192 research outputs found

    Optimization techniques for systems reliability with redundancy

    Get PDF
    Call number: LD2668 .T4 1978 K87Master of Scienc

    Degradation Models and Implied Lifetime Distributions

    Get PDF
    In experiments where failure times are sparse, degradation analysis is useful for the analysis of failure time distributions in reliability studies. This research investigates the link between a practitioner\u27s selected degradation model and the resulting lifetime model. Simple additive and multiplicative models with single random effects are featured. Results show that seemingly innocuous assumptions of the degradation path create surprising restrictions on the lifetime distribution. These constraints are described in terms of failure rate and distribution classes

    Statistical Models for Hot Electron Degradation in Nano-Scaled MOSFET Devices

    Get PDF
    In a MOS structure, the generation of hot carrier interface states is a critical feature of the item\u27s reliability. On the nano-scale, there are problems with degradation in transconductance, shift in threshold voltage, and decrease in drain current capability. Quantum mechanics has been used to relate this decrease to degradation, and device failure. Although the lifetime, and degradation of a device are typically used to characterize its reliability, in this paper we model the distribution of hot-electron activation energies, which has appeal because it exhibits a two-point discrete mixture of logistic distributions. The logistic mixture presents computational problems that are addressed in simulation

    Reliability modeling and preventive maintenance of load-sharing systems with degrading components

    Get PDF
    This article presents certain new approaches to the reliability modeling of systems subject to shared loads. It is assumed that components in the system degrade continuously through an additive impact under load. The reliability assessment of such systems is often complicated by the fact that both the arriving load and the failure of components influence the degradation of the surviving components in a complex manner. The proposed approaches seek to ease this problem, by first deriving the time to prior failures and the arrival of random loads and then determining the number of failed components. Two separate models capable of analyzing system reliability as well as arriving at system maintenance and design decisions are proposed. The first considers a constant load and the other a cumulative load. A numerical example is presented to illustrate the effectiveness of the proposed models

    An imperfect maintenance policy for mission-oriented systems subject to degradation and external shocks

    Get PDF
    This paper develops a maintenance model for mission-oriented systems subject to natural degradation and external shocks. For mission-oriented systems which are used to perform safety-critical tasks, maintenance actions need to satisfy a range of constraints such as availability/reliability, maintenance duration and the opportunity of maintenance. Additionally, in developing maintenance policy, one needs to consider the natural degradation due to aging and wearing along with the external shocks due to variations of the operating environment. In this paper, the natural degradation is modeled as a Wiener process and the arrival of random shock as a homogeneous Poisson process. The damage caused by shocks is integrated into the degradation process, according to the cumulative shock model. Improvement factor model is used to characterize the impact of maintenance actions on system restoration. Optimal maintenance policy is obtained by minimizing the long-run cost rate. Finally, an example of subsea blowout preventer system is presented to illustrate the effectiveness of the proposed model

    A condition-based maintenance policy for degrading systems with age- and state-dependent operating cost

    Get PDF
    Most of the maintenance policies in existing publications assume that no cost is incurred as long as the system can undertake missions while little consideration has been devoted to the operating cost during system operation. However, in practice, the operating cost increases while the system ages and degrades even if a system is in a functioning state. This paper proposes a maintenance policy for a degrading system with age- and state-dependent operating cost, which increases with system age and degradation levels. Under such a setting, a replacement model is first developed to investigate the optimal preventive replacement policy. The replacement model is then extended to a repair-replacement model, in which imperfect repair is assumed to restore the system to the operating condition. Particularly, the repair model with controllable and uncontrollable repair levels is considered separately. The paper proves that the optimal maintenance policy is actually a monotone control limit policy, where the optimal control limits decrease monotonically with system age. Finally, a numerical example along with sensitivity analysis is presented to illustrate the optimal maintenance policy. The proposed model implies a more conservative maintenance policy, compared with the traditional model without the age- and state-dependent operating cost

    Maintenance scheduling for multicomponent systems with hidden failures

    Get PDF
    This paper develops a maintenance policy for a multicomponent system subject to hidden failures. Components of the system are assumed to suffer from hidden failures, which can only be detected at inspection. The objective of the maintenance policy is to determine the inspection intervals for each component such that the long-run cost rate is minimized. Due to the dependence among components, an exact optimal solution is difficult to obtain. Concerned with the intractability of the problem, a heuristic method named “base interval approach” is adopted to reduce the computational complexity. Performance of the base interval approach is analyzed, and the result shows that the proposed policy can approximate the optimal policy within a small factor. Two numerical examples are presented to illustrate the effectiveness of the policy

    A mechanistic target of rapamycin complex 1/2 (mTORC1)/V-Akt murine thymoma viral oncogene homolog 1 (AKT1)/cathepsin H axis controls filaggrin expression and processing in skin, a novel mechanism for skin barrier disruption in patients with atopic dermatitis

    Get PDF
    Background Filaggrin, which is encoded by the filaggrin gene (FLG), is an important component of the skin's barrier to the external environment, and genetic defects in FLG strongly associate with atopic dermatitis (AD). However, not all patients with AD have FLG mutations. Objective We hypothesized that these patients might possess other defects in filaggrin expression and processing contributing to barrier disruption and AD, and therefore we present novel therapeutic targets for this disease. Results We describe the relationship between the mechanistic target of rapamycin complex 1/2 protein subunit regulatory associated protein of the MTOR complex 1 (RAPTOR), the serine/threonine kinase V-Akt murine thymoma viral oncogene homolog 1 (AKT1), and the protease cathepsin H (CTSH), for which we establish a role in filaggrin expression and processing. Increased RAPTOR levels correlated with decreased filaggrin expression in patients with AD. In keratinocyte cell cultures RAPTOR upregulation or AKT1 short hairpin RNA knockdown reduced expression of the protease CTSH. Skin of CTSH-deficient mice and CTSH short hairpin RNA knockdown keratinocytes showed reduced filaggrin processing, and the mouse had both impaired skin barrier function and a mild proinflammatory phenotype. Conclusion Our findings highlight a novel and potentially treatable signaling axis controlling filaggrin expression and processing that is defective in patients with AD

    Identification of mutations that alter the gating of the Escherichia coli mechanosensitive channel protein, MscK

    Get PDF
    Mechanosensitive channels allow bacteria to survive rapid increases in turgor pressure. Substantial questions remain as to how these channels sense and respond to mechanical stress. Here we describe a set of mutants with alterations in their MscK channel protein. The mutants were detected fortuitously by their enhanced ability to modify the accumulation of quinolinic acid. Some amino acid changes lie in the putative pore region of MscK, but others affect sequences that lie amino-terminal to the domain aligning with MscS. We demonstrate that the alterations in MscK cause the channel to open more frequently in the absence of excessive mechanical stress. This is manifested in changes in sensitivity to external K+ by cells expressing the mutant proteins. Single-channel analysis highlighted a range of gating behaviours: activation at lower pressures than the wild type, inability to achieve the fully open state or a modified requirement for K+. Thus, the dominant uptake phenotype of these mutants may result from a defect in their ability to regulate the gating of MscK. The locations of the substituted residues suggest that the overall gating mechanism of MscK is comparable to that of MscS, but with subtleties introduced by the additional protein sequences in MscK
    corecore