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Abbreviations 

AD Atopic Dermatitis 

AKT1 V-Akt Murine Thymoma Viral Oncogene Homolog 1 

ATRA All trans retinoic acid 

CTSH Cathepsin H 

ECL Enhanced chemiluminesence 

ENCODE The Encyclopedia of DNA Elements 

FLG Filaggrin Gene 

HMGCR  3-Hydroxy-3-Methylglutaryl-CoA Reductase 

HMGCS1 3-Hydroxy-3-Methylglutaryl-CoA Synthase 1  

HRP Horseradish peroxidase 

IDI1 Isopentenyl-Diphosphate Delta Isomerase 1 

IL-13 Interleukin 13 

IL-4 Interleukin 4 

mTORC1/2 Mechanistic Target Of Rapamycin Complex 1/2 

OCT  Optimal Cutting Temperature compound 

pAKT phosphorylated AKT 

PBS Phosphate buffered saline 

PCR Polymerase Chain Reaction 

RAPTOR Regulatory Associated Protein Of MTOR Complex 1 

REK Rat epidermal keratinocytes 

SASPase  Aspartic Peptidase, Retroviral-Like 1 

SDS Sodium Dodecyl Sulphase 

SNP Single nucleotide polymorphism 
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SPF Specific pathogen free 

TBST Tris buffered saline with 0.1% Tween 20 

Th2 T-helper 2 

TSLP Thymic stromal lymphopoietin 
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Abstract 

Background: Filaggrin, encoded by the FLG gene, is an important component of the skin’s barrier to the 

external environment and genetic defects in FLG strongly associate with Atopic Dermatitis (AD). 

However, not all AD patients have FLG mutations.  

Objective: We hypothesised that these patients may possess other defects in filaggrin expression and 

processing, contributing to barrier disruption and AD, and therefore present novel therapeutic targets for 

this disease.  

Results: We describe the relationship between the mTORC1 protein subunit RAPTOR, the 

serine/threonine kinase AKT1 and the protease cathepsin H, for which we establish a role in filaggrin 

expression and processing. Increased RAPTOR levels correlated with decreased filaggrin expression in 

AD. In keratinocyte cell culture, RAPTOR up-regulation or AKT1 shRNA knockdown reduced the 

expression of the protease cathepsin H. Skin of cathepsin H-deficient mice and CTSH shRNA knockdown 

keratinocytes showed reduced filaggrin processing and the mouse showed both impaired skin barrier 

function and a mild proinflammatory phenotype.  

Conclusion: Our findings highlight a novel, potentially treatable, signalling axis controlling filaggrin 

expression and processing which is defective in AD. 

Key messages: 

- RAPTOR levels are increased in atopic dermatitis and are inversely proportional to filaggrin 

expression 

-The up-regulation of RAPTOR leads to AKT1 activity down-regulation and downregulation of the 

protease cathepsin H, which is involved in filaggrin processing, epidermal barrier function and 

modulates skin immunity. 
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Capsule: FLG mutations strongly associate with Atopic Dermatitis (AD). However, not all AD patients 

have FLG mutations. An mTORC/AKT1 signalling axis controls both filaggrin expression and processing 

by controlling expression of the protease Cathepsin H.  

 

Introduction 

Atopic dermatitis (AD) is a common disease in which the skin is sensitive to allergens and irritants 

resulting in an immune response characterised by redness and scaling. Current evidence suggests that the 

primary cause for disease development in the majority of AD cases is a defective skin barrier 12,31 . There 

is a strong genetic component to AD associated with skin barrier dysfunction15. One important protein is 

the epidermal structural protein filaggrin. Null mutations in the gene encoding filaggrin (FLG) are 

responsible for the common inherited dry skin condition ichthyosis vulgaris, and are a major predisposing 

factor for AD48,54. However only approximately 40% of AD patients in the UK, and around 10% of AD 

patients in the rest of the world have filaggrin mutations7,57 and conversely, not all individuals with 

filaggrin mutations have AD45, suggesting that other mechanisms might contribute to filaggrin expression 

and processing defects and hence to the barrier defect observed in AD patients.  

Profilaggrin to filaggrin processing is complex, requiring dephosphorylation and numerous proteolytic 

events; several proteases have been identified that cleave profilaggrin at specific sites releasing the 

filaggrin monomers and both the N and the C termini17 . Proteases such as elastase 2 , SASPase and 

matriptase are reported to be involved in profilaggrin to filaggrin processing 5,18,43,44. There are also 

reports of aspartic- and cysteine- type cathepsin proteases playing a role in this process 20,34,35 . AKT1 is 

required for the correct formation of the cornified envelope47. AKT1 activity in the epidermis is increased 

by treatment with the mTORC1 (RAPTOR containing mammalian target of rapamycin complex) inhibitor 

rapamycin59 , suggesting a role of RAPTOR in modulating AKT1 activity. We therefore hypothesised that 
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AKT1 activity may be reduced in atopic dermatitis skin leading to alteration in protease expression, 

reduced filaggrin expression and processing and skin barrier disruption. 

Using a combination of keratinocyte shRNA knockdown models, human clinical samples and mouse 

knockouts, we show increased RAPTOR expression correlates with reduced filaggrin expression in the 

skin of atopic individuals, this being most apparent in those with FLG compound heterozygous mutations. 

RAPTOR overexpression in keratinocytes reduced filaggrin expression, loss of AKT1 activity and 

filaggrin and loss of cathepsin H. Cathepsin H deficient mice have reduced filaggrin processing, subtle 

barrier defects, and an elevation in pro-inflammatory molecules, associated with increased macrophage 

infiltration of the skin and increased mast cell degranulation.  Taken together this provides strong 

evidence that RAPTOR levels and AKT1 signalling are important in modulating filaggrin levels and the 

immune environment in AD. 

Results 

Increased RAPTOR expression correlated with reduced filaggrin expression in rat epidermal 

keratinocytes and in non-lesional AD skin 

As inhibition of the mTORC1 complex by rapamycin increases AKT1 phosphorylation in keratinocytes59, 

we hypothesised that the inverse could occur; that increased expression of the key mTORC1 protein 

RAPTOR in AD resulted in a reduction of AKT1 phosphorylation and therefore activity. To test this we 

examined the expression of RAPTOR, pAKT and filaggrin in the unaffected, non-lesional, non-flexural 

epidermis of 5 AD early-onset severe patients and of 3 individuals without AD (Figure 1a and b; 

Supplementary table E1). Non-lesional, non-flexural skin from AD patients have been previously 

demonstrated to be barrier deficient and represented a way of investigating the disease prior to acute 

immune involvement 14,26 .pAKT was significantly downregulated on the protein level in unaffected AD 

skin sections. However in both AD patients and controls there were individuals with RAPTOR present in 

the spinous and granular layers which corresponded to lower filaggrin levels in these individuals 
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(Supplementary Figure E1a). To investigate this finding in a larger number of individuals with known 

FLG genotype, we extended our analysis of RAPTOR and filaggrin to a gene expression analysis of non-

lesional, non-flexural skin biopsies from 26 AD patients and 10 non-atopic controls of known FLG 

genotype as previously described14. All cases of AD had early onset persistent and severe disease. There 

was no significant change in mRNA levels of RAPTOR in non-lesional atopic skin according to FLG 

genotype (Figure 1c). However, changes in RAPTOR expression correlated with a number of the highly 

differentially expressed genes in FLG compound heterozygotes and filaggrin heterozygotes, including 

FLG itself (Figure 1d and e and Supplementary table E2). Although Th2 cytokines such as IL-13 and IL-4 

are known to be able to modulate expression of filaggrin and alter epidermal barrier function 30,37, 

rapamycin treated cells did not reduce IL-4 expression and AKT1 knockdown keratinocytes did not have 

increased levels of IL-4 (Supplementary figure E1b and c).  IL-4 and IL-13 expression levels were not 

correlated with RAPTOR levels in the data from Cole et al14. Taken together this suggests that the 

mechanism by which RAPTOR controls filaggrin is not due to increase in either IL-4 or IL-13 cytokine 

expression. 

These genes and RAPTOR itself comprised a network centred on the insulin-mediated control of AKT1 

which we have described previously and is important in both epidermal skin barrier function and UV 

protection (Supplementary figure E2a; 59). A large proportion (17/22=77%) of the correlated and anti-

correlated, highly expressed genes with mean normalised read count of 100 or more were also genes 

whose expression correlated with filaggrin expression14 (Supplementary figure E2b, Supplementary Table 

E3) These data demonstrate that in AD, RAPTOR mRNA levels strongly anti-correlated with filaggrin 

mRNA expression. To directly test the effect of increased RAPTOR, we over-expressed human RAPTOR 

in rat epidermal keratinocytes. RAPTOR over-expression led to a decrease in AKT phosphorylation. 

