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Reliability modeling and preventive maintenance of load-

sharing systems with degrading components 
 

Abstract 

This paper presents certain new approaches to reliability modeling of systems subject to 

shared loads. It is assumed that components in the system degrade continuously through additive 

impact under load. Reliability assessment of such systems is often complicated by the fact that 

both the arriving load and the failure of components influence the degradation of the surviving 

components in a complex manner. The proposed approaches seek to ease this problem by first 

deriving the time to prior failures and the arrival of random loads and then determining the 

number of failed components. Two separate models capable of analyzing system reliability as 

well as arriving at system maintenance and design decisions are proposed. The first considers 

constant load and the other cumulative load. A numerical example is presented to illustrate the 

effectiveness of the proposed models. 

Keywords: load sharing system, continuous degradation, random load, reliability model, 

preventive maintenance 

 

Notation 
 

( ),CR P  Maintenance cost rate 

( )iF t  cdf of the ith failure time 

( )TF t  cdf of the system failure time 

( )if t  pdf of the ith failure time 

H Failure threshold of a component 

kL  Magnitude of the kth arrived load 

( )L t  Total load magnitude on the system at time t 

( )l t  Load magnitude of a component at time t 

( )M t  Number of loads that have arrived by time t 



( )N t  Number of failed components by time t 

Nr Number of repetitions for Monte Carlo simulation 

n Number of components in the system  

P Degradation threshold for preventive maintenance 

( )R t  Reliability of the system at time t 

( )r t  Reliability of a component at time t 

S Length of a renewal cycle 

T Time to system failure 

iT  Time to the ith failure 

PT  Time to reach preventive maintenance threshold 

jt  Arrival time of the jth load 

( )X t  Degradation amount of a component by time t 

  Degradation rate 

  Arrival rate of random loads 

  Initial degradation amount 

( )  cdf of standard normal distribution 

  Periodical inspection interval 

 

1. Introduction 

It is often assumed in reliability engineering that failures are independent, i.e., failure of a 

component has little effect on failures of other components. However, many systems are load 

sharing (all the components work together and share system load) in practice. The assumption of 

independence is not valid in such a system. If a component fails the same workload has to be 

shared by the surviving components, so each surviving component experiences an increased load 

(Singh and Gupta, 2012). The increased load would probably induce a higher failure rate. 

Load-sharing systems have been applied widely in industrial practice. For example, in a 

distributed computer system, servers work together to finish the workload imposed on the system 

(Levitin and  Dai, 2007); in a gear system, the workload is shared by each mesh gear pair with 



certain load sharing rule (Yu et al., 2013); in a power grid, the total electricity demand is 

distributed across several links in the net (Basu et al., 2012). More examples can be found in 

(Kvam and Pena, 2005). 

There exist numerous works in literature concerning load-sharing systems. However, most of 

the studies have focused on statistical inference and parameter estimation of lifetime distributions 

of load-sharing systems (Deshpande et al., 2010; Kim and Kvam, 2004; Singh et al., 2008; 

Balakrishnan et al., 2011; Park, 2010; Park, 2013). In contrast, studies on the reliability analysis 

of load-sharing systems are relatively rare. A reason is that the mechanism of how the load is 

shared among components is too complex to permit a thorough analysis (Amari et al., 2008). 

Another issue complicating the analysis is that load history affects the reliability of the system 

within its lifetime.  

In most of the literature concerning reliability analysis, it has been assumed for the sake of 

simplicity that the lifetime of a component follows an exponential distribution (Shao and 

Lamberson, 1991; Yun et al., 2012; Qi et al., 2014). However, the assumption of exponential 

lifetime distribution is questionable in many practical contexts. The restrictive assumption of 

exponential distribution has been relaxed in some studies (Singh and Gupta, 2012; Durham et al., 

1997; Liu, 1998; Ibnabdeljalil and Curtin, 1997; Amari and Bergman, 2008). Amari and Bergman 

(2008) analyzed load-sharing systems with general lifetime distribution with Tampered Failure 

