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RESEARCH ARTICLE Open Access

The use of 2D fingerprint methods to support the
assessment of structural similarity in orphan drug
legislation
Pedro Franco1, Nuria Porta1, John D Holliday2 and Peter Willett2*

Abstract

Background: In the European Union, medicines are authorised for some rare disease only if they are judged to be

dissimilar to authorised orphan drugs for that disease. This paper describes the use of 2D fingerprints to show the

extent of the relationship between computed levels of structural similarity for pairs of molecules and expert

judgments of the similarities of those pairs. The resulting relationship can be used to provide input to the

assessment of new active compounds for which orphan drug authorisation is being sought.

Results: 143 experts provided judgments of the similarity or dissimilarity of 100 pairs of drug-like molecules from

the DrugBank 3.0 database. The similarities of these pairs were also computed using BCI, Daylight, ECFC4, ECFP4,

MDL and Unity 2D fingerprints. Logistic regression analyses demonstrated a strong relationship between the human

and computed similarity assessments, with the resulting regression models having significant predictive power in

experiments using data from submissions of orphan drug medicines to the European Medicines Agency. The BCI

fingerprints performed best overall on the DrugBank dataset while the BCI, Daylight, ECFP4 and Unity fingerprints

performed comparably on the European Medicines Agency dataset.

Conclusions: Measures of structural similarity based on 2D fingerprints can provide a useful source of information

for the assessment of orphan drug status by regulatory authorities.

Keywords: Drug registration, European Medicines Agency, Fingerprint, Molecular similarity, Ophan drug, Similarity

Background
The discovery, testing and registration of a novel drug is

both time-consuming and extremely expensive, with a

review by Morgan et al. quoting costs in the range $161

million to $1.8 billion for the development of a novel

therapeutic agent [1]. Such huge costs are acceptable to

a pharmaceutical company if, and only if, there is a rea-

sonable expectation that they can be recouped and a

profit achieved when the drug is made available to large

numbers of patients suffering from the target disease.

There are, however, many diseases where there is a clear

need for treatment but where there are insufficient pa-

tients world-wide to support the costs of modern drug

research. These medical conditions are normally referred

to as rare diseases and there is much current interest in

the development of orphan drugs for the treatment of

such diseases [2-4].

There is no single definition of a rare disease, since ac-

count may need to be taken not only of the number of pa-

tients affected by it but also its severity and the availability

of existing, adequate treatments. Different regulatory au-

thorities have hence adopted rather different definitions

[5-7]. In the European Union (EU), which is the context

for this paper, the evaluation of orphan drugs is coordi-

nated by the European Medicines Agency (hereafter the

EMA). According to article 3 (1) of Regulation (EC) No

141/2000 of the European Parliament and of the Council

of 16 December 1999 on orphan medicinal products, a

medicine must meet a number of criteria if it is to qualify

as an orphan drug: “it must be intended for the treatment,

prevention or diagnosis of a disease that is life-threatening

or chronically debilitating; the prevalence of the condition

in the EU must not be more than 5 in 10,000 or it must be

unlikely that marketing of the medicine would generate
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sufficient returns to justify the investment needed for

its development; and no satisfactory method of diagno-

sis, prevention or treatment of the condition concerned

can be authorised, or, if such a method exists, the medi-

cine must be of significant benefit to those affected by

the condition”.

The EU provides a range of incentives to encourage

the development of orphan drugs, the most important

of which is a high level of market exclusivity: once a

medicine has been awarded an orphan drug authorisa-

tion by the European Commission, no similar medicinal

product can be brought to the European market for a

period of ten years. The criteria and incentives were de-

tailed formally, in the regulation noted above, but with-

out any explicit specification of the nature or the extent

of the similarity required to define a “similar medicinal

product”. This lack was addressed, in part at least, in a

subsequent regulation - Commission Regulation (EC) No

847/2000 of 27 April 2000 laying down the provisions

for implementation of the criteria for designation of a

medicinal product as an orphan medicinal product and

definitions of the concepts ‘similar medicinal product’

and ‘clinical superiority’ - which defined a similar active

substance as “an identical active substance, or an active

substance with the same principal molecular structural fea-

tures (but not necessarily all of the same molecular struc-

tural features) and which acts via the same mechanism”.