Filaggrin is produced as a long pro-protein which is proteolytically processed to a monomeric mature 

form. We observed reduction in total and processed monomeric filaggrin, (Figure 1f and g).   
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A single nucleotide polymorphism in RAPTOR in a retinoid x receptor binding site correlated with 

increased RAPTOR and decreased filaggrin and cathepsin H levels. 

To determine whether there were genetic changes that could lead to a change in RAPTOR expression 

levels in keratinocytes, we evaluated data from a previously published genome-wide association study63 

for any of the 649 single nucleotide polymorphisms (SNPs) in the RAPTOR gene that were over-

represented in AD. We were not expecting gene-wide significance (p<1x10-8) as RAPTOR 

overexpression also occurred in normal non-AD skin (Supplementary figure E3a). No SNPs were 

significantly over-represented, but we found an increased frequency in AD of one commonly observed 

(>1%) SNP. rs8078605 (C>T) is in an intronic region of RAPTOR in a region of DNA which according 

to ENCODE data4 includes a region of acetylated histones in keratinocytes only, suggestive of a 

keratinocyte-specific enhancer (Supplementary figure E3a), and a binding site for RXRalpha. The variant 

SNP abolished a key nucleotide of a putative Retinoid-X receptor alpha binding site. In 18 DNA samples 

examined, 3 heterozygotes and a single homozygote were found (representing a minor allele frequency of 

13.9, and 5.6% homozygotes, Supplementary figure E3b). The frequency of this variant allele in 

Europeans populations was 14% compared to 79% in sub-Saharan populations. This was of particular 

interest as other SNPs in non-coding parts of RAPTOR, with high prevalence in sub-Saharan populations 

compared to European populations, associated with putative retinoid binding sites that controlled the level 

of RAPTOR60. We therefore tested if RAPTOR itself was a retinoid responsive gene in human 

keratinocytes. Treatment of human keratinocytes with all-trans retinoic acid reduced RAPTOR expression 

levels (Supplementary figure E3c), suggesting that retinoids could control RAPTOR levels in 

keratinocytes. We therefore hypothesised that RXRalpha binding in the RAPTOR gene reduced RAPTOR 

expression, and that the rs8078605 C>T variant would lead to increased RAPTOR expression. High 

RAPTOR, low filaggrin protein levels and low Ctsh levels correlated with the presence of the T/T variant 

of rs8078605 (Supplementary figure E3d,e and f)  

Loss of AKT1 activity or expression leads to reduced filaggrin processing in keratinocytes 
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We assessed the effect of the PI3Kinase inhibitor wortmannin, which inhibits AKT1 phosphorylation on 

filaggrin expression and processing in human keratinocytes 46.Wortmannin treatment reduced the levels of 

the mature processed filaggrin monomer (Figure 2a). These observations suggest that PI3 kinase 

signalling through AKT1 was required for the proteolytic processing of filaggrin during late epidermal 

terminal differentiation. To test whether AKT1 loss was responsible for the observed changes in filaggrin 

expression after wortmannin treatment in keratinocytes, we transfected a rat epidermal keratinocyte line 

(REK), known to represent the end stages of terminal differentiation in confluent submerged culture47, 

with shRNA to rat Akt1 (Figure 2b and c). We could demonstrate a significant reduction in the levels of 

processed filaggrin monomer in four separate knockdown lines by Western blot, while levels of total 

filaggrin and filaggrin mRNA remained unchanged (Figure 2c, d and e). Organotypic skin equivalent 

cultures from these cells were hyperkeratotic compared to controls (Figure 2f). We could also 

demonstrate a reduction in filaggrin expression in these organotypic cultures (Figure 2f), with an antibody 

specific to the repeating mature monomeric form .These data suggest that while RAPTOR increase led to 

reduction in filaggrin expression, loss of the downstream kinase AKT1 or its activity resulted only in 

reduced filaggin processing. 

mTORC signalling-related proteins and proteases, principally Cathepsin H, are differentially 

expressed in Akt1 knockdown cells 

Differential gene expression analysis was performed on the knockdown REK lines with the greatest 

reduction in Akt1 (A1 and A3). 570 genes were significantly differentially expressed in both lines 

compared to scrambled controls (Figure 3a). Of these 59 genes had differential expression ≥1.5-fold and 

17 genes had differential expression ≥2-fold (Figure 3b; Supplementary table E4). Gene set enrichment 

analysis (GSEA; Supplementary figure E4a) identified 3 gene ontology groups over-represented in the 

analysis, Cholesterol homeostasis, Androgen response and consistent with a role downstream of 

RAPTOR, MTORC signalling (Figure 3c; Supplementary Figure E3b and c), Leading edge analysis 

identified 3 genes, IDI1, HMGCR and HMGCS1 in all three ontology groups. HMGCS1 was down-
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regulated in our AKT1 knockdown cells and in AD skin (Supplementary figure E4d and e; 14). We 

identified 3 down-regulated proteases or proteolysis-associated proteins in our Akt1 kd cell lines (Figure 

3d).  We confirmed down-regulation of the most highly downregulated of these, the lysosomal protease 

cathepsin H (Ctsh, 3-4 fold) by real-time PCR (Figure 3e) and Western blot (Figure 3f). Ctsh was of 

particular interest as other members of the cathepsin proteases have been implicated in filaggrin 

processing20,34,35. Ctsh was downregulated in human keratinocytes treated with wortmannin (Figure 3g), 

and was expressed in post-confluent cultured REKs coincident with terminal differentiation and AKT 

activity (Figure 3h). Reinforcing a potential role in the control of filaggrin processing, Ctsh was expressed 

co-incident with filaggrin in the granular layer of the epidermis and organotypic cultures, with a reduction 

of both filaggrin and Ctsh in the Akt1 shRNA expressing organotypic cultures (Figure 3i)  

Loss of cathepsin H inhibits filaggrin processing, not expression, and impairs epidermal barrier 

function. Evidence of compensation in the cathepsin H knockout 

Cathepsin H expression was decreased in non-lesional AD epidermis (Figure 4 and b), and was reduced in 

keratinocytes overexpressing RAPTOR (Figure 4c), suggesting that is was a downstream effector of the 

RAPTOR/AKT1 axis in atopic dermatitis. To investigate a potential role for cathepsin H in filaggrin 

processing, Ctsh expression was knocked down by shRNA in our rat epidermal keratinocyte model. In all 

4 shRNA knockdown lines examined there was a reduction of filaggrin processing without reduction in 

filaggrin mRNA levels (Supplementary figure E5a,b and c), consistent with our Akt1 knockdown data in 

REKs. There was a trend of reduction of median CTSH levels in the atopic dermatitis RNAseq analysis 

(Supplementary figure E5d;14) , however consistent with the lack of change in Filaggrin mRNA levels, 

there was no correlation between filaggrin levels and CTSH in AD (Supplementary figure E5e) 

Knockdown of both AKT1 and CTSH in human keratinocytes revealed the same reduction in filaggrin 

processing but no reduction in total filaggin protein levels (Figure 4d and e), strongly implying that the 

phenomenon we observed in the rat epidermal keratinocyte model was recapitulated in human 
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keratinocytes too, further reinforcing our finding that increase in RAPTOR decreased filaggrin 

expression, and knockdown of either AKT1 or CTSH resulted in impaired filaggrin processing only. 

Transient transfection of Ctsh into the Akt1 kd rat cell line rescued filaggrin processing (Figure 4f and g), 

suggesting that the loss of Ctsh was directly responsible for the reduction in filaggrin processing. 

To investigate the effect of Ctsh reduction in vivo, we examined newborn mouse skin from Ctsh -/- and 

+/- mice9 (Figure 5a and b) by histology. Although there was no change in epidermal thickness, the 

cornified layer was significantly thinner in both the Ctsh +/- and -/- mice. We observed no change in total 

filaggrin levels (Figure 5c and d) but increased loricrin levels in the Ctsh +/- and -/- mice by 

immunofluorescence (Figure 5e and f). Granular filaggrin expression was lost in the Ctsh +/- mice but 

was partially restored in the Ctsh -/- mice (Figure 5d). This was confirmed by western blot, where 

filaggrin processing was normal while expression of loricrin and keratin 10 was increased 

(Supplementary figure 7c).  In adult mice, in contrast, filaggrin and loricrin were reduced in expression in 

the Ctsh +/- mice and mostly restored in the Ctsh -/- mouse (Supplementary figure E7a) 

Dye penetration assays11 showed no significant gross barrier defects, but closer examination revealed 

penetration of dye into the cornified layers of the Ctsh +/- mice (Figure 5g) consistent with defective 

barrier function. Electron microscopy revealed smaller keratohyalin granules specifically in both the Ctsh 

+/- and -/- mice (Figure 5h and i), but the granule size in the -/- mice was partially rescued. This was 

reflected in a strengthening of cornified envelope integrity in Ctsh -/- mice compared to the weaker 

cornified envelopes in the Ctsh +/- mice (Figure 5j). 