Rate (TFR) model and Cumulative Exposure (CE) model. It was emphasized that an appropriate 

model must be carefully chosen to account for the influence of load history, so as to extend the 

results of the case of exponential distribution to the case of general distribution. Liu (1998) 

investigated the reliability of k-out-of-n systems, where the lifetime distribution of the 

components is arbitrary. Nonetheless, there is no closed-form solution and numerical methods 

have to be used to compute the system reliability. Singh and Gupta (2012) analyzed system 

reliability assuming Lindley lifetime distribution of components and estimated the parameters 

with Markov Chain Monte Carlo methods. Durham et al. (1997) assumed that components follow 



a Weibull lifetime distribution and studied the failure mechanism of fibers under localized load-

sharing rule. Ibnabdeljalil and Curtin (1997) studied the reliability and strength of fiber-

reinforced composites under local load-sharing condition. The study demonstrated that the 

ultimate strength decreases with the composite size and failure occurs by local accumulation of a 

critical amount of damage.  

An assumption implicit in the previous studies is that the components are static; the condition 

of component is invariant and component failure is sudden and catastrophic. However, in many 

real world applications, the working environment is usually dynamic and a change in 

environment may lead to a change in the physics of failures. Many systems and components go 

through a period of degradation and cease functioning when the degradation amount reaches a 

critical threshold level. This type of failure is said to be ‘soft failure’ (Ye et al., 2012). 

Singpurwalla (1995) pointed out that modelling failure using a stochastic-process approach 

provides flexibility with respect to describing the failure-generating mechanisms. One advantage 

of using degradation model is that the degradation level can be detected by inspection/monitoring 

equipment and therefore the relationship between load and system failure can be more accurately 

characterized. By taking advantage of the degradation model, we conduct reliability analysis and 

maintenance policy for load-sharing systems in a continuous degradation context.  

In traditional approaches for reliability analysis, proportional hazards models are established to 

account for the effect of loads on component lifetime distribution (Liu, 1992; Amari and 

Bergman, 2008). However, for a load-sharing system with continuously degrading components, 

both the internal degradation process and the external loads have effects on system reliability. 

The proportional hazards method is limited to a two-state system and cannot model the system 

behavior with continuous degradation. A novel reliability model is required to address load-

sharing system with degrading components. Actually, in the work of Peng et al. (2010), the 

authors developed a reliability model for system with multiple dependent competing failure 

processes, where a cumulative shock model was adopted to characterize the joint effect of inner 



degradation and external shocks. In our study for load-sharing system, the cumulative shock 

model is also used for the service of reliability modeling. While Peng et al. (2010) was focused 

on reliability analysis for a single-component system, we proceed to integrate the cumulative 

shock model into load-sharing context.  

Preventive maintenance strategies for multi-component systems have been studied extensively 

in the literature (Moghaddam and Usher, 2011; Liu et al., 2014; Wang and Pham, 2011; Wang et 

al., 2014). Most maintenance policies currently in vogue for multi-component systems focus on 

the economic dependence among components. To the best of our knowledge, few studies have 

addressed the issue of preventive maintenance for load-sharing systems, although this is a very 

common situation when a system does not fail completely after a component failure but the loads 

on others go up.  

In this paper, we construct reliability models for load-sharing systems subject to degrading 

components so as to arrive at a preventive maintenance strategy. At first we obtain some 

preliminary insights by modeling system reliability with constant load. Next we build a reliability 

model assuming varying loads. Specifically we consider the scenario where the load is random 

and has a cumulative impact on the system. Finally, we utilize the proposed reliability models to 

arrive at preventive maintenance decisions. 

The remainder of this paper is organized as follows. Section 2 presents the specifications of 

the system including assumptions, system description and the load sharing rule. In section 3, we 

construct two reliability models considering constant load and cumulative load separately. A 

preventive maintenance model with inspection interval and preventive maintenance threshold 

being optimized simultaneously is developed in Section 4. A numerical example is presented in 

Section 5 to illustrate the effectiveness of the reliability models at arriving at maintenance 

policies. Finally, Section 6 concludes the study and makes some suggestions for further work. 