When a company applies to register a new medicine for

an indication that has already been granted for an orphan

medicine it is the responsibility of the EMA’s Committee

for Medicinal Products for Human Use (CHMP) to decide

if the new drug is indeed similar to an existing orphan

drug, with an application being successful only when the

CHMP decides that this is not the case. To date, the eval-

uations carried out by the CHMP have been based largely

on human judgments of similarity. In this paper, we dis-

cuss the use of computed measures of structural similarity

based on 2D fingerprints to provide an additional source

of information that could be used when the CHMP con-

siders the relationships that may exist between existing

and proposed new medicines for rare diseases.

Results and discussion
Human similarity judgements

The 143 experts provided Yes/No decisions on the

training-set of 100 DrugBank 3.0 molecule-pairs as de-

tailed in Additional file 1: Table S1 (see Experimental

methods). Figure 1 shows three typical pairs, the corre-

sponding proportions of Yes/No responses to the question

“Are these molecules similar?”, and the Tanimoto similar-

ity computed using ECFP4 fingerprints.

The distribution of the similarity judgments provided

by the experts for each of the molecule-pairs is shown in

Figure 2. The left-hand column of the plot shows, for

Molecule A Molecule B Yes No Similarity

0.93 0.07 0.865

0.14 0.86 0.432

0.59 0.41 0.595

Figure 1 Three training-set molecule-pairs with the corresponding fractions (n = 143) of Yes/No responses to the question “Are these

molecules similar?” The similarity values in the right-hand column are those obtained using the Tanimoto coefficient and ECFP4

fingerprints.
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example, that there were 38 molecule-pairs where < 0.1

of the judgments were that the molecules were similar

(i.e., the great majority of the experts considered these to

be non-similar molecule-pairs); the right-hand column,

conversely, shows that there were 21 molecule-pairs

where ≥0.9 of the judgments were that the molecules

were similar (i.e., the great majority of the experts consid-

ered these to be similar molecule-pairs). If the experts

had been in total agreement with each other then the

plot would simply have consisted of these two columns,

without any of the intervening columns, which denote

molecule-pairs where there was some level of disagree-

ment. However, inspection of the plot shows that there

were 41 molecule-pairs with fractions in the range 0.1-0.9,

including nine where very considerable levels of disagree-

ment were evident, viz the two middle columns represent-

ing the molecule-pairs where 0.4-0.6 of the experts felt

that the two molecules were similar.

We ascribe these levels of disagreement to the inher-

ently subjective nature of similarity [8,9], with an individ-

ual’s perception that two objects are similar depending on

a range of factors (such as their state of mind, gender, age,

personality and previous scientific experience inter alia).

That being so, it is hardly surprising that different experts

responded in different ways to the molecule-pairs that

were presented to them, a finding that is consistent with

previous experimental studies that have demonstrated that

different individuals do not perceive chemical structure

information in the same way. For example, Lajiness et al.

report a study of medicinal chemists at Pharmacia, who

were asked to review lists of compounds in order to assess

their potential as leads in a drug discovery programme

[10]; not only were there marked inconsistencies between

the chemists, but even the same chemist might give

different assessments on different occasions. Hack et al.

reported an analogous study that sought to enhance the

diversity of the Johnson & Johnson corporate structure

database; they found that whilst there were considerable

differences between individual chemists a fair level of

consistency could be achieved using a wisdom-of-crowds

approach [11]. This technique was also used by Oprea

et al. to reconcile the often disparate views of pharma-

ceutical experts as to the effectiveness of chemical

probes resulting from the NIH Molecular Libraries and

Imaging Initiative [12]. Boda et al. [13] and Bonnet [14]

studied groups of medicinal chemists’ assessments of

molecular synthetic feasibility, and again observed some

degree of inconsistency in the judgments that were

made. Finally, Kutchukian et al. have reported a large-

scale study of medicinal chemists at Novartis, who were

asked to select chemical fragments for lead-generation

projects. There was not only a marked level of incon-

sistency in the selection, but also a comparable level of

inconsistency in the reasons for their selections [9].