We examined the expression of other cathepsins known to process filaggrin20,34,35, to determine if the 

rescue in the phenotype seen in the Ctsh -/- mouse was due to some kind of compensation by another 

cathepsin. We were unable to detect cathepins D and L in neonate skin, however the expression of 

cathepsin B was increased in both the knockout and heterozygous  mouse (Supplementary figure E6a), 
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suggesting that the rescue of physical barrier function was possibly due to the up-regulation of this 

filaggrin-processing protease. 

Ctsh-deficient mice show increase in dermal macrophages, mast cell degranulation and pro-

inflammatory molecule expression 

Defects in the physical barrier in AD result in an immune response38 which typically includes an increase 

in mast cell numbers and macrophages and lymphocyte infiltration27,33 .We saw no change in CD45 

positive cells (lymphocytes) in the dermis or epidermis of  either the Ctsh +/- or Ctsh -/- mice (Figure 6a; 

Supplementary figure E6b). Increased macrophage numbers in the skin are associated with filaggrin-

defective and barrier defective epidermis23,56. Consistent with this, macrophage (F4/80 positive cell) 

counts were increased in the skin of the Ctsh +/- and Ctsh -/- mice (Figure 6a and c). Mast cell 

degranulation, the release of histamine, proteases and other immune mediators, is a common phenomenon 

linked to the atopic phenotype28, and although overall mast cell number was unchanged, degranulation 

was increased in the skin of the Ctsh +/- and Ctsh -/- mice (Figure 6b and c). 

 To determine whether the skin was more pro-inflammatory we investigated cytokine and related protein 

expression by antibody array dot blot  in pooled lysates from whole skin from wild type, and polled Ctsh -

/- and +/- newborn mouse skin (Figure 6d). There was increase in the expression in a number of cytokines 

and soluble immune mediators, including interleukin 1-alpha (IL-1a), a protein known to be increased in 

barrier defective and eczema skin36 which was subsequently confirmed by immunofluorescence (Figure 

6d,e and f). Thymic stromal lymphopoietin (Tslp) expression induces atopic dermatitis in mouse models 

and is present in lesional atopic dermatitis skin58 . It also plays a key role in mast cell degranulation. 

however we saw no significant change in  Tslp expression in the epidermis of Ctsh -/- and +/- newborn 

and adult mouse skin, (Figure 6e and f). Taken together these data suggested that loss of Ctsh mediated by 

RAPTOR increase and AKT1 activity loss in AD leads to mild epidermal barrier disruption and the 

epidermis subsequently becomes more pro-inflammatory, and although some aspects of the physical 
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barrier are rescued in the knockout mouse, potentially due to compensation by cathepsin B and increased 

loricrin expression, the immune phenotype is not rescued (Figure 7). 

Discussion 

Although there has been a great deal of study of FLG mutations and their association with barrier 

disruption and AD, there are surprisingly few reports on variation of filaggrin protein levels and filaggrin 

processing41,49,55 . Here we show that increase in RAPTOR correlates with decrease in filaggrin 

expression and processing not only in AD but also in normal “unaffected” individuals. This is consistent 

with other work on filaggrin proteases in AD44 . Taken together these data strongly suggest that there 

would be value in assessing genetic variants in the normal population as a whole that correlate to barrier 

disruption and filaggrin expression and processing, and disregarding AD, as this may be a downstream 

consequence of the silent barrier disruption, that is potentially mediated by its own set of genetic 

associations21,29,63. 

Our analysis suggested that retinoids could be used as a treatment to reduce RAPTOR expression in AD 

and hence increase filaggrin expression and processing. Retinoids have been used to successfully treat 

eczema in a number of studies19,25,52. Typically around 50% of individuals respond to retinoid treatment19. 

Although the immunosuppressive properties of retinoids are cited as the cause of recovery, another reason 

could be the reduction of RAPTOR levels and subsequent increase in filaggrin expression and processing. 

Both cathepsin H and filaggrin have been reported previously as being up-regulated by retinoids, 

consistent with this hypothesis24,51. It would be interesting to investigate epidermal RAPTOR, cathepsin H 

and filaggrin levels and processing before and after treatment with retinoids and to determine if there is a 

different response in patients with different FLG phenotypes. A potential complication would be that 

treatment with all trans-retinoic acid or retinoic acid metabolism inhibitors can both inhibit and enhance 

epidermal terminal differentiation1,2,13,50, so the potential overall effect on epidermal barrier function 

would be hard to predict.  
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Interestingly, in the context of the skin barrier and RAPTOR, mTORC1 is a pH sensor, and at acidic pH, 

such as those encountered in the granular layer of the epidermis, mTORC1 is inhibited 3.  This should 

lower filaggrin expression, and would be balanced against filaggrin-derived urocanic acid and  

pyrrolidone carboxylic acid levels 62. Coupled with the fact that cathepsin H is a lysosomal protease, and 

therefore active at acidic pHs, it is likely that pH is one of the factors that determine overall levels of 

processed filaggrin. 

The skin of Akt1 null mice models and Akt1 knockdown organotypic cultures display hyperkeratosis with 

reduced cornified envelope strength and reduced filaggrin expression and processing47,61. Activation of 

Akt1 also results in hyperkeratosis and altered filaggrin expression32,47 demonstrating that normal Akt 

activity levels are required for correct filaggrin processing and hence epidermal barrier function. The new 

findings presented here reveal cathepsin H to be required for filaggrin processing and epidermal barrier 

formation, and that in the skin, RAPTOR regulates cathepsin H expression and filaggrin processing via 

reduced Akt signalling.   

Cathepsin H is expressed ubiquitously and as well as being involved in bulk protein degradation, it does 

display cell-specific functions such as its role in the processing and secretion of surfactant protein C in 

type II pneumocytes6,9. Ctsh deficient mice have reduced lung surfactant which may interfere with 

breathing mechanisms causing respiratory complications9 . Furthermore reduced Ctsh mRNA in airway 

smooth muscle cells has been reported in asthmatic individuals22 , suggesting the possibility that low 

levels of Akt signalling may, in a range of epithelia, contribute to progression of AD to other atopic 

disease, the so called “atopic march”10.  The finding that Ctsh is either directly involved or indirectly 

involved, through the activation of other proteases such as granzymes16, in the processing of key barrier 

proteins in the epidermis and in the lung leads to the possibility that the atopic march may not only be an 

immunological phenomenon, but could also be the result of altered barrier function in multiple epithelia. 
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Cathepsin H deficiency in vivo led to an increase in macrophage number and mast cell degranulation, and 

increased Il1a in the skin of Ctsh +/- and -/- mice. Cathepsin H overexpression typically correlates to 

macrophage infiltration and a proinflammatory environment in a number of tissues 39,42. Therefore it is 

likely that the loss of Ctsh leads to an increase in other cathepsins, such as with our observation of 

increased cathepsin B, which may have a proinflammatory role, and is known to play an important role in 

processing of mast cell proteases16,40 . It is therefore possible that the immune changes are driven by the 

increased cathepsin B in both Ctsh +/- and -/- mice. The interplay between these proteases and inhibitors 

and how this relates to the levels of filaggrin and other related (fused-S100 group) proteins and their 

processing and subsequently the pro-inflammatory status of the skin in AD is difficult to dissect. This was 

apparent by the lack of correlation between filaggrin levels and a cathepsin H in AD patients.  However 

understanding how overall filaggrin protease activity levels are altered in atopic skin would provide 

targets to treat both the barrier and immune aspects of AD.  

Individuals with two loss-of-function mutations in FLG (compound heterozygotes) show the greatest 

increase in risk of AD8,53, and gene expression differences in these individuals is greater than in FLG 

heterozygote and wild type individuals14, which allowed for the detection of statistically significant 

differentially expressed genes correlated with RAPTOR expression.  Consistent with our work in vitro, 

high levels of RAPTOR correlated with low levels of filaggrin expression, and AKT signalling 

components. Taken together our findings make a convincing case for the role of RAPTOR in regulating 

genes, including FLG, that are important in the AD phenotype. Also this work suggests that rapamycin or 

retinoid treatment could be of benefit in these individuals with filaggrin haploinsufficiency and severe 

AD. 
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Materials and Methods 

Animals: Cathepsin H (Ctsh) knock-out and heterozygote mice were generated as previously described9 

and backcrossed onto the C57BL/6J background for eight generations. Ctsh-/-  ,Ctsh+/- mice and wild-type 

littermate controls were bred under SPF conditions in accordance with the German law for Animal 

Protection (Tierschutzgesetz) as published on 25 May 1998. 3 day old (neonate) mice were obtained from 

5 litters and 6 month old (adult) mice were obtained from two separate litters. A maximum of 5 wild-type, 