 

2. System specifications 



2.1 System description 

The following assumptions have been adapted from (Peng et al., 2012; Harlow and Phoenix, 

1978; Huang and Xu, 2010; Peng et al., 2010; Rafiee et al., 2014) in formulating the basic 

reliability model presented in this paper. 

1. All the components in the system are identical. 

2. Each component is subject to continuous degradation. For a component, denote the 

degradation amount over time t as ( ; , )X t   , where   is a fixed parameter and   is a 

random variable.  

3. Load is equally distributed on each component. 

4. Load imposed on a component has an additive impact on the degradation amount of the 

component. 

5. Each component is deemed to have failed when the degradation amount exceeds a critical 

threshold H. 

The system considered here is a parallel system consisting of n identical components. 

Generally, the degradation process of each component could be in any form of a stochastic 

process. Linear degradation is assumed (Peng et al., 2012), i.e., ( )X t t = + , where the initial 

degradation amount   is a constant and the degradation rate  is a random variable, following a 

normal distribution, 2( , )N     . We assume that    , so that the probability of the 

degradation level being negative can be neglected. A component is deemed to have failed if its 

degradation amount ( )X t  exceeds the threshold, H. The assumption of linear degradation is used 

widely in systems such as micro-electro-mechanical systems (Peng et al., 2012; Peng et al., 2010) 

and laser devices (Peng and Tseng, 2009). 

Assumption (4) states that the load has an additive impact on the degradation of a component, 

i.e., 

( ) ( )X t t l t = + +                                                      (1) 



where ( )l t  is the load imposed on the component. Fig. 1 shows the degradation process of a 

component with the influence of loads. In the figure, loads arrive at time 
1t  and 

2t , causing an 

abrupt change in the degradation amount of the component. It should be noted that the system 

load can either be a constant or a random variable. We will discuss the reliability model for 

constant load and cumulative load separately in Section 3.  

 

Fig.1: Degradation process of a component subject to loads 

 

2.2 Load-sharing rule 

Load-sharing rules determine how system load is distributed among components and how the 

load on a surviving component changes when some components fail (Harlow and Phoenix, 1978). 

Typically, load-sharing rules come in three kinds: equal load-sharing rule, local load-sharing rule, 

and monotone load-sharing rule (Amari et al., 2008). An equal load-sharing rule indicates that the 

total system load is equally distributed among all its components, a local load-sharing rule 

implies that the load on a failed component is transferred to adjacent components, and a 

monotone load-sharing rule indicates that the load on the surviving components is non-decreasing 

when other components fail. In this paper, we focus on the equal load sharing rule, i.e.,  

( )
( )

( )

L t
l t

n N t
=

−
                                                        (2) 



where ( )L t  is the total system load over time t , ( )N t  is the number of failed components by 

time t . The method we use to analyze the reliability of a load-sharing system with equal load-

sharing rule can also be applied to system with other load-sharing rules. 

If a component fails, the load has to be shared by the remaining components, thus increasing 

the degradation amount of the surviving components. Fig. 2 shows the degradation process of a 

component under the influence of failures of other components. In the figure, failures occur at 
1T

and
2T , inducing abrupt changes of the degradation amount in the surviving components.  

 

 

Fig. 2: Degradation process of a component subject to inner failures 

 

3. Reliability models for load-sharing system  

As pointed out in the previous section, the degradation amount of a component is influenced 

by its own degradation process, failure of other components and the imposed system load. The 

difficulty of conducting a reliability analysis of such a system lies in the dependence between the 

inner failures of components and the degradation amount of the surviving components, especially 

when the system load is a random variable (Park, 2013; Huang and Xu, 2010). In this section, we 

construct separate reliability models for load-sharing systems subject to constant load and 

cumulative load. More specifically, we formulate a reliability model in Section 3.1 by considering 

constant load and acquire several preliminary insights. The aim of section 3.1 is to study the 

effect of inner failures on system reliability. Then we move on to analyze the reliability of a 



system under cumulative load to jointly analyze the effect of the system load and inner failures on 

system reliability (see Section 3.2). 