Analogous variations in the ways that individuals react

to objects have been widely observed: for example,

when indexing terms are assigned to documents [15],

when links are created in hypertext systems [16], when

search strategies are chosen for accessing text databases

[17], and when scientists create mental maps of active

research areas [18].

We note here one characteristic of the training data

that could have affected the results, which is the way

that the molecules were presented to the experts for as-

sessment. In some cases, the molecules in a pair were

displayed in such a way that the structural similarities

were obvious to the human eye with the common fea-

tures clearly aligned, as exemplified by the molecules in

the first row of Figure 1. In other cases, the similarities

may have been less obvious when the common features

were not aligned, as exemplified by the molecules in the

third row of Figure 1. Such variant alignments could re-

sult in the experts perceiving the molecules comprising

a pair to be less similar than might have been expected

from one or more of the computed, fingerprint-based

similarities. The alignments presented to the experts

(such as the examples above and the molecule-pairs in

Additional file 1: Table S1) were those available in the

DrugBank database. No attempt was made to modify the

alignments in cases where it was felt that improvements

were possible (such as the example above), since this is

the situation faced by the members of the CHMP when

they consider applications for authorisation; indeed, they

have the additional problem that the molecule-pairs that

they inspect (i.e., a molecule that has been submitted for

consideration and the existing orphan-drug for that dis-

ease) may well have been drawn using different drawing

packages.

Figure 2 Distribution of expert assessments on the training-set.
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Logistic regression, receiver operating characteristic

curves and performance statistics

Once the human judgments had been determined and

the similar and non-similar molecular-pairs identified, it

was possible to develop logistic regression models that

assessed how fingerprint-based similarities were correlated

with the probability of being considered similar by the ma-

jority of the experts. For each fitted model, ROC curves

and other performance statistics were computed in order

to assess the predictive performance of each fingerprint.

The analysis is exemplified by the logistic regression model

for the ECFP4 fingerprint, with the same processes being

applied to each of the fingerprints.

Figure 3 plots the proportion of the expert assessors

who judged a molecule-pair as being similar (Y-axis)

against the computed ECFP4 similarity score for that

molecule-pair (X-axis). It will be seen that there is an ex-

cellent separation of similar and non-similar molecular

pairs (in green and blue, respectively), with smaller ECFP4

values corresponding to molecules considered not similar,

and greater ECFP4 values corresponding to those consid-

ered similar. In addition to the observed data, the solid

line in Figure 3 represents the estimated probability of be-

ing similar as predicted by the logistic regression model

(together with the 95% confidence limits for this predic-

tion). Table 1 contains the estimates of β0 and β1 for the

ECFP4 regression model (see Experimental methods for

the definition of these parameters), which are −12.754 and

2.524, respectively. The latter value means that for each

increment of 0.1 in the ECFP4 score, the odds of a

molecule-pair being classified as similar are multiplied by

exp(2.524), i.e., 12.48 times. The Nagelkerke R2 value is

high (0.894), indicating a good fit of the model to the data.

The computed value for the threshold similarity (i.e., the

ECFP4 value for which the corresponding probability of

being classified as similar by the experts is 0.5), tLR, is

0.505. The ECFP4 ROC curve is shown in Figure 4, where

it will be seen that a very high AUC value (0.988) is ob-

tained, indicating the ability of this fingerprint to discrim-

inate between similar and non-similar molecule-pairs.