8 Ctsh+/- and 10  Ctsh-/-   neonate mice and 3 of each phenotype of adult mice were used in all analyses, 

blinding was not used in the assessment of the mouse skin 

siRNA knockdown, Cell and Organotypic culture, mouse tissue  

Four shRNA plasmids (Qiagen) were used to knockdown Akt1 expression (shRNA1-

GCACCGCTTCTTTGCCAACAT, shRNA2-AAGGCACAGGTCGCTACTAT, shRNA3-

GAGGCCCAACACCTTCATCAT, shRNA4-GCTGTTCGAGCTCATCCTAAT), and of these 1 and 3 

were used for further experiments. Ctsh knockdown was successfully achieved by transient transfection 

with two shRNA plasmids (shRNA1-CAAGAATGGTCAGTGCAAATT ; shRNA3-

CTAGAGTCAGCTGTGGCTATT).  The following scrambled control was used 

GGAATCTCATTCGATGCATAC. Akt1 and Ctsh shRNA knockdown plasmids were transfected into rat 

epidermal keratinocyte (REK) cells47 using lipofectamine (Invitrogen) according to manufacturer’s 

instructions. Mycoplasma-testing was performed prior to the experiments. Cells were cultured and G418 

(Gibco) selection was performed as previously described47. The organotypic cultures were either 

embedded in OCT for frozen sections, or paraffin embedded.  Drug treatments with ATRA (10µM. Fisher 

Scientific) or Wortmannin (2µM, Sigma), were for 24 hours. Dorsal skin was removed from neonatal 

(Postnatal day 3)  Ctsh +/+, +/- and -/- mice  for subsequent analyses 

Lentiviral shRNA knockdown in human keratinocytes 
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2x105 lentiviral particles (scrambled control, AKT1shRNA and CTSHshRNA, Santa Cruz Biotechnology) 

were incubated for 24 hours with 50-70% confluent mycoplasma-free keratinocytes grown in Gibco 

serum-free keratinocyte culture medium (Invitrogen) in a 12 well plate. Cells were trypsinised and 

selected by puromycin selection for 2 weeks as per manufacturer’s instructions. Cells were subsequently 

calcium switched at 2.4mM CaCl2 for 4 days prior to investigation by western blotting of AKT1, CTSH 

and Filaggrin. 

Western blot and antibodies  

Keratinocyte protein lysates and skin protein lysates from commercially available skin samples 

(Caltagmedsystems) were prepared by boiling in a denaturing SDS buffer (2% 2-mercaptoethanol, 2% 

SDS, 10mM Tris pH 7.5) for 10 minutes. For the cytokine arrays, Suspensions of T25 Ultra-Turrax (IKA) 

homogenised neonatal mouse skin was spun down and the suspensions from 2 Ctsh +/+, +/- and -/-  

mouse skin samples were pooled and used on the cytokine array panel A (RandD Systems) according to 

manufacturers’ instructions. Densitometry of ECL exposures of cytokine arrays and western blots where 

appropriate were performed using the ImageJ software. Briefly, this was achieved by inverting the 

monochrome image, removing the background, thresholding the image and then measuring the 

thresholded bands, then the integrated density (pixel value x band area) was used as a measure of band 

intensity, which is subsequently normalized by a loading control (Gapdh). Antibodies used were rabbit 

anti-RAPTOR (24C12) (Cell Signalling Technologies, 1/500),Rabbit anti- filaggrin (M-290) (Santa Cruz 

Biotechnologies #sc-30230, 1/500), Mouse anti-c-Myc (9E10) (1/500, Sigma), Mouse anti-FLAG (1/100,  

F1804 Sigma), Rabbit anti-Rictor (Cell Signalling Technologies #2140, 1/500), Rabbit anti pSerine473 

Akt (Cell Signalling Technologies #9271, 1/500), Mouse anti Akt-1 (2H10) (Cell Signalling 

Technologies #2967, 1/500), Mouse anti Gapdh (1/2000, AB2303 Millipore) Rabbit anti-Loricrin 

(Covance PRB-145P, 1/1000), Rabbit anti-Keratin 10 (Covance PRB-140C, 1/1000), Rabbit anti-

Interleukin 4 (Abcam ab9622 ,1/500)  and cathepsin H (H-130) (1/500, sc-13988 Santa Cruz 

Biotechnologies). Primary antibody incubations were in PBS+0.1% Tween-20 or in TBST (100mM Tris 
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HCl, 0.2M NaCl, 0.1% Tween-20 (v/v) containing either 5% bovine serum albumin (Sigma, Gillingham, 

UK) or 5% skimmed milk powder either overnight at 4oC or for 1-2 h at room temperature, while 

secondary antibody incubations were in 5% skimmed milk powder for 1 h at room temperature. The 

following concentrations were used; swine anti rabbit-HRP (DakoCytomation) 1:3000; rabbit anti mouse 

HRP (DakoCytomation) 1:2000. Protein was visualized using the ECL plus kit (Amersham). 

Immunofluoresence, Immunohistochemistry and eczema and unaffected samples  

Clinical material was obtained with informed written consent from patients attending dermatology clinics 

at Great Ormond Street Hospital, Ethical approval was granted by the local research ethics committee. 

Normal paraffin embedded skin samples were obtained from a commercially available tissue microarray 

(BioMax), all tissue samples were from non-flexural areas. Immunohistochemistry and 

Immunofluorescence on paraffin and frozen sections were by standard techniques. Antibodies used were 

RAPTOR (24C12) (Cell Signalling Technologies, 1/50), Mouse anti-filaggrin (Genetex GTX23137, 

1/50), Cathepsin H (H-130) (Santa Cruz Biotechnologies sc-13988, 1/50), Rabbit anti F4/80 (Bio-Rad 

AbD SeroTec CL:A3:1), Rabbit anti-Loricrin (Covance PRB-145P 1/200), Rabbit anti-Il1a  (H-159) 

(Santa Cruz Biotechnology sc-7929, 1/50), Rabbit anti-cathepsin B (Biovision 3190-100, 1/25), Rabbit 

anti-Tslp (Thermo PA5-20321, 1/25), Rabbit anti-CD45 [EP322Y] (Abcam ab40763,  1/25). Primary 

antibodies were detected using Alexa 488 and 594-conjugated goat anti mouse and anti-rabbit (Invitrogen, 

1/500). Cells and Sections were counterstained with 4’,6-diamidino-2-phenylindole (DAPI, Sigma). 

Images were taken with a Leica Upright Microscope with either x20 (NA 0.4) or x40 (NA 1.40) 

objectives, using a Coolsnap digital camera (MediaCybernetics, Bethesda, Maryland), with the ImagePro 

6.0 software (MediaCybernetics, Bethesda, Maryland). Immunofluoresence intensity was measured using 

imageJ (https://imagej.nih.gov/ij/)  to determine the integrated density on a thresholded image after 

processing to remove background. 

RNA extraction and microarray analysis 
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0.1 mg RNA was extracted from two scrambled REK lines, and 2 biological replicates of each Akt1 

shRNA knockdown , and poly-A+ RNA was selected using the Oligotex system (Qiagen). RNA was 

extracted from the two Ctsh knockdown REK lines using the same approach. Second-strand cDNA was 

synthesized using the Superscript II kit (Invitrogen, Carlsbad, New Mexico) after the  RNA was annealed 

with a T7 promoter-poly-T primer (Genset, Evry, France). Biotin-labelled cRNA was made from this 

cDNA (Enzo Diagnostics, Farmingdale, New York). The whole probe was hybridized to the exon array 

rat genome chip (Affymetrix, Santa Clara, California) according to the manufacturers’ specifications. The 

scrambled controls cells were the base line in all analyses. Genes that were tagged as present and 

increased in all six analyses with a p-value of less than or equal to 0.05 by Mann–Whitney analysis, a p-

value less than 0.05 after Benjamini-Hochberg False Discovery Rate correction and 1.5 fold  or more 

altered in expression, were regarded as differentially expressed. Supervised analysis of over-represented 

genes was performed by inputting lists of differentially expressed genes into the Gene Set Enrichment 

Analysis program (http://software.broadinstitute.org/gsea/index.jsp)  

Electron Microscopy 

Transmission electron microscopy (EM) was performed on wt littermates and Ctsh heterozygous and null 

mouse tissue (n=2 each genotype). Normal EM protocols were used. Briefly tissues were fixed overnight 

in glutaraldehyde, with post fixation in 1% Osmium tetroxide in 100mM phosphate buffer for 2 hours at 

4oC. En bloc staining with 2% aqueous uranyl acetate was performed for 2 hours, prior to embedding and 

the cutting of semi thin sections and sections for EM grids. 

Realtime PCR 

Rat cathepsin H and filaggrin message levels were measured using gene-specific Quantitect primers 

(Qiagen) and SYBR green (Qiagen) and ∆∆CT relative quantification 
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Sonication Assay for cornified envelopes and Haemotoxilin Dye Penetration Assays 

Cornified envelopes were extracted from the neonatal mouse skin by boiling for 10 min in (50 mm Tris-

HCl, pH 7.5, 2% SDS, 5 mm EDTA). Cornified envelopes were pelleted by centrifugation and washed in 

cornified envelope washing buffer (10 mm Tris-HCl in 0.1% SDS). After resuspension, envelopes were 

counted by haemocytometer. After sonication with a probe sonicator for 5x1 second pulses, the intact 

envelopes were counted and expressed as a % of the unsonicated total. The haemotoxlin penetration assay 

on neonate mouse skin and subsequent sectioning has been described previously 11. 

