We present three-dimensional (3-D) simulations of rotationally induced line
variability arising from complex circumstellar environment of classical T Tauri
stars (CTTS) using the results of the 3-D magnetohydrodynamic (MHD) simulations
of Romanova et al., who considered accretion onto a CTTS with a misaligned
dipole magnetic axis with respect to the rotational axis. The density, velocity
and temperature structures of the MHD simulations are mapped on to the
radiative transfer grid, and corresponding line source function and the
observed profiles of neutral hydrogen lines (H-beta, Pa-beta and Br-gamma) are
computed using the Sobolev escape probability method. We study the dependency
of line variability on inclination angles (i) and magnetic axis misalignment
angles (Theta). By comparing our models with the Pa-beta profiles of 42 CTTS
observed by Folha & Emerson, we find that models with a smaller misaligngment
angle (Theta<~15 deg.) are more consistent with the observations which show
that majority of Pa-beta are rather symmetric around the line centre. For a
high inclination system with a small dipole misalignment angle (Theta ~ 15
deg.), only one accretion funnel (on the upper hemisphere) is visible to an
observer at any given rotational phase. This can cause an anti-correlation of
the line equivalent width in the blue wing (v0)
over a half of a rotational period, and a positive correlation over other half.
We find a good overall agreement of the line variability behaviour predicted by
our model and those from observations. (Abridged)Comment: 15 pages, 13 figures. Accepted for publication in MNRAS. A version
with full resolution figures can be downloaded from
http://www.physics.unlv.edu/~rk/preprint/inclined_dipole.pd