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Measuring the thermodynamic properties of open quantum systems poses a major challenge. A
calorimetric detection has been proposed as a feasible experimental scheme to measure work and
fluctuation relations in open quantum systems. However, the detection requires a finite size for
the environment, which influences the system dynamics. This process cannot be modeled with the
standard stochastic approaches. We develop a quantum jump model suitable for systems coupled to
a finite-size environment. With the method we study the common fluctuation relations and prove
that they are satisfied.

I. INTRODUCTION

Rapid progress in the fabrication and manipulation
of micro and nanoscale objects [1–4] has made it neces-
sary to extend the concepts of thermodynamics to small
systems which by definition are not in the thermody-
namic limit. In such systems the extensive thermody-
namic quantities, such as entropy, heat and work, are not
described by their average values alone but due to fluc-
tuations they obey nontrivial probability distributions.
Fortunately, it has been shown that in many cases the
stochastic thermodynamic variables obey fluctuation re-
lations [5–7] which often appear in the form of relations
between exponential averages of the extensive variables.

While the two-measurement protocol of thermody-
namic variables, especially work, is now well studied
in closed quantum systems, there have been conceptual
problems in open quantum systems [8–39]. To make con-
nection to classical stochastic thermodynamics, the quan-
tum jump (QJ) method [40–44] has been recently used to
study thermodynamics and fluctuation theorems in open
quantum systems as it tries to mimic the trajectories re-
alized in actual experiments [29–39]. The method unrav-
els the master equation of the reduced density matrix as
stochastic trajectories with environment induced jumps
between the system states. The concepts of stochastic
thermodynamics can be developed by associating a jump
with heat exchange. However, there are several approx-
imations that limit the generality of the QJ method. In
particular, it is only applicable assuming a memoryless
or an infinitely large environment, i.e. an ideal heat bath
whose state does not change during the drive.

Even within the QJ framework the issue of actually
measuring the energy change in a driven open quantum
system is nontrivial. It has been proposed by J. P. Pekola
et al. [45] that this could be done by a so-called calori-
metric measurement, where the immediate environment
itself measures the energy change in the system. In Fig.
1, we show a schematic of such a setup in the case where
there is a driven qubit coupled to a finite-size calorimeter
and an ideal heat bath. The key point in the calorimet-
ric measurement is that in order to observe the energy

FIG. 1: A schematic of the calorimetric measurement in a
driven open quantum system. Here, a qubit is coupled to the
calorimeter that is described by finite number of harmonic
oscillators with an energy gap equivalent to that of the qubit.
The qubit and the calorimeter are initially thermalized with
an ideal bath of inverse temperature β. The qubit is driven
by a classical source λ(t).

changes of the system, the calorimeter must be finite,
i.e., in contrast to the ideal bath it has to change its
state when absorbing energy from the system [45–47].

The standard QJ approach is not applicable to anal-
ysis of the calorimetric measurement setup, since the
calorimeter is not ideal bath. In this letter, we develop a
modified QJ model suitable for systems weakly coupled
to a finite-size environment, called calorimeter from here
on. In the model, a jump in the system changes both
the state of the system and the state of the calorimeter.
Due to the influence of the system on the calorimeter’s
evolution, the system evolution is no longer Markovian
as the previous history of the system affects its future
evolution via the state of the calorimeter. With the new
method, we show that the common fluctuation relations
are satisfied for the system-calorimeter composite. As a
concrete example, we numerically study a sinusoidally
driven qubit weakly coupled to the calorimeter which
comprises harmonic oscillators with an energy gap equiv-
alent to that of the qubit. The qubit and the calorimeter
are initially thermalized with an ideal bath of inverse
temperature β as depicted in Fig. 1.
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II. THE STANDARD QUANTUM JUMP
METHOD

Let us first give a short introduction to the standard
QJ method in the literature [40–44]. Instead of evolving
the density matrix as done in the direct master equa-
tion calculations, the quantum jump method unravels the
master equation into quantum trajectories with stochas-
tically evolving wave functions. For a single trajectory,
the probability for a jump between time t and t + δt is
given by