Correlation Analysis of RAPTOR in Human Expression Data and code availability 

Skin biopsies from non-lesional, non-flexural skin biopsies from 26 AD patients and 10 non-atopic 

controls of known FLG genotype, (FLG wildtype (n=7), FLG heterozygous (n=12), and FLG compound 

heterozygous (n=7)) were taken, the RNA extracted and the direct RNA sequencing reads were processed 

as described previously14. The mean expression for each gene was determined across the three FLG 

genotypes in the samples (wild type, heterozygous and compound heterozygous) and correlated to 

RAPTOR’s expression using Pearson’s method. Any genes which have an r close to 1 or -1 are the most 

likely candidates to be co-regulated with RAPTOR under the FLG genotype background. In order to avoid 

genes with low counts having spurious correlations, only genes with a total mean expression across the 

three genotypes >25 reads were considered (n=9708). 

A significance value for the correlations can be calculated. Firstly the t statistic can be determined for 

gene i as: 

�� = �� . � � − 21 − ��� 

where ri is the Pearson’s correlation and n is the number of genotypes per gene (here, n=3) which 

determines the degrees of freedom (n – 2). Given ti  and the degrees of freedom, a p-value can be 

calculated from the standard t-distribution using the ‘pt’ function in R (v3.1.3). p-values are quoted 
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unadjusted. The code for this analysis is available from Github 

(https://github.com/drchriscole/eczemaDRS). All genes with a correlation p-value <0.05 and a log2 fold-

change >0.5 or <-0.5 in the wild-type versus compound heterozygote comparison were considered for 

further investigation using STRING (http://string-db.org/)   

Restriction fragment length polymorphism analysis 

RFLP analysis was performed on 18 skin samples. DNA was extracted by DNA mini spin kit (Qiagen) 

according to manufacturers’ instructions. The rs8078605 polymorphism introduced a BsmAI site into the 

locus. F- CACCGCATTTGCTCTTACAA and R- CCTACACATGGTCCTTCATCC (Tm 60oC) primers 

produced a 454bp amplicon. The T variant after BsmAI digestion gives a 203bp and 251bp product. 

Statistical analysis 

For qPCR and the analysis of normalised data from western blots, t-test or one way ANOVA were used. 

For all other analyses non-parametric tests were performed, Kruskal-Wallis with Dunnett post-hoc testing. 

Specific analyses are also identified in the figure legends 

 

Acknowledgements 

We acknowledge UCL genomics for the gene array hybridisation and subsequent analysis. We thank the 

Electron Microscopy units of Queen Mary University of London and UCL for the transmission electron 

microscopy analyses. RO is funded by the Great Ormond Street Hospital Children’s Charity, AN is 

funded by a British Skin Foundation studentship (2018s). CC is funded as part of the Centre for 

Dermatology and Genetic Medicine, University of Dundee Wellcome Trust Strategic Award 

(098439/Z/12/Z). Sara B is supported by a Wellcome Trust Senior Research Fellowship in Clinical 

Science (106865/Z/15/Z) and a research grant from the Manknell Charitable Trust. 

Author Contributions 



M
ANUSCRIP

T

 

ACCEPTE
D

ACCEPTED MANUSCRIPT

22 

 

RO, W-L D, AN and TR conceived and designed the experiments. RO, AN, CT, BW, Stuart B and YZ 

performed experiments. WOC, MFM, SAGW-O provided the complete GWAS data for the RAPTOR 

gene. Sara B and CC provided data from gene expression analysis of AD, and performed gene expression 

correlation analysis. TR bred the Ctsh -/+ and -/- mice and prepared tissues.  The manuscript was written 

by RO, JH, AN, CC, TR and Sara B. All authors have read and approved the final version of this 

manuscript. 

Competing Financial Interests Statement 

There are no competing financial interests associated with this manuscript. 

  



M
ANUSCRIP

T

 

ACCEPTE
D

ACCEPTED MANUSCRIPT

23 

 

Figure Legends 

Figure 1: Increased RAPTOR expression correlated with reduced filaggrin expression in 

keratinocytes and AD skin (a) filaggrin, pSerAKT and Raptor Immunofluoresence in normal (n=3) and 

unaffected AD skin (n=5). (b) Image analysis of filaggrin, pSerAKT in normal and unaffected AD skin. 

Error bars are s.d. (c) RAPTOR expression from RNAseq analysis in Cole et al., 201414. Box shows 

median and interquartile ranges for wildtype controls and atopic dermatitis (AD) of the 3 FLG genotypes, 

(d) Scatterplots showing Fold-change and correlation of differentially expressed genes (FDR p< 0.05) 

with RAPTOR. Filaggrin (FLG) is orange. (e) Graph of fold-change of highly correlated and anti-

correlated genes in the FLG compound heterozygotes (FC Cmpd) and heterozygotes (FC Het). (f) 

Western blot of pAkt, Total AKT and filaggrin in RAPTOR overexpressing keratinocytes. Boxes indicate 

total filaggrin and filaggrin monomer for densitometry (g) Graph of densitometry of (f), n=2. Gapdh is 

loading control. *p<0.05 (b). Bars 50µm (a) 
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Figure 2: Loss of Akt1 leads to loss of filaggrin expression and hyperkeratosis in skin-equivalent 

organotypic cultures. (a) Western blot of Akt, pSerAkt, Filaggrin in human keratinocytes treated with 

2µM Wortmannin or vehicle (DMSO) for 24 hours n=2 (b) Western blot of pSerAkt and Akt1 in Akt1 

knockdown keratinocytes. (c) Western blots of Akt1, Filaggrin, keratin 10 and Loricrin in all Akt1 

shRNA expressing lines, Gapdh is loading control.  (d) Real time PCR analysis of filaggrin expression in 

Akt1 shRNA expressing lines. (e) Graph of mean densitometry of Akt1, total filaggrin and filaggrin 

monomer, loricrin and keratin 10 in Western blots of Akt1 shRNA knockdown cells (red bars) compared 

with scrambled (blue bars) (f). Histology and immunofluorescence of Akt1, and filaggrin in Akt1 shRNA 

expressing organotypic cultures (n=4).  Bars 50µm (f). *p<0.05, **p<0.005, Unpaired T-Test. Error bars 

are s.d. 
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Figure 3: Cathepsin H, is a differentiation-dependent protease co-expressed with filaggrin. (a) Heat 

map of differential gene expression between two Akt1 kd and scrambled control keratinocytes. Blue, 

down-regulated, Yellow, up-regulated. (b) Graph of highly differentially expressed genes (DEGs) 

including Cathepsin H (Ctsh). (c and d) Heat maps of DEGs involved in mTORC signalling (c) and 

proteases (d). (e) qPCR analysis of Ctsh in Akt1 kd cell lines. Bars show s.d. ** p < 0.01 (2-Way 

ANOVA). (f) Western blot of Ctsh in Akt1 kd cells and control (scram) cells. (g) Western blot of CTSH, 

pAKT and total AKT in human keratinocytes treated with wortmannin (WORT) or vehicle (DMSO) (h) 

Western blot of pre and post-confluent REKs for pSerAKT, Ctsh and keratin 1. (i) Co-

immunofluoresence of Ctsh and filaggrin. Gapdh is loading control in all western blots, bar 50µm (i) 
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Figure 4: Cathepsin H is a filaggrin processing protease controlled by Raptor and AKT1. (a) Ctsh  

Immunofluoresence in normal and unaffected AD skin (n=5) (b) Graph of Ctsh fluorescence intensity. 

