163 research outputs found

    Initial clinical experience with the pulsed solid-state thulium YAG laser from Dornier during RIRS: first 25 cases

    Get PDF
    Introduction Holmium:yttrium–aluminium–garnet (Ho:YAG) and thulium fiber (TFL) lasers are currently the two laser sources recommended for endocorporeal laser lithotripsy (ELL). Recently, the pulsed-thulium:YAG (Tm:YAG) laser was also proposed for ELL, as an answer to both Ho:YAG and TFL limitations. We aimed to evaluate the efficiency, safety, and laser settings of Tm:YAG laser in ELL during retrograde intrarenal surgery (RIRS). Methods A prospective study of the first 25 patients with ureteral and renal stones who underwent RIRS using the Thulio (pulsed-Tm:YAG, Dornier©, Germany) was performed in a single center. 272 μm laser fibers were used. Stone size, stone density, laser-on time (LOT) and laser settings were recorded. We also assessed the ablation speed (mm 3 /s), Joules/mm 3 and laser power (W) values for each procedure. Postoperative results, such as stone-free rate (SFR) and zero fragments rate (ZFR) were also recorded. Results A total of 25 patients were analyzed (Table 1). The median (IQR) age was 55 (44–72) years old. Median (IQR) stone volume was 2849 (916–9153)mm3 . Median (IQR) stone density was 1000 (600–1174)HU. Median (IQR) pulse energy, pulse rate and total power were 0.6 (0.6–0,8)J, 15(15–20)Hz and 12(9–16)W, respectively. All procedures used “Captive Frag- menting” pulse modulation (Table 2). The median (IQR) J/mm 3 was 14,8 (6–21). The median (IQR) ablation rate was 0,75 (0,46–2)mm 3 /s. One postoperative complications occurred (streinstrasse). SFR and ZFR were 95% and 55%, respectively. Conclusion The pulsed-Tm:YAG laser is a safe and effective laser source for lithotripsy during RIRS, using low pulse energy and low pulse frequency

    Iterative focused screening with biological fingerprints identifies selective Asc-1 inhibitors distinct from traditional high throughput screening

    Get PDF
    N-methyl-d-aspartate receptors (NMDARs) mediate glutamatergic signaling that is critical to cognitive processes in the central nervous system, and NMDAR hypofunction is thought to contribute to cognitive impairment observed in both schizophrenia and Alzheimer’s disease. One approach to enhance the function of NMDAR is to increase the concentration of an NMDAR coagonist, such as glycine or d-serine, in the synaptic cleft. Inhibition of alanine–serine–cysteine transporter-1 (Asc-1), the primary transporter of d-serine, is attractive because the transporter is localized to neurons in brain regions critical to cognitive function, including the hippocampus and cortical layers III and IV, and is colocalized with d-serine and NMDARs. To identify novel Asc-1 inhibitors, two different screening approaches were performed with whole-cell amino acid uptake in heterologous cells stably expressing human Asc-1: (1) a high-throughput screen (HTS) of 3 M compounds measuring 35S l-cysteine uptake into cells attached to scintillation proximity assay beads in a 1536 well format and (2) an iterative focused screen (IFS) of a 45 000 compound diversity set using a 3H d-serine uptake assay with a liquid scintillation plate reader in a 384 well format. Critically important for both screening approaches was the implementation of counter screens to remove nonspecific inhibitors of radioactive amino acid uptake. Furthermore, a 15 000 compound expansion step incorporating both on- and off-target data into chemical and biological fingerprint-based models for selection of additional hits enabled the identification of novel Asc-1-selective chemical matter from the IFS that was not identified in the full-collection HTS

    NPC1 regulates the distribution of phosphatidylinositol 4-kinases at Golgi and lysosomal membranes

    Get PDF
    Cholesterol and phosphoinositides (PI) are two critically important lipids that are found in cellular membranes and dysregulated in many disorders. Therefore, uncovering molecular pathways connecting these essential lipids may offer new therapeutic insights. We report that loss of function of lysosomal Niemann-Pick Type C1 (NPC1) cholesterol transporter, which leads to neurodegenerative NPC disease, initiates a signaling cascade that alters the cholesterol/phosphatidylinositol 4-phosphate (PtdIns4P) countertransport cycle between Golgi-endoplasmic reticulum (ER), as well as lysosome-ER membrane contact sites (MCS). Central to these disruptions is increased recruitment of phosphatidylinositol 4-kinases-PI4KIIα and PI4KIIIβ-which boosts PtdIns4P metabolism at Golgi and lysosomal membranes. Aberrantly increased PtdIns4P levels elevate constitutive anterograde secretion from the Golgi complex, and mTORC1 recruitment to lysosomes. NPC1 disease mutations phenocopy the transporter loss of function and can be rescued by inhibition or knockdown of either key phosphoinositide enzymes or their recruiting partners. In summary, we show that the lysosomal NPC1 cholesterol transporter tunes the molecular content of Golgi and lysosome MCS to regulate intracellular trafficking and growth signaling in health and disease

    Truncated and Helix-Constrained Peptides with High Affinity and Specificity for the cFos Coiled-Coil of AP-1