δp =
∑
m

δpm =
∑
m

δt 〈ψ(t)| Ĉ†mĈm |ψ(t)〉 , (1)

for δt→ 0, where |ψ(t)〉 is the state of the system before
the jump, δpm is the probability for a jump correspond-
ing to a jump operator Ĉm =

√
ΓmÂm. The matrix

Âm gives the form of the jump and Γm is the transi-
tion rate. If a jump corresponding to Ĉm occurs, the
new state is given by |ψ(t+ δ)〉 = Ĉm |ψ(t)〉 /

√
(δpm/δt),

where δpm/δt normalizes it. If no jumps occur during the
time interval [t, t + δt], the state evolution is not given

by the system Hamiltonian Ĥs(t) alone but by the non-

unitary Hamiltonian Ĥ(t) = Ĥs(t)− i~2
∑
m Ĉ

†
mĈm, yield-

ing |ψ(t+ δt)〉 = 1√
1−δp

(
1− i

~Ĥ(t)δt
)
|ψ(t)〉. Although

the jump operator can be time-dependent, the past his-
tory of the trajectory, e.g., the number of jumps, does not
affect the jump operators at all. As a consequence, the
evolution of a stochastic trajectory depends only on the
current state of the system |ψ(t)〉. This is a good approx-
imation when the environment is ideal. However, such
an environment makes the calorimetric measurement in-
feasible as the system evolution leaves no traces to the
environment.

III. QUANTUM JUMP METHOD WITH A
FINITE ENVIRONMENT

We now wish to extend the standard QJ method to
the case corresponding to Fig. 1, where transitions in
the system influence the state of the calorimeter, both
initially thermalized with an ideal heat bath. We assume
the calorimeter to be large enough to allow a semiclas-
sical treatment such that there is an orthonormal eigen-
basis where the calorimeter density matrix is diagonal.
Let us call these eigenbasis states as microstates. We
also assume the system-calorimeter coupling to be weak
enough such that it can be neglected in the energy terms
and modeled by stochastic jumps alone. We take into
account only transitions that conserve the energy of the
calorimeter-system composite.

To be precise, instead of using jump operators that
only depend on the system degrees of freedom, we define
new jump operators D̂m = gmÂm⊗B̂m, where Âm causes
a transition between system states and B̂m between the

calorimeter microstates defined above [58]. The coeffi-
cient gm is proportional to the coupling strength. We
define the probability for a transition in the time interval
[t, t+ δt] as

δp =
∑
m

δpm =
∑
m

δtTrs+c{D̂†mD̂mσ̂s ⊗ σ̂c}, (2)

where δpm is the probability for a jump corresponding to
the jump operator D̂m, σ̂s(t) = |ψ(t)〉 〈ψ(t)| is the matrix
form of the system state, and σ̂c(t) = |Ψ(t)〉 〈Ψ(t)| is the
instantaneous calorimeter microstate, and the trace is
over both the system (s) and calorimeter (c) degrees of

freedom. If a jump corresponding to D̂m occurs, the new
system and calorimeter states are given by σ̂s(t + δt) =

Trc{D̂mσ̂s ⊗ σ̂cD̂†m}/δpm and σ̂c(t + δt) = Trs{D̂mσ̂s ⊗
σ̂cD̂

†
m}/δpm.

If no jumps occur during the time interval [t, t+δt], the
time evolution is given by the non-unitary Hamiltonian

Ĥ(t) = Ĥs(t) + Ĥc −
i~
2

∑
m

D̂†mD̂m, (3)

where Ĥs and Ĥc are the system and calorimeter Hamil-
tonians, respectively. The new system state σ̂s(t+ δt) =

Trc{Û(t + δt, t)σ̂s ⊗ σ̂cÛ†(t + δt, t)}/(1 − δp) + O(dt2),

where Û(t + δt, t) = 1 − i
~Ĥ(t)δt. Similarly, the new

calorimeter state σ̂c(t+δt) = Trs{Û(t+δt, t)σ̂s⊗σ̂cÛ†(t+
δt, t)}/(1 − δp) + O(dt2), which gives σ̂c(t + δt) = σ̂c(t)
as we assumed that σ̂c(t) is in a microstate. As a con-
sequence, it is sufficient to focus in detail only on the
system dynamics, where the calorimeter’s state only af-
fects the transition rates.