Error bars are s.d. (c) Western blot of Ctsh in RAPTOR over-expressing REKs. (d) Western blot AKT1, 

filaggrin and Ctsh of AKT1 and CTSH kd human keratinocytes (NHEKs). (e)  Graph of mean 

densitometry of Akt1, total filaggrin and filaggrin monomer and Ctsh. (f) Western blot of Filaggin and 

Ctsh in Akt1 kd REKs transiently transfected with Ctsh or empty vector. (g) Graph of mean densitometry 

for total filaggrin and filaggrin monomer. 2 separate experiments are shown*p<0.05, **p<0.005, 

Unpaired T-Test (e,g). Gapdh is loading control for western blots, bar 50µm (a) 
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Figure 5: Reduced filaggrin processing and impaired epidermal barrier in Cathepsin H deficient 

mouse skin. (a). Histology of Ctsh -/-, Ctsh +/- , and wt mouse neonatal skin (n=5,8 and 10 respectively) 

(b) Graph of stratum corneum thickness. (c) Filaggrin immunofluoresence. Inset shows granular layer 

detail (d) Graph of filaggrin immunofluorescence (upper) and for occurrence (counts) of granular 

filaggrin expression (lower) (e) loricrin immunofluorescence. (f) Graph of loricrin immunofluorescence 

intensity (g) Haemotoxylin dye penetration. (h) Electron microscopy of keratohyalin granules ‘k’ 

,keratohyalin granules (i) Graph of Keratohyalin granule size (j) Sonication analysis of cornified 

envelopes. Bars and boxes shows median and interquartile range (i,j)  *p<0.05, **p<0.05 #p<0.05 Fishers 

exact test (d).  Bars 50µm (a,c and g), 2µm (h) 
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Figure 6: Loss of Cathepsin H increases skin macrophages, mast cell degranulation and 

proinflammatory molecule expression. (a) Immunofluorescence of macrophages (F4/80 +ve) in wt, 

Ctsh -/- (ko) and Ctsh +/- (het) mouse neonatal skin  (b) toluidine blue staining. (c) Graph of average 

F4/80 +ve cell, mast cell counts and % degranulating mast cells per field of view. (d) Densitometry of the 

cytokine arrays incubated with pooled lysates from 2 Wt (WT), and 2 Heterozygous or knockout mice 

(Het/Ko). (e) Il1a, and Tslp immunofluorescence. (f) Graph of immunofluorescence intensity of Tslp and 

Il1a.   Bars 50µm (a,b and e). *p<0.05, **p<0.005 (c and f) 
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Figure 7: The mTORC/AKT1/Cathepsin H axis in the control of the physical and immune skin 

barrier. The variant SNP rs 8078605 prevents RXR binding to the putative intragenic enhancer in 

RAPTOR, potentially increasing RAPTOR expression which itself reduces filaggrin expression. This 

increases the ratio of mTORC1 to mTORC2, reducing Akt1 phosphorylation. This leads to reduced 

Cathepsin H expression and decreases filaggrin processing. Up-regulation of other filaggrin processing 

proteases in response, such as Cathepsin B, not only leads to rescue of barrier function but also causes 

macrophage infiltration, mast cell activity and pro-inflammatory cytokine expression 
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Supplementary table E1 

Patient information for the 5 AD patients from Great Ormond Street Hospital. Location of 

biopsy for the non-lesional samples. Previous treatment, AZA, azathioprine; CSA cyclosporine 

Patient Sex Age Location of Biopsy Previous Treatment 

1 F 13 R Waist oral steroid and AZA 

2 M 13 L Arm AZA 

3 M 13 L Thigh AZA 

4 F 12 R Upper leg AZA and CSA 

5 M 11 Lower Back No systemic treatment 

 

Patient information for the Cole et al, cohort14: biopsies were taken from the non-lesional skin (the 

upper buttock with no clinical signs of active inflammation) of children aged 6 to 16 years who had 

early onset, persistent and severe atopic eczema. The 10 controls were non-atopic individuals ie no 

eczema, asthma or hay fever. Severity measurement is by physician global assessment 

 

severity 

at time 

of 

biopsy 

    

 
mild moderate severe not recorded total 

FLG wt 1 4 2 0 7 

FLG het 3 4 4 1 12 

FLG compound het 1 2 3 1 7 

Total 5 10 9 2 26 
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Supplementary table E2: List of the 84 genes strongly correlated or anti-correlated with RAPTOR 

expression levels in unaffected compound heterozygote AD patient skin that are significantly 

differentially expressed in Cole et al 201414, GeneName, official HUGO nomenclature, WT, Het and 

Cmpd, are mean normalised expression levels of WT, Heterozygote and Compound Heterozygote 

respectively, s.d are the standard deviations of each cohort. Cor, Pearson correlation coefficient. FC 

fold change, pval is the p value after correction for multiple testing 

 

Gene Description WT Het Cmpd WT.sd Het.sd Cmpd.sd cor FC logFC pval 

PTPRC protein tyrosine 
phosphatase, receptor 
type, C  

6.6 11 16 3 14 21 1 2.5 1.3 0.0079 

IRF1 interferon regulatory 
factor 1  

18 30 43 6.9 44 73 1 2.4 1.3 0.012 

ISG15 ISG15 ubiquitin-like 
modifier  

12 19 27 5.1 35 45 1 2.3 1.2 0.023 

HAPLN3 hyaluronan and 
proteoglycan link 
protein 3  

7.2 11 14 2 12 19 1 1.9 0.91 0.023 

TIMM22 translocase of inner 
mitochondrial 
membrane 22 homolog 
(yeast)  

9.6 13 17 3.6 6.5 11 1 1.8 0.84 0.0074 

CKAP2 cytoskeleton associated 
protein 2  

15 20 26 2.9 7.3 6.5 1 1.7 0.78 0.0013 

CARD10 caspase recruitment 
domain family, member 
10  

12 16 21 5.6 5.6 8.1 1 1.7 0.78 0.014 

TAP2 transporter 2, ATP-
binding cassette, sub-
family B (MDR/TAP)  

38 47 62 7.9 33 61 1 1.7 0.73 0.031 

TRIM22 tripartite motif 
containing 22  

28 39 47 4.7 52 63 0.99 1.7 0.76 0.049 

DBF4 DBF4 zinc finger  8 10 13 3.3 2.7 2.4 1 1.6 0.7 0.0071 
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UBE2L6 ubiquitin-conjugating 
enzyme E2L 6  

25 32 38 8.6 24 37 1 1.5 0.59 0.0085 

SNX11 sorting nexin 11  8.3 10 12 1.5 2.5 2.9 1 1.5 0.55 0.009 

GXYLT1 glucoside 
xylosyltransferase 1  

7.2 8.6 10 2 2.2 3.2 1 1.5 0.54 0.0096 

IFI27 interferon, alpha-
inducible protein 27  

190 230 280 140 340 450 1 1.5 0.54 0.011 

PSMB10 proteasome (prosome, 
macropain) subunit, 
beta type, 10  

13 16 19 4.2 12 17 1 1.5 0.57 0.015 

LCP2 lymphocyte cytosolic 
protein 2 (SH2 domain 
containing leukocyte 
protein of 76kDa)  

8.2 9.8 12 2.1 8.1 8.3 1 1.5 0.56 0.023 

PARP9 poly (ADP-ribose) 
polymerase family, 
member 9  

31 40 48 12 46 54 1 1.5 0.62 0.024 

NUAK2 NUAK family, SNF1-
like kinase, 2  

18 23 27 11 12 13 1 1.5 0.55 0.026 

KCNK1 potassium channel, two 
pore domain subfamily 
K, member 1  

30 37 44 7 9.2 6.7 0.99 1.5 0.55 0.035 

HLA-DOA major 
histocompatibility 
complex, class II, DO 
alpha  

13 15 18 3.4 6.9 13 1 1.4 0.51 0.012 

PRAF2 PRA1 domain family, 
member 2  

19 16 14 4.3 3.4 4.4 -1 0.71 -0.5 0.025 

NOV nephroblastoma 
overexpressed  

53 46 37 16 14 8.9 -1 0.7 -0.51 0.0049 

ZBTB14 zinc finger and BTB 
domain containing 14  

13 11 9 3.6 2.8 2.2 -1 0.7 -0.52 0.017 

ENTPD4 ectonucleoside 
triphosphate 
diphosphohydrolase 4  

18 15 12 3.6 3 2.9 -1 0.7 -0.52 0.022 

SLC9B2 solute carrier family 9, 
subfamily B (NHA2, 

17 15 12 5.2 3.7 3.1 -1 0.7 -0.51 0.026 
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cation proton antiporter 
2), member 2  

TPM2 tropomyosin 2 (beta)  110 90 75 66 40 21 -1 0.7 -0.52 0.028 

LAMA3 laminin, alpha 3  19 16 13 9.2 3.8 5.1 -1 0.7 -0.52 0.041 

RHOU ras homolog family 
member U  

17 14 12 7.4 5.8 3.5 -1 0.7 -0.51 0.046 

ABHD4 abhydrolase domain 
containing 4  

11 9.8 7.9 1.7 2.3 1.7 -1 0.69 -0.54 0.0028 

MXRA8 matrix-remodelling 
associated 8  

21 18 15 8.3 5.4 4.7 -1 0.69 -0.54 0.01 

CD1A CD1a molecule  31 26 21 12 8.7 9.5 -1 0.69 -0.53 0.021 

RNF152 ring finger protein 152  43 36 30 7.6 8.9 6.8 -1 0.69 -0.53 0.024 

CLDN10 claudin 10  13 11 8.7 9.5 5.7 5.5 -1 0.68 -0.56 0.032 

GPR137 G protein-coupled 
receptor 137  

11 8.9 7.4 3.6 2.3 3 -1 0.68 -0.55 0.04 

ZDHHC11 zinc finger, DHHC-type 
containing 11  

29 24 20 16 12 12 -1 0.68 -0.56 0.041 

RP11-
613D13.4 

none 28 25 19 17 8 6.6 -1 0.68 -0.56 0.045 

LPCAT1 lysophosphatidylcholine 
acyltransferase 1  

15 12 10 4.2 3.8 3.2 -1 0.68 -0.56 0.046 

DCLK1 doublecortin-like kinase 
1  

18 16 12 9.7 7.1 7 -1 0.68 -0.55 0.049 

MT-ND1 mitochondrially 
encoded NADH 
dehydrogenase 1  

360 310 240 92 91 40 -1 0.67 -0.57 0.0023 

NCALD neurocalcin delta  38 33 25 16 12 10 -1 0.67 -0.58 0.017 

NNMT nicotinamide N-
methyltransferase  

30 26 20 13 14 6.6 -1 0.67 -0.57 0.017 

WNK2 WNK lysine deficient 
protein kinase 2  

12 11 8.4 3.8 4 4 -1 0.67 -0.57 0.019 

PIGV phosphatidylinositol 
glycan anchor 
biosynthesis, class V  

11 9.6 7.4 1.7 3.5 2.9 -1 0.67 -0.58 0.022 
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CCNG2 cyclin G2  27 24 18 11 8.1 11 -1 0.67 -0.58 0.036 

