1,809 research outputs found

    Micro-crystalline inclusions analysis by PIXE and RBS

    Get PDF
    A characteristic feature of the nuclear microprobe using a 3 MeV proton beam is the long range of particles (around 70 \mu m in light matrices). The PIXE method, with EDS analysis and using the multilayer approach for treating the X-ray spectrum allows the chemistry of an intra-crystalline inclusion to be measured, provided the inclusion roof and thickness at the impact point of the beam (Z and e, respectively) are known (the depth of the inclusion floor is Z + e). The parameter Z of an inclusion in a mineral can be measured with a precision of around 1 \mu m using a motorized microscope. However, this value may significantly depart from Z if the analyzed inclusion has a complex shape. The parameter e can hardly be measured optically. By using combined RBS and PIXE measurements, it is possible to obtain the geometrical information needed for quantitative elemental analysis. This paper will present measurements on synthetic samples to investigate the advantages of the technique, and also on natural solid and fluid inclusions in quartz. The influence of the geometrical parameters will be discussed with regard to the concentration determination by PIXE. In particular, accuracy of monazite micro-inclusion dating by coupled PIXE-RBS will be presented

    Three-dimensional simulations of rotationally-induced line variability from a Classical T Tauri star with a misaligned magnetic dipole

    Full text link
    We present three-dimensional (3-D) simulations of rotationally induced line variability arising from complex circumstellar environment of classical T Tauri stars (CTTS) using the results of the 3-D magnetohydrodynamic (MHD) simulations of Romanova et al., who considered accretion onto a CTTS with a misaligned dipole magnetic axis with respect to the rotational axis. The density, velocity and temperature structures of the MHD simulations are mapped on to the radiative transfer grid, and corresponding line source function and the observed profiles of neutral hydrogen lines (H-beta, Pa-beta and Br-gamma) are computed using the Sobolev escape probability method. We study the dependency of line variability on inclination angles (i) and magnetic axis misalignment angles (Theta). By comparing our models with the Pa-beta profiles of 42 CTTS observed by Folha & Emerson, we find that models with a smaller misaligngment angle (Theta<~15 deg.) are more consistent with the observations which show that majority of Pa-beta are rather symmetric around the line centre. For a high inclination system with a small dipole misalignment angle (Theta ~ 15 deg.), only one accretion funnel (on the upper hemisphere) is visible to an observer at any given rotational phase. This can cause an anti-correlation of the line equivalent width in the blue wing (v0) over a half of a rotational period, and a positive correlation over other half. We find a good overall agreement of the line variability behaviour predicted by our model and those from observations. (Abridged)Comment: 15 pages, 13 figures. Accepted for publication in MNRAS. A version with full resolution figures can be downloaded from http://www.physics.unlv.edu/~rk/preprint/inclined_dipole.pd

    Modeling T Tauri Winds from He I 10830 Profiles

    Get PDF
    The high opacity of He I 10830 makes it an exceptionally sensitive probe of the inner wind geometry of accreting T Tauri stars. In this line blueshifted absorption below the continuum results from simple scattering of stellar photons, a situation which is readily modeled without definite knowledge of the physical conditions and recourse to multi-level radiative transfer. We present theoretical line profiles for scattering in two possible wind geometries, a disk wind and a wind emerging radially from the star, and compare them to observed He I 10830 profiles from a survey of classical T Tauri stars. The comparison indicates that subcontinuum blueshifted absorption is characteristic of disk winds in ~30% of the stars and of stellar winds in ~40%. We further conclude that for many stars the emission profile of helium likely arises in stellar winds, increasing the fraction of accreting stars inferred to have accretion-powered stellar winds to ~60%. Stars with the highest disk accretion rates are more likely to have stellar wind than disk wind signatures and less likely to have redshifted absorption from magnetospheric funnel flows. This suggests the possibility that when accretion rates are high, disks can extend closer to the star, magnetospheric accretion zones can be reduced in size and conditions arise that favor radially outflowing stellar winds.Comment: 41 pages, 11 figures. Accepted by Astrophysical Journa

    Dynamics of broken symmetry nodal and anti-nodal excitations in Bi_{2} Sr_{2} CaCu_{2} O_{8+\delta} probed by polarized femtosecond spectroscopy

    Get PDF
    The dynamics of excitations with different symmetry is investigated in the superconducting (SC) and normal state of the high-temperature superconductor Bi2_{2}Sr2_{2}CaCu2_{2}O8+δ_{8+\delta} (Bi2212) using optical pump-probe (Pp) experiments with different light polarizations at different doping levels. The observation of distinct selection rules for SC excitations, present in A1g_{{\rm 1g}} and B1g_{{\rm 1g}} symmetries, and for the PG excitations, present in A1g_{{\rm 1g}} and B2g_{{\rm 2g}} symmetries, by the probe and absence of any dependence on the pump beam polarization leads to the unequivocal conclusion of the existence of a spontaneous spatial symmetry breaking in the pseudogap (PG) state