IV. FLUCTUATION RELATIONS

For studying stochastic thermodynamics and the asso-
ciated fluctuation relations with the method, we focus on
a generic two-level system (qubit) with Ĥ0 = ~ω0â

†â that
is weakly driven by a classical source V (t) = λ(t)(â+ â†),
where â and â† are the annihilation and creation oper-
ators in the undriven basis. The system Hamiltonian is
then given by Ĥs(t) = Ĥ0+V̂ (t). The qubit is coupled to

the calorimeter by V̂N (t) = κ
∑
m(â†b̂m+âb̂†m), where the

coupling strength κ is real and the operators b̂m depend
on the exact form of the calorimeter. The calorimeter
Hamiltonian is given by Ĥc =

∑
n εnd̂

†
nd̂n. For a bosonic

calorimeter d̂n and d̂†n are the annihilation and creation
operators associated with energy εn and the operators

b̂m form a set of all the annihilation operators associated

with energy ~ω0, i.e,
∑
m b̂m =

∑
n d̂nδεn,~ω0

[59]. Be-
fore and after the driving protocol, both the qubit and
the calorimeter states are measured by monitoring the
calorimeter state only. The qubit state can be indirectly
determined from the previous jump before the drive and
from the next jump after the drive in the calorimeter.
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However, this calorimetric monitoring is equivalent to
performing the measurements using the two measure-
ment protocol for both the qubit and the calorimeter,
as shown in Appendix A.

The total system is initially prepared such that both
the qubit and the calorimeter start as a pure state given
by the joint probability P [i,Ψ0], where |i〉 and |Ψ0〉
are the initial qubit and calorimeter states, respectively.
Similar to the standard perturbative treatment [48], we
define the jump operators in the undriven basis, i.e.,

D̂↑,m = gmâ
† ⊗ b̂m and D̂↓,m = gmâ ⊗ b̂†m, where the

coefficient gm ∝ κ. Due to the energy change with
the qubit, the calorimeter can jump to a different mi-
crostate such that the energy difference of the microstates
corresponds to the energy change in the qubit. If the
calorimeter is assumed to stay in the same microstate
between the jumps, we can write the calorimeter traced
jump operators [49] as Ĉ↑,m(Ψk) =

√
Γ↑,m(Ψk)â† and

Ĉ↓,m(Ψk) =
√

Γ↓,m(Ψk)â, where the transition rates are

Γ↑,m(Ψk) = |gk|2Trc{b̂mσ̂c(Ψk)b̂†m}, (4)

Γ↓,m(Ψk) = |gk|2Trc{b̂†mσ̂c(Ψk)b̂m}, (5)

with σ̂c(Ψk) = |Ψk〉 〈Ψk|. If a jump caused by

Ĉ↓,m(Ψk) occurs, the new calorimeter state is |Ψk+1〉 =

b̂†m |Ψk〉 /||b̂†m |Ψk〉 ||. According to Stochastic Thermody-
namics [50, 51], the entropy production associated with
a jump is defined as the logarithmic ratio of the forward
and backward transition rates. Due to the symmetry
Γ↓,m(Ψk) = Γ↑,m(Ψk+1), this entropy production is al-
ways zero and the total entropy production of a trajec-
tory depends only on the initial and final states of the
qubit and the calorimeter, i.e.,

∆ST = ln
{
P [i,Ψ0]/P̄ [f,ΨN ]

}
, (6)

where P̄ [f,ΨN ] is the probability to start a reversed
trajectory with the final qubit state |f〉 and the final
calorimeter state |ΨN 〉 of the forward trajectory. The
entropy production satisfies the fluctuation theorem (see
Appendix B for details):

〈e−∆ST 〉 = 1, (7)

where the average is over all the forward trajectories. If
the initial probability distribution of the forward trajec-
tory follows the canonical ensemble in equilibrium with
the ideal heat bath, the probability distribution of the
reversed trajectories can be chosen to follow a canonical
ensemble with the same temperature. By defining the
work W associated with a single trajectory as the en-
ergy difference between the initial and final states of the
qubit-calorimeter composite, Eq. (7) gives the Jarzynski
equality for work as

〈e−βW 〉 = e−β∆F , (8)

where ∆F is the free-energy difference between the final
and initial states.