PRELP proline/arginine-rich 
end leucine-rich repeat 
protein  

60 49 40 23 8.1 11 -1 0.67 -0.57 0.041 

C11orf96 chromosome 11 open 
reading frame 96  

28 25 19 17 8 6 -1 0.67 -0.58 0.049 

FLNC filamin C, gamma  13 11 8.3 5.9 3.8 4 -1 0.66 -0.59 0.0016 

SNED1 sushi, nidogen and 
EGF-like domains 1  

11 9.8 7.6 5.5 4.2 3.9 -1 0.66 -0.59 0.0072 

FMOD fibromodulin  32 28 21 13 9.1 6.7 -1 0.66 -0.6 0.028 

MT-ND5 mitochondrially 
encoded NADH 
dehydrogenase 5  

630 550 410 300 240 180 -1 0.66 -0.61 0.035 

TLE2 transducin-like 
enhancer of split 2  

13 12 8.6 4.3 3 3.5 -1 0.66 -0.6 0.049 

UTY ubiquitously transcribed 
tetratricopeptide repeat 
containing, Y-linked  

13 11 8.6 5.2 6.9 5.4 -1 0.65 -0.62 0.015 

CYBA cytochrome b-245, 
alpha polypeptide  

11 9.3 7.3 3.3 4.8 7.1 -1 0.65 -0.63 0.021 

KLF9 Kruppel-like factor 9  60 49 39 36 18 12 -1 0.64 -0.65 0.023 

ZDHHC11B zinc finger, DHHC-type 
containing 11B  

26 23 17 17 12 8.3 -1 0.64 -0.64 0.032 

THBS1 thrombospondin 1  32 25 20 19 9 6.6 -1 0.64 -0.65 0.039 

CRELD1 cysteine-rich with EGF-
like domains 1  

22 17 14 6.7 3 4.7 -1 0.64 -0.65 0.046 

RAI2 retinoic acid induced 2  15 13 9.6 3.9 4.7 4.6 -1 0.63 -0.68 0.021 

NOVA1 neuro-oncological 
ventral antigen 1  

20 17 12 5 5.6 6.2 -1 0.63 -0.67 0.046 

EBF1 early B-cell factor 1  19 16 12 8.8 6 3.3 -1 0.62 -0.68 0.014 

FAM13A family with sequence 
similarity 13, member 
A  

39 31 24 33 11 5.1 -1 0.62 -0.7 0.014 

HNMT histamine N- 19 15 12 4.3 5 5.2 -1 0.62 -0.68 0.036 
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methyltransferase  

ZG16B zymogen granule 
protein 16B  

49 38 30 32 15 12 -1 0.62 -0.69 0.043 

IGF2 insulin-like growth 
factor 2  

21 17 13 12 6.7 3.8 -1 0.61 -0.7 0.0099 

MT-CO1 mitochondrially 
encoded cytochrome c 
oxidase I  

460 370 280 120 140 59 -1 0.61 -0.71 0.016 

HOTAIR HOX transcript 
antisense RNA  

13 11 7.8 7.4 3.3 5.4 -1 0.6 -0.73 0.0056 

MXRA7 matrix-remodelling 
associated 7  

15 12 9.1 5.4 3.2 2.7 -1 0.6 -0.74 0.013 

INSR insulin receptor  14 12 8.7 7.8 3.4 5.3 -1 0.6 -0.73 0.024 

LIG1 ligase I, DNA, ATP-
dependent  

15 12 8.7 3.1 5.3 3.5 -1 0.6 -0.75 0.031 

SPRN shadow of prion protein 
homolog (zebrafish)  

14 11 8.2 5.3 6.1 4.6 -1 0.58 -0.79 0.027 

HRH1 histamine receptor H1  11 9.4 6.3 5.6 4.7 3.4 -1 0.58 -0.78 0.047 

RGCC regulator of cell cycle  74 58 42 29 25 11 -1 0.57 -0.8 0.012 

PRR4 proline rich 4 (lacrimal)  54 40 30 60 69 24 -1 0.56 -0.83 0.05 

S100P S100 calcium binding 
protein P  

62 47 34 18 17 24 -1 0.54 -0.89 0.026 

IGFBP6 insulin-like growth 
factor binding protein 6  

84 65 45 40 21 8.3 -1 0.53 -0.91 0.0075 

MUCL1 mucin-like 1  460 350 240 290 190 200 -1 0.53 -0.92 0.028 

KIAA1841 KIAA1841  21 17 11 8.3 4.9 3.6 -1 0.5 -1 0.017 

MT-CO2 mitochondrially 
encoded cytochrome c 
oxidase II  

110 89 54 36 53 19 -1 0.5 -0.99 0.043 

C2orf74 chromosome 2 open 
reading frame 74  

19 15 8.5 8.2 5.2 3.1 -1 0.46 -1.1 0.044 

HSPB6 heat shock protein, 
alpha-crystallin-related, 
B6  

24 19 10 14 7.6 6.8 -1 0.43 -1.2 0.04 
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CYP4B1 cytochrome P450, 
family 4, subfamily B, 
polypeptide 1  

22 14 8.6 13 6.8 4.2 -1 0.4 -1.3 0.042 

CILP cartilage intermediate 
layer protein, nucleotide 
pyrophosphohydrolase  

33 25 11 18 19 7.9 -1 0.32 -1.6 0.032 

FLG filaggrin  3300 1900 920 680 460 270 -1 0.28 -1.8 0.044 

SCGB1D2 secretoglobin, family 
1D, member 2  

110 61 30 63 65 17 -1 0.28 -1.8 0.049 
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Supplementary Table E3 Concordance of the top 22 highly expressed and differentially expressed 

genes strongly correlated or anti-correlated with RAPTOR expression with gene whose expression 

level correlated with FLG expression levels14 in unaffected compound heterozygote AD patient skin 

that are significantly differentially expressed, Gray denote either positive or negative correlation in 

both analyses. GeneName, official HUGO nomenclature, WT, Het and Cmpd, are mean normalised 

expression levels of WT, Heterozygote and Compound Heterozygote respectively, s.d are the standard 

deviations of each cohort. Cor, pearson correlation coefficient. FC fold change, pval is the p value 

after correction for multiple testing 

Gene Description WT Cmpd FC logFC pval 

TAP2 
transporter 2, ATP-binding cassette, sub-family B 
(MDR/TAP)  38 62 1.7 0.73 0.031 

TRIM22 tripartite motif containing 22  28 47 1.7 0.76 0.049 

IFI27 interferon, alpha-inducible protein 27  190 280 1.5 0.54 0.011 

KCNK1 potassium channel, two pore domain subfamily K, member 1  30 44 1.5 0.55 0.035 

PARP9 poly (ADP-ribose) polymerase family, member 9  31 48 1.5 0.62 0.024 

NOV nephroblastoma overexpressed  53 37 0.7 -0.51 0.005 

TPM2 tropomyosin 2 (beta)  110 75 0.7 -0.52 0.028 

RNF152 ring finger protein 152  43 30 0.7 -0.53 0.024 

MT-ND1 mitochondrially encoded NADH dehydrogenase 1  360 240 0.7 -0.57 0.002 

PRELP proline/arginine-rich end leucine-rich repeat protein  60 40 0.7 -0.57 0.041 

MT-ND5 mitochondrially encoded NADH dehydrogenase 5  630 410 0.7 -0.61 0.035 

KLF9 Kruppel-like factor 9  60 39 0.6 -0.65 0.023 

ZG16B zymogen granule protein 16B  49 30 0.6 -0.69 0.043 

MT-CO1 mitochondrially encoded cytochrome c oxidase I  460 280 0.6 -0.71 0.016 

RGCC regulator of cell cycle  74 42 0.6 -0.8 0.012 

PRR4 proline rich 4 (lacrimal)  54 30 0.6 -0.83 0.05 

S100P S100 calcium binding protein P  62 34 0.5 -0.89 0.026 

IGFBP6 insulin-like growth factor binding protein 6  84 45 0.5 -0.91 0.008 

MUCL1 mucin-like 1  460 240 0.5 -0.92 0.028 

MT-CO2 mitochondrially encoded cytochrome c oxidase II  110 54 0.5 -0.99 0.043 

FLG filaggrin  3300 920 0.3 -1.8 0.044 

SCGB1D2 secretoglobin, family 1D, member 2  110 30 0.3 -1.8 0.049 
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Supplementary Table E4 

A table showing the average fold change in expression in both Akt1 kd lines of all genes 2-fold and 

above differentially expressed; The 1.5 –fold or more down-regulated genes related to MTORC 

signalling and Proteases in the GSEA analysis are also shown in this table. 

