The applicability of LaBr3:Ce detectors for high count rate {\gamma}-ray
spectroscopy is investigated. A 3"x3" LaBr3:Ce detector is used in a test setup
with radioactive sources to study the dependence of energy resolution and photo
peak efficiency on the overall count rate in the detector. Digitized traces
were recorded using a 500 MHz FADC and analysed with digital signal processing
methods. In addition to standard techniques a pile-up correction method is
applied to the data in order to further improve the high-rate capabilities and
to reduce the losses in efficiency due to signal pile-up. It is shown, that
{\gamma}-ray spectroscopy can be performed with high resolution at count rates
even above 1 MHz and that the performance can be enhanced in the region between
500 kHz and 10 MHz by using pile-up correction techniques