The results above were derived assuming that the
calorimeter stays in the same microstate until the next
jump. However, in many systems such as in electronic de-
vices [52, 53], the relaxation rate inside the calorimeter is
the fastest time scale. Consequently, the calorimeter does
not stay in a single microstate between jumps but shifts
quickly between the microstates that correspond to the
same energy. We can still calculate the qubit dynamics
with Eqs. (2) and (3) by using an averaged calorime-
ter state instead of a single calorimeter microstate. Ac-
cording to the microcanonical ensemble, the averaged
calorimeter state σ̂c(E) = (1/N(E))

∑
Ψ |Ψ〉 〈Ψ| δEΨ,E ,

where the sum is over all the microstates, N(E) is the
number of microstates with energy E and EΨ is the en-
ergy of microstate |Ψ〉. Let us call this state a macrostate.
We assume that calorimeter reaches the macrostate in-
stantaneously after a jump. The probability to start with
the qubit state |i〉 and the calorimeter macrostate of en-
ergy E0 is given by P [i, E0]. Due to the energy change
with the qubit, the calorimeter can jump to another
macrostate. As the calorimeter reaches the macrostate
immediately after a jump, we can sum over all the tran-
sition rates corresponding the same energy change. The
resulting total transition rates are given by

Γ↓(E) =
1

N(E)

∑
m,Ψ

Γ↓,m(Ψ)δEΨ,E , (9)

Γ↑(E) =
1

N(E)

∑
m,Ψ

Γ↑,m(Ψ)δEΨ,E , (10)

and they satisfy the detailed balance condition

Γ↓(E − ~ω0)/Γ↑(E) = N(E)/N(E − ~ω0), (11)

which resembles the fluctuation relation derived for mi-
crocanonical ensembles [54, 55]. The entropy production
of a jump up with the calorimeter energy E is given by

∆s↑(E) = − ln

(
Γ↓(E − ~ω0)

Γ↑(E)

)
= ln

(
N(E − ~ω0)

N(E)

)
,(12)

which gives a natural interpretation of the entropy pro-
duction as the Boltzmann entropy change of the calorime-
ter. The entropy productions of up and down jumps are
related by ∆s↑(E) = −∆s↓(E− ~ω0). The total entropy
production is then given by

∆ST = ln
{
P [i, E0]/P̄ [f,EN ]

}
+

N∑
i=1

∆sχi
(Ei−1), (13)

where N is the number of jumps, Ei is the calorimeter
energy after the ith jump, χi =↑ / ↓ is the direction of ith

jump, and P̄ [f,EN ] is the probability to start a reversed
trajectory with the forward trajectory’s final qubit state
|f〉 and calorimeter energy EN . As Eq. (7) still holds,
we recover the Jarzynski equality if we start from the
canonical ensemble.
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FIG. 2: The difference between the populations of the qubit
excited state for n and infinite number of oscillators ρe(t) ≡
ρne (t) − ρ∞e (t). The data is from numerical simulations of
the coupled qubit-calorimeter system. The protocol ends at
time τ . The inset shows the excited state population when
n =∞. The drive is discretized using 2× 105 time steps and
the number of trajectories is 109. See text for the values of
the other system parameters.

