410 research outputs found

    Experimental and theoretical spectroscopic studies on selected igepals

    Get PDF

    Electronic States in Diffused Quantum Wells

    Full text link
    In the present study we calculate the energy values and the spatial distributions of the bound electronic states in some diffused quantum wells. The calculations are performed within the virtual crystal approximation, sp3s∗sp^3 s^* spin dependent empirical tight-binding model and the surface Green function matching method. A good agreement is found between our results and experimental data obtained for AlGaAs/GaAs quantum wells with thermally induced changes in the profile at the interfaces. Our calculations show that for diffusion lengths LD=20Ă·100L_{D}=20\div100 {\AA} the transition (C3-HH3) is not sensitive to the diffusion length, but the transitions (C1-HH1), (C1-LH1), (C2-HH2) and (C2-LH2) display large "blue shifts" as L_{D} increases. For diffusion lengths LD=0Ă·20L_{D}=0\div20 {\AA} the transitions (C1-HH1) and (C1-LH1) are less sensitive to the L_{D} changes than the (C3-HH3) transition. The observed dependence is explained in terms of the bound states spatial distributions.Comment: ReVTeX file, 7pp., no macros, 4 figures available on the reques

    Solar-like oscillation amplitudes and line-widths as a probe for turbulent convection in stars

    Get PDF
    Excitation of solar-like oscillations is attributed to turbulent convection and takes place at the upper-most part of the outer convective zones. Amplitudes of these oscillations depend on the efficiency of the excitation processes as well as on the properties of turbulent convection. We present past and recent improvements on the modeling of those processes. We show how the mode amplitudes and mode line-widths can bring information about the turbulence in the specific cases of the Sun and Alpha Cen A.Comment: 9 pages ; 3 figures ; invited talk given during the Symposium no. 239 "Convection in Astrophysics", International Astronomical Union., held 21-25 August, 2006 in Prague, Czech Republi

    HVS7: a chemically peculiar hyper-velocity star

    Full text link
    Context: Hyper-velocity stars are suggested to originate from the dynamical interaction of binary stars with the supermassive black hole in the Galactic centre (GC), which accelerates one component of the binary to beyond the Galactic escape velocity. Aims: The evolutionary status and GC origin of the HVS SDSS J113312.12+010824.9 (HVS7) is constrained from a detailed study of its stellar parameters and chemical composition. Methods: High-resolution spectra of HVS7 obtained with UVES on the ESO VLT were analysed using state-of-the-art NLTE/LTE modelling techniques that can account for a chemically-peculiar composition via opacity sampling. Results: Instead of the expected slight enrichments of alpha-elements and near-solar Fe, huge chemical peculiarities of all elements are apparent. The He abundance is very low (<1/100 solar), C, N and O are below the detection limit, i.e they are underabundant (<1/100, <1/3 and <1/10 solar). Heavier elements, however, are overabundant: the iron group by a factor of ~10, P, Co and Cl by factors ~40, 80 and 440 and rare-earth elements and Hg even by ~10000. An additional finding, relevant also for other chemically peculiar stars are the large NLTE effects on abundances of TiII and FeII (~0.6-0.7dex). The derived abundance pattern of HVS7 is characteristic for the class of chemical peculiar magnetic B stars on the main sequence. The chemical composition and high vsini=55+-2km/s render a low mass nature of HVS7 as a blue horizontal branch star unlikely. Conclusions: Such a surface abundance pattern is caused by atomic diffusion in a possibly magnetically stabilised, non-convective atmosphere. Hence all chemical information on the star's place of birth and its evolution has been washed out. High precision astrometry is the only means to validate a GC origin for HVS7.Comment: 9 pages, 3 figure

