882 research outputs found
Towards 5G: A reinforcement learning-based scheduling solution for data traffic management
Dominated by delay-sensitive and massive data applications, radio resource management in 5G access networks is expected to satisfy very stringent delay and packet loss requirements. In this context, the packet scheduler plays a central role by allocating user data packets in the frequency domain at each predefined time interval. Standard scheduling rules are known limited in satisfying higher quality of service (QoS) demands when facing unpredictable network conditions and dynamic traffic circumstances. This paper proposes an innovative scheduling framework able to select different scheduling rules according to instantaneous scheduler states in order to minimize the packet delays and packet drop rates for strict QoS requirements applications. To deal with real-time scheduling, the reinforcement learning (RL) principles are used to map the scheduling rules to each state and to learn when to apply each. Additionally, neural networks are used as function approximation to cope with the RL complexity and very large representations of the scheduler state space. Simulation results demonstrate that the proposed framework outperforms the conventional scheduling strategies in terms of delay and packet drop rate requirements
A comparison of reinforcement learning algorithms in fairness-oriented OFDMA schedulers
Due to large-scale control problems in 5G access networks, the complexity of radioresource management is expected to increase significantly. Reinforcement learning is seen as apromising solution that can enable intelligent decision-making and reduce the complexity of differentoptimization problems for radio resource management. The packet scheduler is an importantentity of radio resource management that allocates users’ data packets in the frequency domainaccording to the implemented scheduling rule. In this context, by making use of reinforcementlearning, we could actually determine, in each state, the most suitable scheduling rule to be employedthat could improve the quality of service provisioning. In this paper, we propose a reinforcementlearning-based framework to solve scheduling problems with the main focus on meeting the userfairness requirements. This framework makes use of feed forward neural networks to map momentarystates to proper parameterization decisions for the proportional fair scheduler. The simulation resultsshow that our reinforcement learning framework outperforms the conventional adaptive schedulersoriented on fairness objective. Discussions are also raised to determine the best reinforcement learningalgorithm to be implemented in the proposed framework based on various scheduler settings
Enhancing user fairness in OFDMA radio access networks through machine learning
The problem of radio resource scheduling subject to fairness satisfaction is very challenging even in future radio access networks. Standard fairness criteria aim to find the best trade-off between overall throughput maximization and user fairness satisfaction under various types of network conditions. However, at the Radio Resource Management (RRM) level, the existing schedulers are rather static being unable to react according to the momentary networking conditions so that the user fairness measure is maximized all time. This paper proposes a dynamic scheduler framework able to parameterize the proportional fair scheduling rule at each Transmission Time Interval (TTI) to improve the user fairness. To deal with the framework complexity, the parameterization decisions are approximated by using the neural networks as non-linear functions. The actor-critic Reinforcement Learning (RL) algorithm is used to learn the best set of non-linear functions that approximate the best fairness parameters to be applied in each momentary state. Simulations results reveal that the proposed framework outperforms the existing fairness adaptation techniques as well as other types of RL-based schedulers
Study of and decays and determination of the CKM angle
We report a study of the suppressed and favored
decays, where the neutral meson is detected
through its decays to the and CP-even and
final states. The measurement is carried out using a proton-proton
collision data sample collected by the LHCb experiment, corresponding to an
integrated luminosity of 3.0~fb. We observe the first significant
signals in the CP-even final states of the meson for both the suppressed
and favored modes, as well as
in the doubly Cabibbo-suppressed final state of the decay. Evidence for the ADS suppressed decay , with , is also presented. From the observed
yields in the , and their
charge conjugate decay modes, we measure the value of the weak phase to be
. This is one of the most precise
single-measurement determinations of to date.Comment: 22 pages, 9 figures; All figures and tables, along with any