V. NUMERICAL RESULTS

To illustrate the method, we have done numerical simu-
lations of the coupled qubit-calorimeter composite, where
the calorimeter is described by n quantum harmonic os-
cillators, with energy gap equivalent to that of the qubit
~ω0. The harmonic oscillators can be non-interacting or
they interact fast enough such that the calorimeter can
be assumed to reach the macrostate instantenously after
a jump. In both cases, the transition rates are the same
and depend only on the calorimeter energy:

Γ↓(E) = |g|2(E + n~ω0), Γ↑(E) = |g|2E, (14)

where we have for convenience chosen E = 0 when all
the oscillators are in the ground state. Consequently,
the qubit’s evolution depends only on the energy of the
calorimeter. As the calorimeter energy does not change
between the jumps, we can calculate the qubit dynam-
ics using Eqs. (2) and (3) with environment traced jump

operators Ĉ↓ =
√

Γ↓(E)â and Ĉ↑ =
√

Γ↑(E)â† [49]. The
calculations are done in the interaction picture with re-
spect to Ĥ0 + Ĥe.

In order to compare the results with different number
of oscillators, we use the value g2 = 0.025/(n~) in the
simulations such that the total coupling strength remains
the same. We start the qubit and the calorimeter from a
canonical ensemble with respect to the inverse tempera-
ture β = 1/(~ω0). The qubit is driven sinusoidally with
λ(t) = 0.05~ω0 sin(ω0t). The protocol consist of driving,
no driving, driving, no driving parts each lasting a time
interval equal of 50 driving periods.

Figure 2 nicely illustrates the influence of the calorime-
ter’s size on the qubit dynamics. Due to its finite size,
the calorimeter is driven out of equilibrium. During the
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FIG. 3: Influence of finite-size calorimeter on the work and en-
ergy statistics when it consists of n harmonic oscillators. (a)
The probability distribution of work in the case of n = ∞,
P∞(W ). (b) Time evolution of the average calorimeter en-
ergy for different values of n. (c) Deviation of the probability
distribution of work ∆P (W ) ≡ Pn(W )−P∞(W ). (d) Numer-
ical verification of the Jarzynski equality. The error bars are
the standard deviation times 1.96 and correspond to a 95 %
confidence interval. The parameters are the same as in Fig.
2.

drive, the effect of the calorimeter on the qubit dynam-
ics is suppressed by the drive since it is stronger than
the qubit-calorimeter coupling. However, when the drive
is stopped and the qubit equilibrates, the effect of the
calorimeter becomes apparent. The drive causes the
qubit to emit energy to the calorimeter. For a very large
calorimeter (here the largest n = 400), this additional en-
ergy is very small as compared to the initial energy, which
scales with size. However, for a smaller n the change in
the relative energy becomes more pronounced as depicted
in Fig. 3(b).

For the setup, the work is obtained as the energy differ-
ence between the initial and final states of the qubit plus
the heat released to the calorimeter. This yields the same
result as the two-measurement protocol for the compos-
ite. As shown in Figs. 3(a) and (c), the finite size of the
calorimeter causes the work distribution to deviate from
the inifinite-size limit as overheating changes the transi-
tion rates. The transition rates are strongly influenced
by the previous jumps for small values of n. This is il-
lustrated in Fig. 3(c), where work values between ±5~ω0

are more probable for small n. Independent of n, the
work distributions were found to be consistent with the
Jarzynski equality within the statistical errors, as shown
in Fig. 3(d).
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VI. CONCLUSIONS

Measurement and definition of work in driven open
quantum systems poses an interesting theoretical and ex-
perimental challenge. In the present work, we have con-
sidered the proposal of a calorimetric measurement that
offers a simple and transparent way of measuring energy
exchange between the system and the calorimeter. To
be able to theoretically analyse a calorimetric setup, we
have developed a modified QJ model suitable for systems
with a finite-size environment. We have shown that due
to the finite size, the calorimeter is driven out of equilib-
rium leading to changes in the reduced system’s dynamics
and in the work statistics. These changes cannot be mod-
elled with the standard QJ method which assumes that
the whole environment is an ideal heat bath. With the
model, we have analytically and numerically shown that
the standard fluctuation relations are still valid and re-
main unaltered by the finite size of the calorimeter. This
is in contrast to Ref. [52], where the transition rates
violate the detailed balance condition of Eq. (11) (see
Appendix C).
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and the Academy of Finland through its Centres of Ex-
cellence Programme (2015-2017) under project number
284621. The numerical calculations were performed us-
ing computer resources of the Aalto University School of
Science ”Science-IT” project.

