51 research outputs found

    Acute sodium overload produces renal tubulointerstitial inflammation in normal rats

    Get PDF
    The aim of the present study was to determine whether acute sodium overload could trigger an inflammatory reaction in the tubulointerstitial (TI) compartment in normal rats. Four groups of Sprague-Dawley rats received increasing NaCl concentrations by intravenous infusion. Control (C): Na + 0.15M; G1: Na+ 0.5M; G2: Na+ 1.0M; and G3: Na+ 1.5M. Creatinine clearance, mean arterial pressure (MAP), renal blood flow (RBF), and sodium fractional excretion were determined. Transforming growth factor ÎČ1 (TGF-ÎČ1), α-smooth muscle actin (α-SMA), RANTES, transcription factor nuclear factor-kappa B (NF-ÎșB), and angiotensin II (ANG II) were evaluated in kidneys by immunohistochemistry. Animals with NaCl overload showed normal glomerular function without MAP and RBF modifications and exhibited a concentration-dependent natriuretic response. Plasmatic sodium increased in G2 (P G2>C group. These results suggest that an acute sodium overload is able 'per se' to initiate TI endothelial inflammatory reaction (glomerular and peritubular) and incipient fibrosis in normal rats, independently of hemodynamic modifications. Furthermore, these findings are consistent with the possibility that activation of NF-ÎșB and local ANG II may be involved in the pathway of this inflammatory process.Fil: Roson, Maria Ines. Universidad de Buenos Aires. Facultad de Farmacia y BioquĂ­mica; Argentina. Consejo Nacional de Investigaciones CientĂ­ficas y TĂ©cnicas; ArgentinaFil: Cavallero, Carmen Susana. Universidad de Buenos Aires. Facultad de Farmacia y BioquĂ­mica; Argentina. Consejo Nacional de Investigaciones CientĂ­ficas y TĂ©cnicas; ArgentinaFil: Della Penna, Silvana. Universidad de Buenos Aires. Facultad de Farmacia y BioquĂ­mica; ArgentinaFil: Cao, Gabriel Fernando. Consejo Nacional de Investigaciones CientĂ­ficas y TĂ©cnicas; Argentina. Hospital AlemĂĄn; ArgentinaFil: Gorzalczany, Susana Beatriz. Universidad de Buenos Aires. Facultad de Farmacia y BioquĂ­mica; ArgentinaFil: Pandolfo, Marcela. Universidad de Buenos Aires. Facultad de Farmacia y BioquĂ­mica; ArgentinaFil: Kuprewicz, A.. Universidad de Buenos Aires. Facultad de Farmacia y BioquĂ­mica; ArgentinaFil: Canessa, O.. Universidad de Buenos Aires. Facultad de Farmacia y BioquĂ­mica; ArgentinaFil: Toblli, Jorge Eduardo. Consejo Nacional de Investigaciones CientĂ­ficas y TĂ©cnicas; Argentina. Hospital AlemĂĄn; ArgentinaFil: Fernandez, Belisario Enrique. Consejo Nacional de Investigaciones CientĂ­ficas y TĂ©cnicas; Argentina. Universidad de Buenos Aires. Facultad de Farmacia y BioquĂ­mica; Argentin

    Integrating tropical research into biology education is urgently needed

    Get PDF
    Understanding tropical biology is important for solving complex problems such as climate change, biodiversity loss, and zoonotic pandemics, but biology curricula view research mostly via a temperatezone lens. Integrating tropical research into biology education is urgently needed to tackle these issues. The tropics are engines of Earth systems that regulate global cycles of carbon and water, and are thus critical for management of greenhouse gases. Compared with higher-latitude areas, tropical regions contain a greater diversity of biomes, organisms, and complexity of biological interactions. The tropics house the majority of the world’s human population and provide important global commodities from species that originated there: coffee, chocolate, palm oil, and species that yield the cancer drugs vincristine and vinblastine. Tropical regions, especially biodiversity hotspots, harbor zoonoses, thereby having an important role in emerging infectious diseases amidst the complex interactions of global environmental change and wildlife migration [1]. These well-known roles are oversimplified, but serve to highlight the global biological importance of tropical systems. Despite the importance of tropical regions, biology curricula worldwide generally lack coverage of tropical research. Given logistical, economic, or other barriers, it is difficult for undergraduate biology instructors to provide their students with field-based experience in tropical biology research in a diverse range of settings, an issue exacerbated by the Coronavirus Disease 2019 (COVID-19) pandemic. Even in the tropics, field-based experience may be limited to home regions. When tropical biology is introduced in curricula, it is often through a temperate- zone lens that does not do justice to the distinct ecosystems, sociopolitical histories, and conservation issues that exist across tropical countries and regions [2]. The tropics are often caricatured as distant locations known for their remarkable biodiversity, complicated species interactions, and unchecked deforestation. This presentation, often originating from a colonial and culturally biased perspective, may fail to highlight the role of tropical ecosystems in global environmental and social challenges that accompany rising temperatures, worldwide biodiversity loss, zoonotic pandemics, and the environmental costs of ensuring food, water, and other ecosystem services for humans [3]

    How mammalian predation contributes to tropical tree community structure

    Get PDF
    The recruitment of seedlings from seeds is the key demographic transition for rain forest trees. Though tropical forest mammals are known to consume many seeds, their effects on tree community structure remain little known. To evaluate their effects, we monitored 8000 seeds of 24 tree species using exclosure cages that were selectively permeable to three size-classes of mammals for up to 4.4 years. Small and medium-bodied mammals removed many more seeds than did large mammals, and they alone generated beta diversity and negative density dependence, whereas all mammals reduced diversity and shaped local species composition. Thus, small and medium-bodied mammals more strongly contributed to community structure and promoted species coexistence than did large mammals. Given that seedling recruitment is seed-limited for most species, alterations to the composition of the community of mammalian seed predators is expected to have long-term consequences for tree community structure in tropical forests