    Get PDF
    Protein-based therapeutics feature large interacting surfaces. Protein folding endows structural stability to localised surface epitopes, imparting high affinity and target specificity upon interactions with binding partners. However, short synthetic peptides with sequences corresponding to such protein epitopes are unstructured in water and promiscuously bind to proteins with low affinity and specificity. Here we combine structural stability and target specificity of proteins, with low cost and rapid synthesis of small molecules, towards meeting the significant challenge of binding coiled coil proteins in transcriptional regulation. By iteratively truncating a Jun-based peptide from 37 to 22 residues, strategically incorporating i-->i+4 helix-inducing constraints, and positioning unnatural amino acids, we have produced short, water-stable, alpha-helical peptides that bind cFos. A three-dimensional NMR-derived structure for one peptide (24) confirmed a highly stable alpha-helix which was resistant to proteolytic degradation in serum. These short structured peptides are entropically pre-organized for binding with high affinity and specificity to cFos, a key component of the oncogenic transcriptional regulator Activator Protein-1 (AP-1). They competitively antagonized the cJun–cFos coiled-coil interaction. Truncating a Jun-based peptide from 37 to 22 residues decreased the binding enthalpy for cJun by ~9 kcal/mol, but this was compensated by increased conformational entropy (TDS ≤ 7.5 kcal/mol). This study demonstrates that rational design of short peptides constrained by alpha-helical cyclic pentapeptide modules is able to retain parental high helicity, as well as high affinity and specificity for cFos. These are important steps towards small antagonists of the cJun-cFos interaction that mediates gene transcription in cancer and inflammatory diseases

    A Synthetic Loop Replacement Peptide That Blocks Canonical NFâ κB Signaling

    Full text link
    Aberrant canonical NFâ κB signaling is implicated in diseases from autoimmune disorders to cancer. A major therapeutic challenge is the need for selective inhibition of the canonical pathway without impacting the many nonâ canonical NFâ κB functions. Here we show that a selective peptideâ based inhibitor of canonical NFâ κB signaling, in which a hydrogen bond in the NBD peptide is synthetically replaced by a nonâ labile bond, shows an about 10â fold increased potency relative to the original inhibitor. Not only is this molecule, NBD2, a powerful tool for dissection of canonical NFâ κB signaling in disease models and healthy tissues, the success of the synthetic loop replacement suggests that the general strategy could be useful for discovering modulators of the many proteinâ protein interactions mediated by such structures.Ein Peptidâ basierter Inhibitor für die kanonische NFâ κBâ Signalisierung, in dem eine Wasserstoffbrücke im NBDâ Peptid synthetisch durch eine nichtlabile Bindung ersetzt wurde, wirkt 10â mal stärker als der Originalinhibitor. Der Erfolg des Peptidschleifenaustauschs legt nahe, dass die Strategie nützlich sein könnte, um Modulatoren für viele durch solche Strukturen vermittelte Proteinâ Proteinâ Wechselwirkungen zu finden.Peer Reviewedhttp://deepblue.lib.umich.edu/bitstream/2027.42/135091/1/ange201607990-sup-0001-misc_information.pdfhttp://deepblue.lib.umich.edu/bitstream/2027.42/135091/2/ange201607990.pd

    DOGS: Reaction-Driven de novo Design of Bioactive Compounds

    Get PDF
    We present a computational method for the reaction-based de novo design of drug-like molecules. The software DOGS (Design of Genuine Structures) features a ligand-based strategy for automated ‘in silico’ assembly of potentially novel bioactive compounds. The quality of the designed compounds is assessed by a graph kernel method measuring their similarity to known bioactive reference ligands in terms of structural and pharmacophoric features. We implemented a deterministic compound construction procedure that explicitly considers compound synthesizability, based on a compilation of 25'144 readily available synthetic building blocks and 58 established reaction principles. This enables the software to suggest a synthesis route for each designed compound. Two prospective case studies are presented together with details on the algorithm and its implementation. De novo designed ligand candidates for the human histamine H4 receptor and γ-secretase were synthesized as suggested by the software. The computational approach proved to be suitable for scaffold-hopping from known ligands to novel chemotypes, and for generating bioactive molecules with drug-like properties

    The use of 2D fingerprint methods to support the assessment of structural similarity in orphan drug legislation.

    Get PDF
    In the European Union, medicines are authorised for some rare disease only if they are judged to be dissimilar to authorised orphan drugs for that disease. This paper describes the use of 2D fingerprints to show the extent of the relationship between computed levels of structural similarity for pairs of molecules and expert judgments of the similarities of those pairs. The resulting relationship can be used to provide input to the assessment of new active compounds for which orphan drug authorisation is being sought

    Anthropogenic reaction parameters - the missing link between chemical intuition and the available chemical space

    Get PDF
    How do skilled synthetic chemists develop such a good intuitive expertise ? Why can we only access such a small amount of the available chemical space — both in terms of the re actions used and the chemical scaffolds we make? We argue here that these seemingly unrelated questions have a common root and are strongly interdependent . We performed a comprehensive analysis of organic reaction parameters dating back to 1771 and discove red that there are several anthropogenic factors that limit the reaction parameters and thus the scop e of synthetic chemistry. Nevertheless, many of the anthropogenic limitations such as the narrow parameter space and the opportunity of the rapid and clear feedback on the progress of reactions appear to be crucial for the acquisition of valid and reliable chemical intuition. In parallel, however, all of these same factors represent limitations for the exploration of available chemistry space and we argue th at these are thus at least partly responsible for limited access to new chemistries. We advocate, therefore, that the present anthropogenic boundaries can be expanded by a more conscious expl oration of “off - road” chemistry that would also extend the intuit ive knowledge of trained chemists
    corecore