The corresponding results for all of the six fingerprints

are listed in Table 1, with the fingerprints listed in alpha-

betical order. As with the ECFP4 fingerprint, goodness-

of-fit assessment was performed for all fingerprints and

the assumptions of each fitted model were assessed with

the Hosmer-Lemenshow test. The Nagelkerke R2 values

were high (>0.8) for all fingerprints. In the case of the

Unity data, the model listed in Table 1 is that obtained

after the elimination of one outlier molecule-pair (number

99 in Additional file 1: Table S1), where over 70% of the

Figure 3 Plot of the proportion of experts who assessed a

training-set molecule-pair as being similar against the ECFP4

similarity for that molecule-pair. The figure also shows the

computed logistic regression curve (and 95% confidence limits) for

this fingerprint.

Table 1 Logistic regression to predict the similarity, or

otherwise, of training-set molecule-pairs using different

types of fingerprint

Fingerprint β0 β1 R
2

tLR AUC

BCI −12.758 2.128 0.906 0.599 0.990

Daylight −10.677 1.850 0.884 0.577 0.986

ECFC4 −9.207 2.438 0.878 0.378 0.983

ECFP4 −12.754 2.524 0.894 0.505 0.988

MDL −9.022 1.380 0.812 0.654 0.973

Unity −12.347 1.956 0.884 0.631 0.987

The columns contain the β0 and β1 values for the logistic regression model,

the Nagelkerke R
2 value, the computed value for tLR and the AUC for the

ROC curve.

Figure 4 ROC curve for ECFP4 fingerprints.
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experts judged the pair to be similar despite a Unity simi-

larity of just 0.217. When this molecule pair was included

in the model, the assumptions of the logistic regression

did not hold: removing this observation, nevertheless, did

not change significantly the estimates of β0 and β1.

As discussed below (see Experimental methods), the

various performance statistics were computed as the

value of t, the threshold similarity, was systematically

varied, so as to determine the cut-off value, tROC, that

resulted in the best overall predictive performance. The

results of these experiments are shown in Table 2, in the

column headed Probability, which lists the probability

that a molecule-pair will be judged as similar if the simi-

larity fingerprint value is at least the specified value of

tROC. It will be seen that the best overall performance

would appear to come from use of the BCI fingerprints

with a similarity threshold of 0.606, this giving the

largest observed values for the accuracy, the F index, the

Youden index and the Matthews coefficient, and the sec-

ond largest observed value for the precision. The tROC
values in this table are very close to the corresponding

tLR values in Table 1, with the sole exception of the Day-

light fingerprints (0.510 and 0.577, respectively). This

was expected as the prevalence of similar molecules in

the training-set was close to 50%, the probability cut-off

used to compute tLR.

Use of an external test-set

As described in Experimental methods, a test-set of 100

molecule-pairs was created using data from previous ap-

plications to the CHMP for orphan-drug registration. A

comparison of the characteristics of these test-set mole-

cules with those in the training-set can be found in

Table 3. The Tanimoto similarities were computed for

each test-set molecule-pair using each of the six finger-

prints, and similarity or non-similarity predicted using

the tLR and tROC thresholds developed from the training-

set. The results obtained are shown in Table 4, where it

will be seen that in all cases the choice of threshold has

little or no difference in predictive ability and, import-

antly, that all but the MDL and ECFC4 fingerprints

performed extremely well. The MDL performance is in

line with that observed in Table 2 (where it was the

worst overall performer) but that for ECFC4 is notably

poor: it was the second-worst performer in Table 2 but

its performance here is far inferior to that of all of the

other fingerprints. Inspection of the 29 molecule-pairs

where it failed provided no obvious reason for the incor-

rect predictions; indeed, given that these test-set mole-

cules are rather larger than those in the training-set this

fingerprint might have been expected to do particularly

well as it takes account of how frequently each fragment

substructure occurs, rather than just its presence or

absence as in the other fingerprint-types.

A simple consensus approach was then used to see if

further improvements could be made. A molecule-pair

was classified as similar or non-similar by each of the

fingerprints individually, and then the final classification

was similar if three or more of the individual classifica-

tions were similar. This consensus result forms the bottom

row of Table 4.

