic gaps are associated with segmental duplications and will require focused work with new methods. The near-complete sequence, the first for a vertebrate, greatly improves the precision of biological analyses of the human genome including studies of gene number, birth and death. Notably, the human enome seems to encode only 20,000-25,000 protein-coding genes. The genome sequence reported here should serve as a firm foundation for biomedical research in the decades ahead
The Human Phenotype Ontology in 2017.
Deep phenotyping has been defined as the precise and comprehensive analysis of phenotypic abnormalities in which the individual components of the phenotype are observed and described. The three components of the Human Phenotype Ontology (HPO; www.human-phenotype-ontology.org) project are the phenotype vocabulary, disease-phenotype annotations and the algorithms that operate on these. These components are being used for computational deep phenotyping and precision medicine as well as integration of clinical data into translational research. The HPO is being increasingly adopted as a standard for phenotypic abnormalities by diverse groups such as international rare disease organizations, registries, clinical labs, biomedical resources, and clinical software tools and will thereby contribute toward nascent efforts at global data exchange for identifying disease etiologies. This update article reviews the progress of the HPO project since the debut Nucleic Acids Research database article in 2014, including specific areas of expansion such as common (complex) disease, new algorithms for phenotype driven genomic discovery and diagnostics, integration of cross-species mapping efforts with the Mammalian Phenotype Ontology, an improved quality control pipeline, and the addition of patient-friendly terminology
Functional interdependence of BRD4 and DOT1L in MLL leukemia.
Targeted therapies against disruptor of telomeric silencing 1-like (DOT1L) and bromodomain-containing protein 4 (BRD4) are currently being evaluated in clinical trials. However, the mechanisms by which BRD4 and DOT1L regulate leukemogenic transcription programs remain unclear. Using quantitative proteomics, chemoproteomics and biochemical fractionation, we found that native BRD4 and DOT1L exist in separate protein complexes. Genetic disruption or small-molecule inhibition of BRD4 and DOT1L showed marked synergistic activity against MLL leukemia cell lines, primary human leukemia cells and mouse leukemia models. Mechanistically, we found a previously unrecognized functional collaboration between DOT1L and BRD4 that is especially important at highly transcribed genes in proximity to superenhancers. DOT1L, via dimethylated histone H3 K79, facilitates histone H4 acetylation, which in turn regulates the binding of BRD4 to chromatin. These data provide new insights into the regulation of transcription and specify a molecular framework for therapeutic intervention in this disease with poor prognosis
Combining the differentiating effect of panobinostat with the apoptotic effect of arsenic trioxide leads to significant survival benefit in a model of t(8;21) acute myeloid leukemia
Background: One of the most frequently found abnormalities in acute myeloid leukemia (AML) is the t(8;21)(q22;q22) translocation, which is seen in around 15% of patients. This translocation results in the production of the AML1/ETO (A/E) fusion protein and commonly involves cooperating activating mutations of RAS. AE9a encodes a C-terminally truncated A/E protein of 575 amino acids that retains the ability to recruit histone deacetylases (HDACs). Expression of AE9a leads to rapid development of leukemia in experimental mouse systems. We have recently shown that treatment of mice bearing A/E9a;Nras(G12D) tumors with the histone deacetylase inhibitor (HDACi) panobinostat leads to degradation of the A/E9a fusion protein, cell cycle arrest, differentiation of AML blasts into mature granulocytes and prolonged survival. Herein, we sought to enhance this therapeutic effect. Findings: Combined treatment of mice bearing A/E9a;Nras(G12D) leukemias with panobinostat and arsenic trioxide (ATO) resulted in a significant survival advantage compared to mice treated with either agent alone. Moreover, some of the mice treated with the panobinostat/ATO combination showed complete tumor responses and remained in remission for over 220 days. Panobinostat caused differentiation of A/E9a;Nras(G12D) cells while ATO induced apoptosis of the leukemic cells, an effect that was enhanced following co-treatment with panobinostat. Conclusions: Our results indicate that leukemic blast differentiation mediated by panobinostat combined with induction of apoptosis by ATO could be therapeutically beneficial and should be considered for patients with t(8;21) AM
Correction to: Combining the differentiating effect of panobinostat with the apoptotic effect of arsenic trioxide leads to significant survival benefit in a model of t(8;21) acute myeloid leukemia (Clinical Epigenetics, (2015), 7, 1, (2), 10.1186/s13148-014-0034-4)
Following publication of the original article [1], the authors identified an error in Fig. 2e. The correct Fig. 2 is given below. (Figure presented.)
Biomarkers to Predict Antidepressant Response
During the past several years, we have achieved a deeper understanding of the etiology/pathophysiology of major depressive disorder (MDD). However, this improved understanding has not translated to improved treatment outcome. Treatment often results in symptomatic improvement, but not full recovery. Clinical approaches are largely trial-and-error, and when the first treatment does not result in recovery for the patient, there is little proven scientific basis for choosing the next. One approach to enhancing treatment outcomes in MDD has been the use of standardized sequential treatment algorithms and measurement-based care. Such treatment algorithms stand in contrast to the personalized medicine approach, in which biomarkers would guide decision making. Incorporation of biomarker measurements into treatment algorithms could speed recovery from MDD by shortening or eliminating lengthy and ineffective trials. Recent research results suggest several classes of physiologic biomarkers may be useful for predicting response. These include brain structural or functional findings, as well as genomic, proteomic, and metabolomic measures. Recent data indicate that such measures, at baseline or early in the course of treatment, may constitute useful predictors of treatment outcome. Once such biomarkers are validated, they could form the basis of new paradigms for antidepressant treatment selection
The mTORC1 inhibitor everolimus prevents and treats E?-Myc lymphoma by restoring oncogene-induced senescence
MYC deregulation is common in human cancer. IG-MYC translocations that are modeled in EμMyc mice occur in almost all cases of Burkitt lymphoma as well as in other B-cell lymphoproliferative disorders. Deregulated expression of MYC results in increased m