2-fold up- and down-regulated genes   
Symbol Entrez Gene Name Fold Change 
Khdrbs3 KH domain containing, RNA binding, signal transduction associated 3 7.4 

Pdlim2 PDZ and LIM domain 2 7.2 

Ckmt1 creatine kinase, mitochondrial 1 5.2 

Tmbim4 transmembrane BAX inhibitor motif containing 4 5.1 

Bin3 bridging integrator 3 5.1 

Sema3a 
sema domain, immunoglobulin domain (Ig), short basic domain, 
secreted, (semaphorin) 3A 4.8 

Ppp3cc protein phosphatase 3, catalytic subunit, gamma isoform 4.7 

Cldn3 claudin 3 3.7 

Asrgl1 asparaginase like 1 3.6 

Ccbl1 cysteine conjugate-beta lyase, cytoplasmic 3.6 

Expi extracellular proteinase inhibitor 3.5 

Sepp1 selenoprotein P, plasma, 1 -2.1 

Fads1 fatty acid desaturase 1 -2.1 

Pkib protein kinase (cAMP-dependent, catalytic) inhibitor beta -2.1 

Il33 interleukin 33 -2.1 

Nt5e 5' nucleotidase, ecto -2.4 

Calml3 calmodulin-like 3 -2.7 

S100g S100 calcium binding protein G -2.7 

Slfn3 schlafen 3 -2.9 

Ctsh cathepsin H -3.9 

1.5-fold or more down-regulated genes involved in mTORC signalling 
Fads2 Fatty Acid Desaturase 2 -1.6 

Cth Cystathionine Gamma-Lyase -1.8 

Hmgcs1 3-Hydroxy-3-Methylglutaryl-CoA Synthase 1 (Soluble) -1.9 

Elovl6 ELOVL Fatty Acid Elongase 6 -1.9 

Idi1 Isopentenyl-Diphosphate Delta Isomerase 1 -2.0 

Fads1 Fatty Acid Desaturase 1 -2.1 

1.5-fold or more down-regulated proteases 
Ace2 Angiotensin I Converting Enzyme 2 -1.6 

Pcsk6 Proprotein Convertase Subtilisin/Kexin Type 6 -1.6 

C1s Complement Component 1, S Subcomponent -1.6 

Ctsh Cathepsin H -3.9 
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Supplementary Figure E1: Raptor and Filaggrin in normal skin and non lesional AD skin; IL-4 

expression  (a) Left, densitometry of filaggrin in Normal and AD non-lesional skin. Middle, Filaggrin 

levels in high and low RAPTOR expressing non-lesional AD patient skin. Right, Filaggrin levels in 

high and low RAPTOR expressing normal skin. *p<0.05, ** p<0.005 Mann-Whitney U-test.  Bars, 

left and middle are the interquartile range. (b) IL-4 Western blot in rat epidermal keratinocytes treated 

with rapamycin (Rapa) for 24 hours (10nM).  (c) IL-4 Western blot in AKT1 kd human keratinocytes. 

(b and c). Gapdh is loading control in (b,c). 

 

 

Supplementary Figure E2:  Analysis of the highly differentially expressed genes in AD which 

anti-correlate and correlate with RAPTOR expression. (a) STRING (http://string-db.org/) network 

of functionally interacting genes, with RAPTOR and AKT1 and the anti-correlated genes in green and 

red for anti-correlated and correlated genes respectively. Highly expressed genes that also correlated 

with FLG expression are indicated with an asterisk (b) Venn diagram showing the large overlap 

betweenhighly expressed genes correlating with RAPTOR expression and genes previously 

determined14 to be correlated with the loss of filaggrin expression.  
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Supplementary figure E3: a SNP variant correlates with increased RAPTOR expression, 

reduced filaggrin expression and processing and reduced Cathepsin H expression. (a)  Genomic 

context and of SNP rs8078605 and a graph of the GWAS data63 from the RAPTOR region, y-axis, 

LOD score, the p-value for rs8078605 was 0.067. (b) Piechart showing prevalence of each genotype 

of the SNP rs8078605 in European and sub-Saharan African populations, Normal and AD individuals 

(c) RAPTOR expression in human keratinocytes in response to ATRA. Gapdh is loading control. Bar 

chart shows RAPTOR densitometry in 2 separate experiments (d) RAPTOR densitometry of western 

blots of 9 human skin samples with the C/ C (n=6), T/C (n=2) or T/T (n=1) variants in rs8078605. (e) 

Plot of RAPTOR densitometry against normalised western blot densitometry of a corresponding 

filaggrin western blot. T/T and C/T rs8078705 variants are marked on the graph, as is the correlation 

coefficient (R2). (f)  filaggrin and Ctsh Western blots from human samples, keratin 5 is an epidermal 

loading control.  

 

Supplementary figure E4: Analysis of genes differentially expressed in Akt1kd keratinocytes. 

(a) Graph of enrichment scores for all significantly differentially expressed genes, including Ctsh (b) 

Graph of enrichment scores of genes involved in MTORC signalling (c). Graph of 1/p values 

(uncorrected) of the three most over-represented functional groups in scrambled control cells by 

GSEA analysis. (d). Leading edge analysis of the most differentially expressed genes in these three 

ontology groups, with several genes including HMGCS1 present in all gene ontology groups. (e) 

HMGCS1 expression in AD according to the RNAseq data in Cole et al., 2013. 

 

Supplementary figure E5: Cathepsin H is required for Filaggrin processing but expression does 

not correlate with Filaggrin in atopic dermatitis. (a) Western blot of filaggrin and Cathepsin H in 4 

Ctsh kd lines. (b) Graph of mean densitometry of total filaggrin, filaggrin monomer and Ctsh, n=4 (c) 

Real time PCR analysis of filaggrin expression in two Ctsh shRNA lines. (d) cathepsin H expression 

represented from RNAseq analysis in Cole et al., 2014. Box shows median and interquartile ranges in 
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wildtype controls and the three eczema FLG phenotypes (e) Scatterplots showing Pearson correlation 

(x-axis) of gene expression levels with cathepsin H expression. The fold-change of all significantly 

differentially expressed genes (FDR p< 0.05) are represented on the y axis, with Filaggrin (FLG) in 

orange. Correlations are between FLG wildtype, FLG heterozygous and FLG compound heterozygous 

(n=7).  

 

 Supplementary figure E6: Cathepsin B expression increases in Cathepsin H deficient mouse 

epidermis. (a) Ctsh and Cathepsin B (Ctsb)  immunofluoresence in Ctsh -/-, Ctsh +/-   and wt mouse 

epidermis. Graph shows Ctsb intensity in the neonate epidermis, bars are median (b) CD45 

Immunofluorescence and in the dermis of Ctsh -/-, Ctsh +/- , and wt mouse skin.  *p<0.05, **p<0.005 

Bar 50µm. 

 

Supplementary Figure E7 – Barrier proteins and immune mediators in adult Ctsh +/- and -/- 

mouse epidermis(a) histology, filaggrin and loricrin immunofluoresence of adult mouse Ctsh +/-,  -/-  

and wt epidermis. (b) Il1a and Tslp immunofluorescence of Il1a and Tslp adult mouse Ctsh +/-,  -/-  

and wt epidermis (c) Western blot of filaggrin, keratin 10 and loricrin (d) Graphs of densitometry of 

total filaggrin and filaggrin monomer. p values are shown on the graph. bars 50 µm (a,b) 



M
ANUSCRIP

T

 

ACCEPTE
D

ACCEPTED MANUSCRIPT

4 

 

Supplementary Methods 

Restriction fragment length polymorphism analysis 

RFLP analysis was performed on 18 skin samples. DNA was extracted by DNA mini spin kit 

(Qiagen) according to manufacturers’ instructions. The rs8078605 polymorphism introduced a BsmAI 

site into the locus. F- CACCGCATTTGCTCTTACAA and R- CCTACACATGGTCCTTCATCC 

(Tm 60oC) primers produced a 454bp amplicon. The T variant after BsmAI digestion gives a 203bp 

and 251bp product. 
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