Appendix A: Equivalence between the calorimetric
measurement and the two measurement protocol

Let us assume that after the drive, the qubit is in a
superposition state |ψ〉 = α0 |0〉 + α1 |1〉, where |0〉 and
|1〉 are the ground and exicted states of the undriven
qubit, respectively. The calorimeter is assumed to have
energy E. A double projection measurement of both the
qubit and the calorimeter then gives E at probability
P (E) = |α0|2 and E + ~ω0 at probability P (E + ~ω0) =
|α1|2 = 1− |α0|2.

In the calorimetric measurement, the qubit state is
measured by waiting that the qubit collapses to an eigen-
state due to a jump. Let us first study the case where
the calorimeter is in a single microstate |Ψk〉 and it does
not change between the jumps. In this case, we can
use the calorimeter traced jump operators Ĉ↑,m(Ψk) =√

Γ↑,m(Ψk)â† and Ĉ↓,m(Ψk) =
√

Γ↓,m(Ψk)â. The prob-
ability that the first jump after the drive is caused by

jump operator Ĉ↓,m takes the form

P↓,m =

∫ ∞
0

dtΓ↓,m(Ψk)×∣∣∣〈1| e− 1
2

∑
n[Γ↓,n(Ψk)|1〉〈1|+Γ↑,n(Ψk)|0〉〈0|]t |ψ〉

∣∣∣2
=

∫ ∞
0

dtΓ↓,m(Ψk)|α1|2e−
∑

n Γ↓,n(Ψk)t

=
|α1|2Γ↓,m(Ψk)∑

n Γ↓,n(Ψk)
. (A1)

The probability that the first jump after the drive is a
jump down is obtained by summing over all m,

P↓ =
∑
m P↓,m = |α1|2. (A2)

In this case of a jump down, the qubit is known to be in
the ground state after the jump and thus the measured
total energy is simply the calorimeter energy after the
jump, E + ~ω0. Similarly, the probability that the first
jump after the drive is a jump up takes the form

P↑ =
∑
m

∫ ∞
0

dtΓ↑,m(Ψk)×∣∣∣〈0| e− 1
2

∑
n[Γ↓,n(Ψk)|1〉〈1|+Γ↑,n(Ψk)|0〉〈0|]t |ψ〉

∣∣∣2
= |α0|2, (A3)

giving total energy E. Thus, both measurement schemes
produce equivalent energy distributions.

In the case that the calorimeter reaches the macrostate
immediately after a jump, the calculation is similar
with only two jump operators Ĉ↑(E) =

√
Γ↑(E)â† and

Ĉ↓(E) =
√

Γ↓,m(E)â.

Appendix B: Fluctuation theorem for the quantum
jump model with a finite-size environment

Let us consider an open quantum system coupled to
a calorimeter through dissipative channels described by
jump operators D̂m = gmÂm ⊗ B̂m, where Âm and
B̂m depend on the system and calorimeter degrees of
freedom, respectively, and gm is the coupling strength.
We also assume that the jump operator follow detailed
balance such that for every D̂m there is D̂n such that
Ân = Â†m and B̂n = B̂†m. Let us first study the
case, where the calorimeter is in a single microstate
|Ψk〉 and it does not change between the jumps. In
this case, we can use the calorimeter traced jump op-
erators Ĉm =

√
Γm(Ψk)Âm that are defined such that

Trs{Ĉmσ̂sĈ†m} = Trs+c{D̂mσ̂s ⊗ |Ψk〉 〈Ψk| D̂†m}, where
σ̂s is the matrix form of the system state, Trs denotes
trace over the system degrees of freedom and Trs+c de-
notes trace over both the system and calorimeter de-
grees of freedom. Due to the system-calorimeter energy
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change, the energy of the calorimeter evolves stochasti-
cally. The probability to traverse a single N -jump QJ
trajectory is given by

PQJ [i, f,Ψ0,ΨN , {Ĉmk
}Nk=1, {tk}Nk=1] (B1)

