8 research outputs found

    Programmed function of the tammar mammary gland; the role of milk proteins in gut development

    Full text link
     This thesis aimed to exploit the unique reproductive strategy of marsupials such as the tammar wallaby to prove that milk may regulate postnatal growth and development of organs such as the stomach

    The tammar wallaby: a marsupial model to examine the timed delivery and role of bioactives in milk

    Get PDF
    It is now clear that milk has multiple functions; it provides the most appropriate nutrition for growth of the newborn, it delivers a range of bioactives with the potential to stimulate development of the young, it has the capacity to remodel the mammary gland (stimulate growth or signal cell death) and finally milk can provide protection from infection and inflammation when the mammary gland is susceptible to these challenges. There is increasing evidence to support studies using an Australian marsupial, the tammar wallaby (Macropus eugenii), as an interesting and unique model to study milk bioactives. Reproduction in the tammar wallaby is characterized by a short gestation, birth of immature young and a long lactation. All the major milk constituents change substantially and progressively during lactation and these changes have been shown to regulate growth and development of the tammar pouch young and to have roles in mammary gland biology. This review will focus on recent reports examining the control of lactation in the tammar wallaby and the timed delivery of milk bioactivity

    Rv1218c, an ABC Transporter of Mycobacterium tuberculosis with Implications in Drug Discovery▿ †

    No full text
    Efflux systems are important in determining the efficacy of antibiotics used in the treatment of bacterial infections. In the last decade much attention has been paid to studying the efflux pumps of mycobacteria. New classes of compounds are under investigation for development into potential candidate drugs for the treatment of tuberculosis. Quite often, these have poor bactericidal activities but exhibit excellent target (biochemical) inhibition. Microarray studies conducted in our laboratories for deciphering the mode of action of experimental drugs revealed the presence of putative ABC transporters. Among these transporters, Rv1218c was chosen for studying its physiological relevance in mediating efflux in Mycobacterium tuberculosis. A ΔRv1218c mutant of M. tuberculosis displayed a 4- to 8-fold increase in the inhibitory and bactericidal potency for different classes of compounds. The MICs and MBCs were reversed to wild-type values when the full-length Rv1218c gene was reintroduced into the ΔRv1218c mutant on a multicopy plasmid. Most of the compound classes had significantly better bactericidal activity in the ΔRv1218c mutant than in the wild-type H37Rv, suggesting the involvement of Rv1218c gene product in effluxing these compounds from M. tuberculosis. The implication of these findings on tuberculosis drug discovery is discussed

    Efflux pumps of Mycobacterium tuberculosis play a significant role in antituberculosis activity of potential drug candidates

    Full text link
    Active efflux of drugs mediated by efflux pumps that confer drug resistance is one of the mechanisms developed by bacteria to counter the adverse effects of antibiotics and chemicals. To understand these efflux mechanisms in Mycobacterium tuberculosis, we generated knockout (KO) mutants of four efflux pumps of the pathogen belonging to different classes. We measured the MICs and kill values of two different compound classes on the wild type (WT) and the efflux pump (EP) KO mutants in the presence and absence of the efflux inhibitors verapamil and L-phenylalanyl-L-arginyl-&beta;-naphthylamide (PA&beta;N). Among the pumps studied, the efflux pumps belonging to the ABC (ATP-binding cassette) class, encoded by Rv1218c, and the SMR (small multidrug resistance) class, encoded by Rv3065, appear to play important roles in mediating the efflux of different chemical classes and antibiotics. Efflux pumps encoded by Rv0849 and Rv1258c also mediate the efflux of these compounds, but to a lesser extent. Increased killing is observed in WT M. tuberculosis cells by these compounds in the presence of either verapamil or PA&beta;N. The efflux pump KO mutants were more susceptible to these compounds in the presence of efflux inhibitors. We have shown that these four efflux pumps of M. tuberculosis play a vital role in mediating efflux of different chemical scaffolds. Inhibitors of one or several of these efflux pumps could have a significant impact in the treatment of tuberculosis. The identification and characterization of Rv0849, a new efflux pump belonging to the MFS (major facilitator superfamily) class, are reported.<br /
    corecore