Conclusions
In this paper, we have described how fingerprint-based

measures of similarity can be used to assess the struc-

tural novelty of molecules that are being submitted for

consideration as new medicines for rare diseases. Such

measures are well established, dating back to at least the

mid-1970s [19], for applications such as property predic-

tion, cluster analysis and virtual screening. A characteris-

tic of most of these studies is that they have focused on

the identification of molecules that are similar to each

other; in similarity-based virtual screening, for example,

the aim is to identify those previously untested database

structures that are most similar to a bioactive reference

structure [20,21], whilst removing the large numbers of

low-similarity database structures from further consider-

ation. In the current application, conversely, dissimilarity

is of at least as much importance as is similarity; indeed,

it is arguably of greater importance for a company apply-

ing for orphan drug authorisation. The other chemoin-

formatics application where dissimilarity is important is

Table 2 Optimal levels of performance using ROC curves

Fingerprint tROC Probability Sensitivity Specificity Precision Accuracy F Youden Matthews

BCI 0.606 0.534 0.980 0.941 0.941 0.960 0.960 0.921 0.9208

Daylight 0.510 0.225 1.000 0.882 0.891 0.940 0.942 0.882 0.8866

ECFP4 0.490 0.406 0.980 0.922 0.923 0.950 0.951 0.901 0.9017

ECFC4 0.364 0.415 0.980 0.882 0.889 0.930 0.932 0.862 0.8645

MDL 0.650 0.487 0.939 0.882 0.885 0.910 0.911 0.821 0.8216

Unity 0.639 0.537 0.938 0.961 0.957 0.950 0.947 0.898 0.8990

tROC is the similarity threshold that gives the best level of performance, where this is that similarity value which maximises the values of the precision, the

accuracy, the F index, the Youden index and the Matthews coefficient whilst maintaining acceptable values of the sensitivity and specificity. The largest values of

these last five variables are bold-faced in the table.

Franco et al. Journal of Cheminformatics 2014, 6:5 Page 5 of 10

http://www.jcheminf.com/content/6/1/5



molecular diversity analysis; however the identification

of sets of mutually dissimilar molecules is very different

from the need to determine whether two molecules are

considered to be significantly different as is required for

the current application.

The results obtained here demonstrate clearly that

simple, 2D fingerprint representations provide measures

of structural similarity that mimic closely the judgments

of experts, using both training-set molecule-pairs ex-

tracted from DrugBank and test-set molecule-pairs typ-

ical of the work of the CHMP. This is so despite the fact

that the two sets of molecules are rather different in

character (as demonstrated by the figures in Table 3).

The BCI fingerprints performed best overall on the

training-set while the BCI, Daylight, ECFP4 and Unity

fingerprints showed comparable, high levels of predict-

ive performance on the test-set. The BCI fingerprints

would hence seem to be an appropriate choice for

future studies in this area. They encode six different

classes of chemical substructure: augmented atoms, atom/

bond sequences, atom pairs, and three types of ring

feature. The atom- and bond-types can be generalized if

required and an algorithmic procedure is used to select

the required number of substructures (1052 in the

present case) whilst ensuring that they satisfy user-

specified criteria relating to minimum, maximum and

co-occurrence frequencies.

There are, of course, similarity measures other than

those studied to date that could be used for the study of

orphan drug similarity, e.g., a measure that takes ac-

count of 3D structural information or that uses a simi-

larity coefficient other than the Tanimoto coefficient.

Other possible areas of study include the use of multiple

similarity measures in the logistic regression model, ac-

counting for individual judgements instead of using the

majority decision, or the use of more sophisticated data

fusion methods [22] than the simple consensus approach

considered thus far.

In conclusion, we must emphasise that we are not sug-

gesting that a computational procedure could be used as

an alternative to, let alone a replacement for, the current

processes used to evaluate applications for orphan drug

authorisations. However, the approach described here

could form a useful, quantitative input to those evalua-

tions by providing a tool to assess molecular structural

similarity by interested parties. Assume that a new mol-

ecule M is being submitted for orphan drug authorisa-

tion, and that there is already an existing drug D for

this indication. The similarity between M and D is

computed, e.g. using one of the fingerprint-types that

performed well in the experiments above, and then the

corresponding regression equation used to give the

probability that the two molecules would be considered

a similar molecule-pair, based upon experts’ previous

similarity assessments. This probability would then be

one of the multiple factors that are considered when

deciding upon the similarity or otherwise between M

and D [23].

