37 research outputs found

    On-chip Maxwell's demon as an information-powered refrigerator

    Full text link
    We present an experimental realization of an autonomous Maxwell's Demon, which extracts microscopic information from a System and reduces its entropy by applying feedback. It is based on two capacitively coupled single electron devices, both integrated on the same electronic circuit. This setup allows a detailed analysis of the thermodynamics of both the Demon and the System as well as their mutual information exchange. The operation of the Demon is directly observed as a temperature drop in the System. We also observe a simultaneous temperature rise in the Demon arising from the thermodynamic cost of generating the mutual information.Comment: 10 pages, 7 figure

    A Reference Architecture for Electronic Business-to-Business Collaboration Setup and Enactment Systems

    Get PDF
    The question what a business-to-business (B2B) collaboration setup and enactment application-system should look like remains open. An important element of such collaboration constitutes the inter-organizational disclosure of business-process details so that the opposing parties may protect their business secrets. For that purpose, eSourcing [37] has been developed as a general businessprocess collaboration concept in the framework of the EU research project Cross- Work. The eSourcing characteristics are guiding for the design and evaluation of an eSourcing Reference Architecture (eSRA) that serves as a starting point for software developers of B2B-collaboration systems. In this paper we present the results of a scenario-based evaluation method conducted with the earlier specified eSourcing Architecture (eSA) that generates as results risks, sensitivity, and tradeoff points that must be paid attention to if eSA is implemented. Additionally, the evaluation method detects shortcomings of eSA in terms of integrated components that are required for electronic B2B-collaboration. The evaluation results are used for the specification of eSRA, which comprises all extensions for incorporating the results of the scenario-based evaluation, on three refinement levels.Peer reviewe

    Quantum jump model for a system with a finite-size environment

    Get PDF
    © 2016 American Physical Society. Measuring the thermodynamic properties of open quantum systems poses a major challenge. A calorimetric detection has been proposed as a feasible experimental scheme to measure work and fluctuation relations in open quantum systems. However, the detection requires a finite size for the environment, which influences the system dynamics. This process cannot be modeled with the standard stochastic approaches. We develop a quantum jump model suitable for systems coupled to a finite-size environment. We use the method to study the common fluctuation relations and prove that they are satisfied

    Influence of nanoparticle size, loading, and shape on the mechanical properties of polymer nanocomposites

    Get PDF
    We study the influence of spherical, triangular, and rod-like nanoparticles on the mechanical properties of a polymernanocomposite (PNC), via coarse-grained molecular dynamics simulations. We focus on how the nanoparticle size, loading, mass, and shape influence the PNC’s elastic modulus, stress at failure and resistance against cavity formation and growth, under external stress. We find that in the regime of strong polymer-nanoparticle interactions, the formation of a polymer network via temporary polymer-nanoparticle crosslinks has a predominant role on the PNC reinforcement. Spherical nanoparticles, whose size is comparable to that of the polymermonomers, are more effective at toughening the PNC than larger spherical particles. When comparing particles of spherical, triangular, and rod-like geometries, the rod-like nanoparticles emerge as the best PNC toughening agents.Peer reviewe

    Distribution of Entropy Production in a Single-Electron Box

    Full text link
    Recently, the fundamental laws of thermodynamics have been reconsidered for small systems. The discovery of the fluctuation relations has spurred theoretical and experimental studies on thermodynamics of systems with few degrees of freedom. The concept of entropy production has been extended to the microscopic level by considering stochastic trajectories of a system coupled to a heat bath. However, the experimental observation of the microscopic entropy production remains elusive. We measure distributions of the microscopic entropy production in a single-electron box consisting of two islands with a tunnel junction. The islands are coupled to separate heat baths at different temperatures, maintaining a steady thermal non-equilibrium. As Jarzynski equality between work and free energy is not applicable in this case, the entropy production becomes the relevant parameter. We verify experimentally that the integral and detailed fluctuation relations are satisfied. Furthermore, the coarse-grained entropy production from trajectories of electronic transitions is related to the bare entropy production by a universal formula. Our results reveal the fundamental roles of irreversible entropy production in non-equilibrium small systems

    Resilience Analysis of Service Oriented Collaboration Process Management systems

    Get PDF
    Collaborative business process management allows for the automated coordination of processes involving human and computer actors. In modern economies it is increasingly needed for this coordination to be not only within organizations but also to cross organizational boundaries. The dependence on the performance of other organizations should however be limited, and the control over the own processes is required from a competitiveness perspective. The main objective of this work is to propose an evaluation model for measuring a resilience of a Service Oriented Architecture (SOA) collaborative process management system. In this paper, we have proposed resilience analysis perspectives of SOA collaborative process systems, i.e. overall system perspective, individual process model perspective, individual process instance perspective, service perspective, and resource perspective. A collaborative incident and maintenance notification process system is reviewed for illustrating our resilience analysis. This research contributes to extend SOA collaborative business process management systems with resilience support, not only looking at quantification and identification of resilience factors, but also considering ways of improving the resilience of SOA collaborative process systems through measures at design and run-time
    corecore