 

3.1 Reliability model concerning constant load 

In this section, we assume that the load imposed on the system is constant. By using constant 

load, we mean that only one load with magnitude L is imposed on the system, from the startup of 

system operation. As the load is equally distributed to the components, the reliability of a 

surviving component can be obtained as 

1

0

1

0

( ) ( ( ) | ( ) ) ( ( ) )

( | ( ) ) ( ( ) )

n

i

n

i

r t P X t H N t i P N t i

L
P t H N t i P N t i

n i
 

−

=

−

=

=  =  =

= + +  =  =
−




                     (3) 

where ( ( ) )P N t i=  denotes the probability that i components have failed by time t, and L is the 

constant load imposed on the system. 

We assume that the degradation rate   follows a normal distribution, 2( , )N     , so 

( )
( | ( ) )

L
H t

L n iP t H N t i
n i t





 
 



 − + + −+ +  = =  
−  

 

                     (4) 

Where ( )  is the cumulative distribution function (cdf) of a standard normally distributed 

variable. To compute ( ( ) )P N t i= , we utilize the cdf of the ith failure time and the ( 1i + )th failure 

time, ( )iF t and 
1( )iF t+ [14]. ( )iF t and 

1( )iF t+  can be obtained by the failure time history (Huang 

and Xu, 2010). The following theorem indicates how to compute ( ( ) )P N t i= with previous 

failure times.  

 
Theorem 1: For 1i  , the probability that the number of failed components by time t is i can 

be obtained as 



1

1

1

1 1

1

1

1 1 1

( ( ) ) ( 1) ( ) ( 1)

( ) ( ) ( ) ( )

j

j

i

i i i

i
T

j j j
T

j

T t t

i i i i i i i i i
T T T

P N t i n j f T dT n i

f T dT n i f T dT f T dT

+

−

+

− −

−

=

+ + +

= = − +  − +

  − −  

 

  
                (5) 

where 
iT is the time to the ith failure, 

0 0T = , and ( )if is the probability density function (pdf) of 

the ith failure time, defined as 

1 1

( )
,

( )

0, otherwise

i

i
i i i

t Ti i

dF t
T T T

dtf T
− +

=


 = 




        (6) 

Detailed proof is given in the Appendix. 

We assume that each component follows a linear degradation process and the degradation rate 

 follows a normal distribution, so that 

( )
1( ) ( | ( ) 1)i

L
H t

L n iF t P t H N t i
n i t





 
 



 − + + − += + +  = − =  
−  

 

            (7) 

    For 
1 1i i iT T T− +  , 

 

2

( )
1( )

i

i i

i i

L
H T

Hn if T
T T



 

  
 

 − + +    −− +=         
 

                                  (8) 

    Let 

( )
1( )i

L
H t

n it
t





 



 − + + − + = 
 
 

                                              (9) 

Eq. (5) can now be rewritten as 
 

( ) ( )

( ) ( ) ( ) ( ) ( ) ( ) 

1

1 1

1

1 1 1 1 1

( ( ) ; 1) ( 1) ( 1)

( )

i

j j j j

j

i i i i i i i i i i

P N t i i n j T T n i

n i T T t T t T

−

+ −
=

+ − + + −

 =  = − +  −  − + 

 −  −   −  −  −      


    (10) 

 
A more specific reliability model for a component can be determined based on Eq. (3): 



( )( ) ( ) ( ) ( )

( ) ( ) ( ) ( ) ( ) ( ) 

1
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Finally, the reliability of the system can be represented as  

( ) ( )

( ) ( ) ( ) ( ) ( ) ( ) 
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3.2 Reliability model concerning cumulative load 

For systems subject to varying loads, the arrival of a load is usually modeled as a renewal 

process with an exponential, Weibull or Gamma distributed inter-arrival time (Peng et al., 2010); 

the magnitude of a load is modeled as a continuous random variable. In this article, the following 

specific assumptions are made to model the reliability of the load-sharing system under 

cumulative load (Rafiee et al., 2014): 

1. The load arrives according to a Poisson process with rate . 

2. The magnitude of each arriving load is an independent and identically distributed (i.i.d.) 

random variable, following a normal distribution, 2( , )k L LL N u  . It is assumed that 

L L  , so that the probability of negative loads can be neglected, i.e., ( / ) 0L L  −  . 