    SNAPSHOT USA 2020: A second coordinated national camera trap survey of the United States during the COVID-19 pandemic

    Get PDF
    Managing wildlife populations in the face of global change requires regular data on the abundance and distribution of wild animals, but acquiring these over appropriate spatial scales in a sustainable way has proven challenging. Here we present the data from Snapshot USA 2020, a second annual national mammal survey of the USA. This project involved 152 scientists setting camera traps in a standardized protocol at 1485 locations across 103 arrays in 43 states for a total of 52,710 trap-nights of survey effort. Most (58) of these arrays were also sampled during the same months (September and October) in 2019, providing a direct comparison of animal populations in 2 years that includes data from both during and before the COVID-19 pandemic. All data were managed by the eMammal system, with all species identifications checked by at least two reviewers. In total, we recorded 117,415 detections of 78 species of wild mammals, 9236 detections of at least 43 species of birds, 15,851 detections of six domestic animals and 23,825 detections of humans or their vehicles. Spatial differences across arrays explained more variation in the relative abundance than temporal variation across years for all 38 species modeled, although there are examples of significant site-level differences among years for many species. Temporal results show how species allocate their time and can be used to study species interactions, including between humans and wildlife. These data provide a snapshot of the mammal community of the USA for 2020 and will be useful for exploring the drivers of spatial and temporal changes in relative abundance and distribution, and the impacts of species interactions on daily activity patterns. There are no copyright restrictions, and please cite this paper when using these data, or a subset of these data, for publication

    SNAPSHOT USA 2019 : a coordinated national camera trap survey of the United States

    Get PDF
    This article is protected by copyright. All rights reserved.With the accelerating pace of global change, it is imperative that we obtain rapid inventories of the status and distribution of wildlife for ecological inferences and conservation planning. To address this challenge, we launched the SNAPSHOT USA project, a collaborative survey of terrestrial wildlife populations using camera traps across the United States. For our first annual survey, we compiled data across all 50 states during a 14-week period (17 August - 24 November of 2019). We sampled wildlife at 1509 camera trap sites from 110 camera trap arrays covering 12 different ecoregions across four development zones. This effort resulted in 166,036 unique detections of 83 species of mammals and 17 species of birds. All images were processed through the Smithsonian's eMammal camera trap data repository and included an expert review phase to ensure taxonomic accuracy of data, resulting in each picture being reviewed at least twice. The results represent a timely and standardized camera trap survey of the USA. All of the 2019 survey data are made available herein. We are currently repeating surveys in fall 2020, opening up the opportunity to other institutions and cooperators to expand coverage of all the urban-wild gradients and ecophysiographic regions of the country. Future data will be available as the database is updated at eMammal.si.edu/snapshot-usa, as well as future data paper submissions. These data will be useful for local and macroecological research including the examination of community assembly, effects of environmental and anthropogenic landscape variables, effects of fragmentation and extinction debt dynamics, as well as species-specific population dynamics and conservation action plans. There are no copyright restrictions; please cite this paper when using the data for publication.Publisher PDFPeer reviewe

    SNAPSHOT USA 2019: a coordinated national camera trap survey of the United States

    Get PDF
    With the accelerating pace of global change, it is imperative that we obtain rapid inventories of the status and distribution of wildlife for ecological inferences and conservation planning. To address this challenge, we launched the SNAPSHOT USA project, a collaborative survey of terrestrial wildlife populations using camera traps across the United States. For our first annual survey, we compiled data across all 50 states during a 14-week period (17 August-24 November of 2019). We sampled wildlife at 1,509 camera trap sites from 110 camera trap arrays covering 12 different ecoregions across four development zones. This effort resulted in 166,036 unique detections of 83 species of mammals and 17 species of birds. All images were processed through the Smithsonian's eMammal camera trap data repository and included an expert review phase to ensure taxonomic accuracy of data, resulting in each picture being reviewed at least twice. The results represent a timely and standardized camera trap survey of the United States. All of the 2019 survey data are made available herein. We are currently repeating surveys in fall 2020, opening up the opportunity to other institutions and cooperators to expand coverage of all the urban-wild gradients and ecophysiographic regions of the country. Future data will be available as the database is updated at eMammal.si.edu/snapshot-usa, as will future data paper submissions. These data will be useful for local and macroecological research including the examination of community assembly, effects of environmental and anthropogenic landscape variables, effects of fragmentation and extinction debt dynamics, as well as species-specific population dynamics and conservation action plans. There are no copyright restrictions; please cite this paper when using the data for publication

    Mammal responses to global changes in human activity vary by trophic group and landscape

    Get PDF
    Wildlife must adapt to human presence to survive in the Anthropocene, so it is critical to understand species responses to humans in different contexts. We used camera trapping as a lens to view mammal responses to changes in human activity during the COVID-19 pandemic. Across 163 species sampled in 102 projects around the world, changes in the amount and timing of animal activity varied widely. Under higher human activity, mammals were less active in undeveloped areas but unexpectedly more active in developed areas while exhibiting greater nocturnality. Carnivores were most sensitive, showing the strongest decreases in activity and greatest increases in nocturnality. Wildlife managers must consider how habituation and uneven sensitivity across species may cause fundamental differences in human–wildlife interactions along gradients of human influence.Peer reviewe
    • 

    corecore