supplementary material and additional information, are available at
https://lhcbproject.web.cern.ch/lhcbproject/Publications/LHCbProjectPublic/LHCb-PAPER-2015-020.htm
Observation of an Excited Bc+ State
Using pp collision data corresponding to an integrated luminosity of 8.5 fb-1 recorded by the LHCb experiment at center-of-mass energies of s=7, 8, and 13 TeV, the observation of an excited Bc+ state in the Bc+π+π- invariant-mass spectrum is reported. The observed peak has a mass of 6841.2±0.6(stat)±0.1(syst)±0.8(Bc+) MeV/c2, where the last uncertainty is due to the limited knowledge of the Bc+ mass. It is consistent with expectations of the Bc∗(2S31)+ state reconstructed without the low-energy photon from the Bc∗(1S31)+→Bc+γ decay following Bc∗(2S31)+→Bc∗(1S31)+π+π-. A second state is seen with a global (local) statistical significance of 2.2σ (3.2σ) and a mass of 6872.1±1.3(stat)±0.1(syst)±0.8(Bc+) MeV/c2, and is consistent with the Bc(2S10)+ state. These mass measurements are the most precise to date
Amplitude analysis of decays
The Dalitz plot distribution of decays
is studied using a data sample corresponding to of
collision data recorded by the LHCb experiment during 2011 and 2012. The data
are described by an amplitude model that contains contributions from
intermediate , , and
resonances. The model also contains components to describe broad structures,
including the and resonances, in the
S-wave and the S- and P-waves. The masses and widths of the
and resonances are measured, as are the complex
amplitudes and fit fractions for all components included in the amplitude
model. The model obtained will be an integral part of a future determination of
the angle of the CKM quark mixing matrix using decays.Comment: 33 pages, 12 figures; updated for publicatio
Study of boson production in association with beauty and charm
The associated production of a boson with a jet originating from either a
light parton or heavy-flavor quark is studied in the forward region using
proton-proton collisions. The analysis uses data corresponding to integrated
luminosities of 1.0 and collected with the LHCb detector
at center-of-mass energies of 7 and 8 TeV, respectively. The bosons are
reconstructed using the decay and muons with a transverse
momentum, , larger than 20 GeV in the pseudorapidity range
GeV
and . The sum of the muon and jet momenta must satisfy
GeV. The fraction of jet events that originate from beauty
and charm quarks is measured, along with the charge asymmetries of the
and production cross-sections. The ratio of the jet to
jet production cross-sections is also measured using the
decay. All results are in agreement with Standard Model predictions
Measurement of the lifetime
Using a data set corresponding to an integrated luminosity of ,
collected by the LHCb experiment in collisions at centre-of-mass energies
of 7 and 8 TeV, the effective lifetime in the
decay mode, , is measured to be ps. Assuming
conservation, corresponds to the lifetime of the light
mass eigenstate. This is the first measurement of the effective
lifetime in this decay mode.Comment: All figures and tables, along with any supplementary material and
additional information, are available at
https://lhcbproject.web.cern.ch/lhcbproject/Publications/LHCbProjectPublic/LHCb-PAPER-2016-017.htm
Observation of resonances consistent with pentaquark states in decays
Observations of exotic structures in the channel, that we refer to
as pentaquark-charmonium states, in decays are
presented. The data sample corresponds to an integrated luminosity of 3/fb
acquired with the LHCb detector from 7 and 8 TeV pp collisions. An amplitude
analysis is performed on the three-body final-state that reproduces the
two-body mass and angular distributions. To obtain a satisfactory fit of the
structures seen in the mass spectrum, it is necessary to include two
Breit-Wigner amplitudes that each describe a resonant state. The significance
of each of these resonances is more than 9 standard deviations. One has a mass
of MeV and a width of MeV, while the second
is narrower, with a mass of MeV and a width of MeV. The preferred assignments are of opposite parity, with one
state having spin 3/2 and the other 5/2.Comment: 48 pages, 18 figures including the supplementary material, v2 after
referee's comments, now 19 figure
Measurement of the branching fraction ratio
Using collision data collected by LHCb at center-of-mass energies
= 7 TeV and 8 TeV, corresponding to an integrated luminosity of 3
fb, the ratio of the branching fraction of the decay relative to that of the
decay is measured to be 0.268 0.032 (stat) 0.007 (syst) 0.006
(BF). The first uncertainty is statistical, the second is systematic, and the
third is due to the uncertainties on the branching fractions of the and decays. This
measurement is consistent with the previous LHCb result, and the statistical
uncertainty is halved.Comment: 17 pages including author list, 2 figure
- …