Experimental methods
In the evaluation of similarity in the context of orphan

drug evaluation, the CHMP needs to decide whether or

not an active compound for which a new medicine, or

an extension of an existing marketing authorisation

(change of indication or line extension), is being sought

is similar to an existing orphan drug that has already

been authorised. The decision is made on the basis of

the votes of a panel of experts drawn from each of the

member states of the EU. Focussing just on the similar-

ity criterion, the experts are required to make a binary

decision: is the new molecule similar to, or different

from, the existing orphan drug(s) for the rare disease of

interest? The experimental set-up that we have created

seeks to mimic this situation, with a panel of experts be-

ing asked to make judgements on the similarity or other-

wise of a carefully chosen training-set of molecule-pairs,

and then a comparison being made between these hu-

man decisions and the outputs from computer-based

similarity calculations. In this section, we describe the

following components of our experimental procedure:

the training-set of molecule-pairs on which the similarity

Table 4 Numbers of test-set molecule-pairs predicted

correctly using tLR and tROC

Fingerprint tLR tROC

BCI 97 97

Daylight 97 98

ECFP4 96 97

ECFC4 71 71

MDL 92 92

Unity 97 97

Consensus 98 98

Table 3 Characteristics of the 163 training-set and 51

test-set molecules

Training-set Test-set

Molecular weight 301 (100–500) 392 (150–1950)

Number of carbons 16 (5–26) 22 (0–86)

Number of heteroatoms 5 (1–11) 9 (3–52)

Number of rings 2 (0–5) 3 (0–11)

Number of aromatic rings 2 (0–4) 1 (0–3)

Number of stereocentres 1 (0–9) 1 (0–15)

Each element of the table lists the median value, together with the

corresponding range in brackets.
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assessments were made; the panel of experts who made

these assessments; measuring the effectiveness of the au-

tomated assessments; and, finally, a second, independent

test-set of molecule-pairs that was used to assess the

predictive performance of the models developed from

the training-set.

The training-set

The training-set database contains 100 pairs of bioactive

molecules selected from DrugBank 3.0 (at http://www.

drugbank.ca/), a bioinformatics and chemoinformatics

resource that contains a wealth of detailed information

on over six thousand drug molecules and their associ-

ated biological targets [24]. The file was filtered to iden-

tify 1068 molecules that contained at least one carbon

atom and that had not more than ten hydrogen bond

accepters, not more than five hydrogen bond donors, a

molecular mass not greater than 500 Daltons, and an

octanol-water partition coefficient not greater than 5.

The similarity between each distinct pair of these drug-

like molecules was computed using ECFP4 fingerprints

[25] and the Tanimoto coefficient [26], and then 100

pairs of molecules chosen so as to cover as wide and as

equal a spread of Tanimoto values as possible, with the

observed similarity values ranging from 0.116 to 1.000.

The molecule-pairs contained a total of 163 distinct

molecules, these representing 42 different pharmaco-

logical classes including antibiotics, beta-adrenergic an-

tagonists, benzodiazepines and anti-hypertensives inter

alia.

The experts

With the permission of the EMA, one of us (PF) gave

presentations to several EMA committees and working

parties responsible for the evaluation and the quality of

medicines. The attendees at these meetings who had a

background in quality and experience in assessing or-

phan drugs were invited to participate in the project by

providing similarity judgments on the 100 pairs of Drug-

Bank molecules. Similar invitations were sent to appro-

priate individuals on an EMA email list of European

experts with a background in the quality of medicines,

and to contact points in the regulatory authorities in

the USA, Japan and Taiwan (the Food and Drug

Administration, the Pharmaceutical and Medical De-

vices Agency, and the Food and Drug Administration

of Taiwan, respectively). Participants were sent the 100

pairs of 2D structure diagrams and for each molecule-

pair asked to state whether (Yes) or not (No) the two

molecules should be regarded as being structurally

similar. A total of 143 completed responses (128 from

within the EU) was obtained and these were then used

to compute the fractions of Yes and No responses for

each of the pairs of molecules. The structure diagrams

and SMILES descriptions for the 100 molecule-pairs

and the percentages of Yes and No responses for each

such pair are listed in Additional file 1: Table S1.