    Stochastic excitation of acoustic modes in stars

    Full text link
    For more than ten years, solar-like oscillations have been detected and frequencies measured for a growing number of stars with various characteristics (e.g. different evolutionary stages, effective temperatures, gravities, metal abundances ...). Excitation of such oscillations is attributed to turbulent convection and takes place in the uppermost part of the convective envelope. Since the pioneering work of Goldreich & Keely (1977), more sophisticated theoretical models of stochastic excitation were developed, which differ from each other both by the way turbulent convection is modeled and by the assumed sources of excitation. We review here these different models and their underlying approximations and assumptions. We emphasize how the computed mode excitation rates crucially depend on the way turbulent convection is described but also on the stratification and the metal abundance of the upper layers of the star. In turn we will show how the seismic measurements collected so far allow us to infer properties of turbulent convection in stars.Comment: Notes associated with a lecture given during the fall school organized by the CNRS and held in St-Flour (France) 20-24 October 2008 ; 39 pages ; 11 figure

    Asteroseismology of Solar-type Stars with Kepler I: Data Analysis

    Full text link
    We report on the first asteroseismic analysis of solar-type stars observed by Kepler. Observations of three G-type stars, made at one-minute cadence during the first 33.5d of science operations, reveal high signal-to-noise solar-like oscillation spectra in all three stars: About 20 modes of oscillation can clearly be distinguished in each star. We discuss the appearance of the oscillation spectra, including the presence of a possible signature of faculae, and the presence of mixed modes in one of the three stars.Comment: 5 pages, 4 figure, submitted to Astronomische Nachrichte

    Schools as a system to improve nutrition: A new statement for school-based food and nutrition interventions

    Get PDF
    This paper asserts that schools offer a unique platform from which to realize multiple benefits for children and their communities, while helping to achieve the SDGs. Furthermore, schools can exert influence beyond the student population, serving as a foundation for the involvement of teachers, parents and other community members. Intervention can catalyze community development, bring about social protection and economic empowerment, influence agricultural production systems to deliver diverse and nutritious foods, promote lifelong healthy-eating habits, and address basic health, hygiene, and sanitation issues that affect wellbeing. By providing a better health and living environment, schools have the potential to not only support education, but also underpin mainstream nutrition activities in communities and advance child development (Patton et al. 2016)

    Dynamics of the circumstellar gas in the Herbig Ae stars BF Orionis, SV Cephei, WW Vulpeculae and XY Persei

    Get PDF
    We present high resolution (lambda / Delta_lambda = 49000) echelle spectra of the intermediate mass, pre-main sequence stars BF Ori, SV Cep, WW Wul and XY Per. The spectra cover the range 3800-5900 angstroms and monitor the stars on time scales of months and days. All spectra show a large number of Balmer and metallic lines with variable blueshifted and redshifted absorption features superimposed to the photospheric stellar spectra. Synthetic Kurucz models are used to estimate rotational velocities, effective temperatures and gravities of the stars. The best photospheric models are subtracted from each observed spectrum to determine the variable absorption features due to the circumstellar gas; those features are characterized in terms of their velocity, v, dispersion velocity, Delta v, and residual absorption, R_max. The absorption components detected in each spectrum can be grouped by their similar radial velocities and are interpreted as the signature of the dynamical evolution of gaseous clumps with, in most cases, solar-like chemical composition. This infalling and outflowing gas has similar properties to the circumstellar gas observed in UX Ori, emphasizing the need for detailed theoretical models, probably in the framework of the magnetospheric accretion scenario, to understand the complex environment in Herbig Ae (HAe) stars. WW Vul is unusual because, in addition to infalling and outflowing gas with properties similar to those observed in the other stars, it shows also transient absorption features in metallic lines with no obvious counterparts in the hydrogen lines. This could, in principle, suggest the presence of CS gas clouds with enhanced metallicity around WW Vul. The existence of such a metal-rich gas component, however, needs to be confirmed by further observations and a more quantitative analysis.Comment: 21 pages, 13 figures. Accepted for publication by Astronomy & Astrophysic
    • 

    corecore