= P [i,Ψ0]

[
N∏
k=1

p0(tk, tk−1)pmk
(tk)

]
p0(τ, tN )Pf [f,ΨN ],

where the protocol starts at time t0 = 0 and ends at time
τ , P [i,Ψ0] is the probability to start with the system
state |i〉 and the calorimeter state |Ψ0〉, pmk

(tk) is the
probability for a jump to occur along the mk:th channel
during [tk, tk + δt], and p0(tk+1, tk) is the probability of
no jump during the time-interval [tk, tk+1] and Pf [f,ΨN ]
is the probability to measure the system state |f〉 and
the calorimeter state |ΨN 〉 at the end of the protocol. As
the jump probabilities can be calculated simply using the
calorimeter traced jump operators, we can use the results
derived for time-dependent jump operators [38], yielding

PQJ [i, f,Ψ0,ΨN , {Ĉmk
}Nk=1, {tk}Nk=1]

= (δt)NP [i,Ψ0]

[
N∏
k=1

Γmk
(Ψk−1)

]
× (B2)

∣∣∣∣∣〈f |Ûeff(τ, tN )

[
N∏
k=1

ÂmN+1−k
Ûeff(tN+1−k, tN−k)

]
|i〉
∣∣∣∣∣
2

,

where |Ψk〉 is the calorimeter state after k:th jump and
the no-jump evolution is given by

Ûeff(tk+1, tk) = T e−
i
~

[∫ tk+1
tk

Ĥs(t)−i ~2
∑

i Γi(Ψk)Â†i Âidt
]
,

(B3)

where Ĥs(t) is the system Hamiltonian and T is the time-
ordering operator.

We can formulate a time-reversed counterpart for the
forward trajectory of Eq. (B2). In the time-reversed
trajectory, we measure system state |f〉 and calorimeter
state |ΨN 〉 at the beginning (t̄ = 0) and states |i〉 and
|Ψ0〉 at the end (t̄ = τ). In the time-reversed trajectory,
all the jumps are reversed and they happen in reverse
order, i.e., a jump caused by Ĉm̄k

occurs at time t̄ = tf −
tk, where the index m̄k is related to the forward index mk

such that Âm̄k
= Â†mk

and B̂m̄k
= B̂†mk

. By demanding
that the time-reversed no-jump evolution between jumps

is given by Û†eff(ti+1, ti), the probability for the reverse
QJ trajectory can then be written as

P̄QJ [f, i,ΨN ,Ψ0, {Ĉm̄k
}Nk=1, {t̄k}Nk=1]

= (δt)N P̄ [f,ΨN ]

[
N∏
k=1

Γm̄k
(Ψk)

]
×

∣∣∣∣∣〈i|
[
N∏
k=1

Û†eff(tk, tk−1)Â†mk

]
Û†eff(τ, tN )|f〉

∣∣∣∣∣
2

,

(B4)

where P̄ [f,ΨN ] is the probability to start a reversed tra-
jectory with the system state |f〉 and the calorimeter

state |ΨN 〉. The ratio of the forward and reversed tra-
jectory probabilities is of the form:

∆ST [i, f,Ψ0,ΨN , {Ĉmk
}Nk=1, {tk}Nk=1]

= ln

[
PQJ [i, f,Ψ0,ΨN , {Ĉmk

}Nk=1, {tk}Nk=1]

P̄QJ [f, i,ΨN ,Ψ0, {Ĉm̄k
}Nk=1, {t̄k}Nk=1]

]

= ln

{
P [i,Ψ0]

P̄ [f,ΨN ]

}
+ ln

[
N∏
k=1

Γmk
(Ψk−1)

Γm̄k
(Ψk)

]
.