The decisions of the CHMP are decided on the basis

of majority voting, and it was hence decided that the

molecule-pairs in the sample where more than 50% of

the responses were Yes should be considered as similar,

which we shall refer to as a similar molecule-pair. If this

was not the case then the two molecules were judged to

be a non-similar molecule-pair. This resulted in 49 similar

molecule-pairs and 51 non-similar molecules-pairs; then,

once each of the molecule-pairs had been categorised in

this way, the expert judgments were used to assess the

categorisation ability of similarity measures based on

2D fingerprints.

Measurement of effectiveness

Many different types of structural representation can be

used to compute inter-molecular structural similarities.

The similarities here were computed with 2D finger-

prints, which are widely used for this purpose since they

are both simple to compute and effective in operation

[26,27]. The following types of fingerprint were gener-

ated to represent the molecules in each of the pairs: BCI

(1052), Daylight (2048), ECFC4 (1024), ECFP4 (1024),

MDL (166) and Unity (988), where the number in

brackets is the number of elements in the fingerprint.

Brief descriptions of all these types of fingerprint are

provided by Gardiner et al. [28]. The Tanimoto coeffi-

cient was used to compute the similarity between the

fingerprints for each of the molecules comprising a

molecule-pair, using each type of fingerprint in turn. In

addition, 23 computed molecular properties (such as

molecular weight, logP, pKa, molar refractivity, PSA,

numbers of rotatable bonds and stereocentres etc.) were

computed using Pipeline Pilot to provide an additional

type of structure representation. However, the results

obtained using this representation were uniformly infer-

ior to those obtained using the various 2D fingerprints,

and the results and discussion hence consider only the

fingerprint-based similarity data.

The ability of each type of fingerprint to predict similar-

ity between molecules was determined using logistic re-

gression, receiver operating characteristic (ROC) curves,

and a range of measures of predictive success taken from

the information retrieval and machine learning literatures.

For the logistic regression analysis, let p be the probability

that the panel will conclude that two molecules do indeed

comprise a similar molecule-pair given a computed simi-

larity x. Then logistic regression yields an equation of the

form

logit pð Þ ¼ ln
p

1−p

� �

¼ β0 þ β1x

Franco et al. Journal of Cheminformatics 2014, 6:5 Page 7 of 10

http://www.jcheminf.com/content/6/1/5

http://www.drugbank.ca/
http://www.drugbank.ca/


that describes a linear relationship between the similarity

and the logarithm of the odds that the molecules com-

prise a similar molecule-pair [29]. The performance of

the model can be assessed by observing the differences

between the sets of observed and predicted values: this

was done here using Nagelkerke’s R2 statistic, which

takes values between zero and unity (denoting a very

poor fit and a perfect fit, respectively). Also, Hosmer-

Lemenshow goodness-of-fit tests were used to assess the

assumptions of the model (i.e., linearity at the log scale

and additivity). Once the logistic regression equation for

a fingerprint had been generated, it was used to compute

the threshold similarity, tLR, such that the two molecules

comprising a pair are predicted to be similar (‘Yes’) if

their computed similarity is ≥ tLR (corresponding to a

probability greater than or equal to 0.5 of being similar

according to the logistic regression model) or predicted

to be not similar (‘No’) if < tLR (corresponding to a prob-

ability lower than 0.5 of being similar according to the

logistic regression model).

