3,306 research outputs found

    Thin spray film thickness measuring technique

    Get PDF
    Thin spray film application depths, in the 0.0002 cm to 0.002 cm range, are measured by portable, commercially available, light density measuring device used in conjunction with glass plate or photographic film. Method is automated by using mechanical/electrical control for shutting off film applicator at desired densitometer reading

    HD 97394: a magnetic Ap star with high cerium overabundance

    Get PDF
    We report a spectroscopic analysis of the chemically peculiar Ap star HD 97394. The stellar spectrum is rich in lines of rare earth elements with large overabundances, especially cerium, gadolinium and europium. Enhancement of the abundances of these rare earths shows this star to be one of the most peculiar stars. Very large overabundances were found for lines of Ce iii and Eu iii. Abundances obtained from second ionization lines of Nd, Ce and Eu are about 2 dex higher than for those of the first ionization. From partially split Zeeman components of the Fe ii 6149.258 Å line and from synthetic modelling, a global magnetic field of 3.1 kG was measured. We tested for pulsation of the star with high time resolution spectroscopy obtained with the ESO Very Large Telescope. We place an upper limit to any pulsation amplitude of 30–40 m s−1 for individual lines of rare earth elements, of 10–20 m s−1 for the combination of several lines, and of 6–10 m s−1 for cross-correlation over large spectral bands

    New measurements of magnetic fields of roAp stars with FORS1 at the VLT

    Full text link
    Magnetic fields play a key role in the pulsations of rapidly oscillating Ap (roAp) stars since they are a necessary ingredient of all pulsation excitation mechanisms proposed so far. This implies that the proper understanding of the seismological behaviour of the roAp stars requires knowledge of their magnetic fields. However, the magnetic fields of the roAp stars are not well studied. Here we present new results of measurements of the mean longitudinal field of 14 roAp stars obtained from low resolution spectropolarimetry with FORS1 at the VLT.Comment: 5 pages, accepted for publication in A&

    Time-resolved spectroscopy of the rapidly oscillating Ap star KIC 10195926

    Get PDF
    We report an analysis of high time resolution spectra of the chemically peculiar Ap star KIC 10195926 obtained with the Subaru telescope. We find that the star has low overabundances of rare earth elements compared with other rapidly oscillating Ap stars. We found only upper limits for pulsations from spectral lines of rare earth and other chemical elements. Pulsation was found only for the narrow core of the Hα line with an amplitude of 171 ± 41ms−1 and with the frequency corresponding to photometric frequency obtained from Kepler observations

    Eddy current X-Y scanner system

    Get PDF
    The Nondestructive Evaluation Branch of the Materials and Processes Laboratory became aware of a need for a miniature, portable X-Y scanner capable of performing eddy current or other nondestructive testing scanning operations such as ultrasonic, or small areas of flat plate. The technical description and operational theory of the X-Y scanner system designed and built to fulfill this need are covered. The scanner was given limited testing and performs according to its design intent, which is to scan flat plate areas of approximately 412 sq cm (64 sq in) during each complete cycle of scanning

    Weld flaw detection evaluation utilizing ultrasonics and radiography

    Get PDF
    Ultrasonic radiography for weld flaw detection in butt joints of Saturn 5 S-1C stag

    A rival for Babcock's star: the extreme 30-kG variable magnetic field in the Ap star HD 75049

    Get PDF
    The extraordinary magnetic Ap star HD 75049 has been studied with data obtained with the European Southern Observatory Very Large Telescope and 2.2-m telescopes. Direct measurements reveal that the magnetic field modulus at maximum reaches 30 kG. The star shows photometric, spectral and magnetic variability with a rotation period of 4.049 d. Variations of the mean longitudinal magnetic field can be described to first order by a centred dipole model with an inclination i= 25°, an obliquity β= 60° and a polar field Bp= 42 kG. The combination of the longitudinal and surface magnetic field measurements implies a radius of R= 1.7 R⊙, suggesting that the star is close to the zero-age main sequence. HD 75049 displays moderate overabundances of Si, Ti, Cr, Fe and large overabundances of rare earth elements. This star has the second strongest magnetic field of any main-sequence star after Babcock's star, HD 215441, which it rivals

    A 3D study of the photosphere of HD 99563 - I. Pulsation analysis

    Get PDF
    We have used high-speed spectroscopy of the rapidly oscillating Ap (roAp) star HD 99563 to study the pulsation amplitude and phase behaviour of elements in its stratified atmosphere over one 2.91-d rotation cycle. We identify spectral features related to patches in the surface distribution of chemical elements and study the pulsation amplitudes and phases as the patches move across the stellar disc. The variations are consistent with a distorted non-radial dipole pulsation mode. We measure a 1.6 km s−1 rotational variation in the mean radial velocities of Hα and argue that this is the first observation of Hα abundance spots caused by He settling through suppression of convection by the magnetic field on an oblique rotator, in support of a prime theory for the excitation mechanism of roAp star pulsation. We demonstrate that HD 99563 is the second roAp star to show aspect dependence of blue-to-red running wave line profile variations in Nd iii spots

    Time resolved spectroscopy of the cool Ap star HD 213637

    Get PDF
    We present an analysis of high time resolution spectra of the chemically peculiar Ap star HD 213637. The star shows rapid radial velocity variations with a period close to the photometric pulsation period. Radial velocity pulsation amplitudes vary significantly for different rare earth elements. The highest pulsation amplitudes belong to lines of Tb III (∼360 m s−1), Pr II (∼250 m s−1) and Pr III (∼230 m s−1).We did not detect any pulsations from spectral lines of Eu II and in Hα, in contrast to many other roAp stars. We also did not find radial velocity pulsations using spectral lines of other chemical elements, including Mg, Si, Ca, Sc, Cr, Fe, Ni, Y and Ba. There are phase shifts between the maxima of pulsation amplitudes of different rare earth elements and ions, which is evidence of an outwardly running magneto-acoustic wave propagating through the upper stellar atmosphere

    Short time-scale frequency and amplitude variations in the pulsations of an roAp star: HD 217522

    Get PDF
    Photometric observations of HD 217522 in 1981 revealed only one pulsation frequency ν1 = 1.215 29 mHz. Subsequent observations in 1989 showed the presence of an additional frequency ν2 = 2.0174 mHz. New observations in 2008 confirm the presence of the mode with ν2 = 2.0174 mHz. Examination of the 1989 data shows amplitude modulation over a time-scale of the order of a day, much shorter than what has been observed in other rapidly oscillating Ap (roAp) stars. High spectral and time resolution data obtained using the Very Large Telescope in 2008 confirm the presence of ν2 and short-term modulations in the radial velocity amplitudes of rare earth elements. This suggests growth and decay times shorter than a day, more typical of solar-like oscillations. The driving mechanism of roAp stars and the Sun are different, and the growth and decay seen in the Sun are due to stochastic nature of the driving mechanism. The driving mechanism in roAp stars usually leads to mode stability on a longer time-scale than in the Sun. We interpret the reported change in ν1 between the 1982 and 1989 data as part of the general frequency variability observed in this star on many time-scales
    • …
    corecore