(B5)

We denote this term as the total entropy production of
the model. As the reversed trajectories’ probabilities sum
up to unity, it can be straightforwardly shown that

〈e−∆ST 〉 = 1, (B6)

where the average is over all the forward trajectories.
As discussed in the main text, the transition rates

satisfy the condition Γm̄k
(Ψk) = Γmk

(Ψk−1) when the
calorimeter is assumed to be in a single microstate. As
a consequence, the second term of Eq. (B5) is zero and
the entropy production depends only on the forward and
reversed trajectory initial probability distributions. If
the initial probability distribution of the forward trajec-
tory follows canonical ensemble, the probability distribu-
tion of the reversed trajectories can be chosen to follow
a canonical ensemble with the same temperature. In this
case, the total entropy production becomes equivalent
with the energy difference between the initial and final
state of the total system. By defining the work of a sin-
gle trajectory as the energy difference between the initial
and final state of the total system, Eq. (B6) gives the
Jarzynski equality.

If the relaxation rate inside the calorimeter is the
fastest time scale, then the calorimeter does not stay in
a single microstate between jumps but shifts quickly be-
tween the microstates |Ψk〉 that correspond to the same
energy. We can still derive a theorem similar to Eq.
(B5) with Ψk denoting calorimeter energies instead of
states. The transition rates are then given by Eqs. (9)
and (14) of the main text. In this case, the product
of the transition rate ratio gives N(E0)/N(EN ) in Eq.
(B5), where E0 and EN are the initial and final ener-
gies of the calorimeter, respectively, and N(E) denotes
the number of microstates corresponding energy E. If
both the forward and backward process start from the
canonical ensemble, i.e., P [i, E0] = N(E0)e−β(~ωi+E0)/Z
and P̄ [f,EN ] = N(EN )e−β(~ωf+EN )/Z ′, we get again the
Jarzynski equality with ∆F = −(1/β) ln(Z ′/Z). Here,
~ωi and ~ωf denote the energies of system states |i〉 and
|f〉, respectively.

Appendix C: Detailed balance condition for the
transition rates

When the energy fluctuations are small in the canoni-
cal ensemble, they are often approximated by a gaussian



7

distribution around the average energy E0. If the heat
capacity C is constant, these energy fluctuations are of-
ten expressed as the effective temperature fluctuations
T = E/C in mesoscopic systems [52, 56, 57]. We will
now show that the assumption of a constant heat ca-
pacity can lead to violation of the main text’s Eq. (11)
when temperature fluctuations T are used together with
the standard temperature-dependent transition rates

Γ↓(~ω0, T (E)) = g/(1± e−~ω0/(kBT )), (C1)

Γ↑(~ω0, T (E)) = g/(e~ω0/(kBT ) ± 1), (C2)

where g is the coupling strength, ~ω0 is the energy gap of
the qubit, T (E) is the effective temperature correspond-
ing to the calorimeter energy E and + (−) is used in the
case bosonic (fermionic) transition rates. If a jump up oc-
curs in the qubit, the energy of the calorimeter decreases
by ~ω0 and consequently the effective temperature de-
creases by ~ω0/C.

For Gaussian energy fluctuations, the left-hand side of
Eq. (11) simplifies to

N(E)

N(E − ~ω0)
= e~ω0{β+[−~ω0+2(E−E0)]/(2σ2)}, (C3)

where N(E) and N(E − ~ω0) are the number of mi-
crostates corresponding to calorimeter energies E and
E − ~ω0, respectively, β is the inverse temperature of
the ideal bath that is used to thermalized both the qubit
and the calorimeter and σ2 = Ck−1

B β−2 is the variance of
the gaussian calorimeter energy distribution. However, if
now the transition rates of Eqs. (C1)-(C2) are used, the
right-hand side of Eq. (11) does not agree with Eq. (C3)
and thus the detailed balance condition is not satisfied.
This explains the apparent violations of Jarzynski equal-
ity in Ref. [52], where similar type of transition rates
were used with gaussian effective temperature fluctua-
tions and a constant heat capacity.
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[18] M. Silaev, T. T. Heikkilä, and P. Virtanen, Phys. Rev. E
90, 022103 (2014).

[19] S. Gasparinetti, P. Solinas, A. Braggio, and M. Sassetti,
New J. Phys. 16, 115001 (2014).

[20] J. Salmilehto, P. Solinas, and M. Möttönen, Phys. Rev.
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