The chosen cut-off probability of 0.5 may not neces-

sarily be the best value to discriminate between similar

and non-similar pairs. ROC curves built from the pre-

dicted probabilities of the logistic model provide an al-

ternative way of identifying an appropriate threshold

similarity, here called tROC, for deciding that two mole-

cules represent a similar molecule-pair. Assume that a

particular similarity measure has been chosen. Then let

t denote some threshold similarity for that measure

such that the two molecules comprising a pair are pre-

dicted to be similar if their computed similarity is ≥ t and

not similar if < t (in the same way as defined for tLR).

These predictions can then be compared with the expert

judgements in terms of true positives (TP), true negatives

(TN), false positives (FP) and false negatives (FN) where,

e.g., TP is the number of cases where the majority of the

experts judged two molecules to form a similar molecule-

pair and where those two molecules had a computed

similarity ≥ t. Knowing these four values it is possible to

compute the specificity,

TN

TN þ FP
;

and the sensitivity,

TP

TP þ FN
;

for that value of t, and hence to plot the ROC curve

obtained by systematically varying t. The area under

the curve (hereafter AUC) then provides a measure of

the extent to which the computed similarity measure

mirrors the expert judgements, with values close to unity

indicating the highest levels of agreement. In addition to

specificity and sensitivity, the following performance

statistics were computed: the precision

TP

TP þ FP
;

the accuracy

TP þ TN

TP þ TN þ FP þ FN
;

the F index

2� TP

2� TP þ FP þ FN
;

the Youden index

TP � TP−FP � FN ;

and Matthew’s correlation coefficient

TP � TN−FP � FN
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

TP þ FPð Þ TP þ FNð Þ TN þ FPð Þ TN þ FNð Þ
p ;

These performance statistics were computed as the

value of t was systematically varied, so as to determine

tROC, i.e., the threshold similarity that resulted in the best

overall predictive performance. The best level of perform-

ance was taken to be that threshold similarity which re-

sulted in the maximum values for the precision, the

accuracy, the F index, the Youden index and the Matthews

coefficient whilst maintaining acceptable values of the

sensitivity and specificity.

The test-set

The predictive power of the models derived from the

similarity data for the 100 DrugBank molecule-pairs could

have been assessed by means of cross validation experi-

ments using that training-set, as is often done in SAR and

QSAR studies. It is generally considered better, however,

to use a distinct test-set that has not been involved in the

training [30,31], and this was accomplished here using

data kindly provided by the CHMP that typifies their

regular work-load. Specifically, the test-set contained

100 molecule-pairs in which one molecule was an exist-

ing orphan drug for some specific rare disease and the

other was a molecule that had been submitted to the

CHMP for consideration for orphan drug status for that

disease.

It should be noted that the test-set differs from the

training-set in two principal ways. First, of the 100

molecule-pairs provided by the CHMP, 89 of them had

been judged to be non-similar pairs with only 11 judged

to be similar pairs, whereas the test-set contained near-

equal numbers of the two types of molecule-pair. This is

not unexpected given that companies are unlikely to

submit for consideration molecules that are obviously
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closely related to existing orphan drugs for some disease.

Second, the natures of the molecules involved. It is not

possible to provide structural data analogous to that pre-

sented in Additional file 1: Table S1 given the highly

confidential nature of the application process. However,

some broad characteristics of the test-set are as follows.

There were 51 distinct molecules in the test-set, since

many of the molecule-pairs resulted from the comparison

of an existing orphan drug with several different molecules

that had sought authorisation for the same rare disease.

Just five pharmacological classes were represented: there

were two immunosuppressants, two respiratory system

compounds, three antimicrobials, ten pulmonary arterial

hypertension compounds, and no less than 34 antineo-

plastic compounds (reflecting the fact that much current

orphan drug research focuses on therapies for rare types

of cancer [7]). The compounds were notably larger than

those in the test-set as demonstrated in Table 3, with

27.5% of them not being Lipinski-compliant.

Additional file

Additional file 1: Table S1. The 100 molecules-pairs from DrugBank 3.0

that comprised the training-set on which the 143 experts provided Yes/

No decisions.
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