    On the joint security of signature and encryption schemes under randomness reuse: efficiency and security amplification

    Get PDF
    Lecture Notes in Computer Science, 7341We extend the work of Bellare, Boldyreva and Staddon on the systematic analysis of randomness reuse to construct multi-recipient encryption schemes to the case where randomness is reused across different cryptographic primitives. We find that through the additional binding introduced through randomness reuse, one can actually obtain a security amplification with respect to the standard black-box compositions, and achieve a stronger level of security. We introduce stronger notions of security for encryption and signatures, where challenge messages can depend in a restricted way on the random coins used in encryption, and show that two variants of the KEM/DEM paradigm give rise to encryption schemes that meet this enhanced notion of security. We obtain the most efficient signcryption scheme to date that is secure against insider attackers without random oracles.(undefined

    UV excess measures of accretion onto young very low-mass stars and brown dwarfs

    Get PDF
    Low-resolution spectra from 3000-9000 AA of young low-mass stars and brown dwarfs were obtained with LRIS on Keck I. The excess UV and optical emission arising in the Balmer and Paschen continua yields mass accretion rates ranging from 2e-12 to 1e-8 Mo/yr. These results are compared with {\it HST}/STIS spectra of roughly solar-mass accretors with accretion rates that range from 2e-10 to 5e-8 Mo/yr. The weak photospheric emission from M-dwarfs at <4000 A leads to a higher contrast between the accretion and photospheric emission relative to higher-mass counterparts. The mass accretion rates measured here are systematically 4-7 times larger than those from H-alpha emission line profiles, with a difference that is consistent with but unlikely to be explained by the uncertainty in both methods. The accretion luminosity correlates well with many line luminosities, including high Balmer and many He I lines. Correlations of the accretion rate with H-alpha 10% width and line fluxes show a large amount of scatter. Our results and previous accretion rate measurements suggest that accretion rate is proportional to M^(1.87+/-0.26) for accretors in the Taurus Molecular Cloud.Comment: 13 pages text, 15 tables, 14 figures. Accepted by Ap

    Three-dimensional dust radiative-transfer models: The Pinwheel Nebula of WR104

    Get PDF
    We present radiative-transfer modelling of the dusty spiral Pinwheel Nebula observed around the Wolf-Rayet/OB-star binary WR104. The models are based on the three-dimensional radiative-transfer code TORUS, modified to include an adaptive mesh that allows us to adequately resolve both the inner spiral turns (sub-AU scales) and the outer regions of the nebula (distances of 10^4 AU from the central source). The spiral model provides a good fit to both the spectral energy distribution and Keck aperture masking interferometry, reproducing both the maximum entropy recovered images and the visibility curves. We deduce a dust creation rate of 8+-1 x 10^{-7} solar masses per year, corresponding to approximately 2% by mass of the carbon produced by the Wolf-Rayet star. Simultaneous modelling of the imaging and spectral data enables us to constrain both the opening-angle of the wind-wind collision interface and the dust grain size. We conclude that the dust grains in the inner part of the Pinwheel nebula are small (~100A), in agreement with theoretical predictions, although we cannot rule out the presence of larger grains (~1 micron) further from the central binary. The opening angle of the wind-wind collision interface appears to be about 40 degrees, in broad agreement with the wind parameters estimated for the central binary. We discuss the success and deficiencies of the model, and the likely benefits of applying similar techniques to the more the more complex nebulae observed around other WR/O star binaries.Comment: 10 pages, accepted by MNRA

    High count rate {\gamma}-ray spectroscopy with LaBr3:Ce scintillation detectors

    Full text link
    The applicability of LaBr3:Ce detectors for high count rate {\gamma}-ray spectroscopy is investigated. A 3"x3" LaBr3:Ce detector is used in a test setup with radioactive sources to study the dependence of energy resolution and photo peak efficiency on the overall count rate in the detector. Digitized traces were recorded using a 500 MHz FADC and analysed with digital signal processing methods. In addition to standard techniques a pile-up correction method is applied to the data in order to further improve the high-rate capabilities and to reduce the losses in efficiency due to signal pile-up. It is shown, that {\gamma}-ray spectroscopy can be performed with high resolution at count rates even above 1 MHz and that the performance can be enhanced in the region between 500 kHz and 10 MHz by using pile-up correction techniques

    Combinatorial Bounds and Characterizations of Splitting Authentication Codes

    Full text link
    We present several generalizations of results for splitting authentication codes by studying the aspect of multi-fold security. As the two primary results, we prove a combinatorial lower bound on the number of encoding rules and a combinatorial characterization of optimal splitting authentication codes that are multi-fold secure against spoofing attacks. The characterization is based on a new type of combinatorial designs, which we introduce and for which basic necessary conditions are given regarding their existence.Comment: 13 pages; to appear in "Cryptography and Communications
    corecore