The magnitude of the cumulative load can be expressed as  

( )

1

, ( ) 0
( )

0, ( ) 0

M t

k

k

L if M t
L t

if M t

=


= 

 =

                                                    (13) 

     where ( )M t  is the number of the load arriving at time t . For ( )M t j= , 



2( ) ( , )L LL t N ju j                                                             (14) 

 
The reliability of a surviving component can then be expressed as 

1

0 0

( ) ( ( ) | ( ) , ( ) ) ( ( ) | ( ) ) ( ( ) )
n

i j

r t P X t H N t i M t j P N t i M t j P M t j
− 

= =

=  = =  = =  = (15) 

The probability that a component survives at time t given the number of failed components 

and the number of arrived loads, ( ( ) | ( ) , ( ) )P X t H N t i M t j = = , can then be expressed as 

( ) ( )

2 2

( )
( ( ) | ( ) , ) ( | ( ) , )
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−
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      (16) 

The number of the load arriving at time t is 

( )
( ( ) )

!

t je t
P M t j

j

 −

= =                                               (17) 

The computation of the probability ( ( ) | ( ) )P N t i M t j= = is relatively complex since both the 

arrival time of load and the failure time of components influence the surviving components. Two 

special cases are of particular interest. 

Case 1: If the system is subject to no load by time t, it acts as a parallel system with 

independent components, so that 
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Case 2: If no component fails by time t, we obtain 
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In general, when the system is subject to both cumulative load and inner failures, 

( )( ( ) | )P N t i M t j= = can be determined by the following theorem. 



Theorem 2:  For 1i  , 1j  , the probability that the number of failed components by time t is 

i, given the number of arrived loads can be obtained as 
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where  
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    The proof is similar to that of Theorem 1. 

    Combining the above equations, the reliability of a component can be expressed as 
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, ( )i j t  can be interpreted as the cdf of failure time under i inner failures and j external loads. 

Computation of the reliability in Eq. (22) requires the distribution of previous arrival times of 

loads and failure time of components, which can be solved by iteration. The reliability of the 

system can then be assessed as 
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   (23) 

      Although the developed reliability models are applied for parallel systems, they can be easily 

extended to k-out-of-n systems. For a k-out-of-n: G system, system reliability can be expressed as 

the probability that less than k components fail by time t. By using Eq. (12), we can have the 

system reliability as 
1

( ) ( ( ) ) ( ( ) )
k

i
R t P N t k P N t i

=
=  = = .  

 

4. Preventive Maintenance Policy 

The system considered in this paper is highly integrated, e.g., a micro-electro-mechanical 

system where repair or replacement of any individual component is particularly difficult or even 

impossible (Peng et al., 2010).  Thus, maintenance action has to be taken for the whole system. A 

preventive maintenance model with periodic inspection is developed in this article. To evaluate 

the performance of the maintenance policy, we adopt a long-run cost rate model where the 

preventive maintenance threshold P and the periodic inspection interval   are the two decision 

variables. The maintenance policy works as follows.  

At the ith inspection time i , if  



(1) The degradation level of the system exceeds the failure threshold, ( )X i H  , then the 

system is replaced. Additional cost may be incurred during the downtime of the system. 

(2) The degradation level of the system exceeds the threshold for preventive maintenance but 

still works, ( )H X i P  , then preventive maintenance is undertaken.  

(3) The degradation level of the system does not exceed the threshold for preventive 

maintenance, ( )X i P  , then the system is left unchanged. 

     Remark: For a parallel system, the system fails when all the components have failed. As the 

component in the system fails one by one, failure time of the system is equal to the failure time of 

the last failed component and the degradation process of the system can be characterized as the 

degradation process of the last failed component.   

Both the preventive maintenance and replacement will bring the system back to the state of 

“as good as new”. A renewal cycle is defined as the time interval between two consecutive 

maintenance actions (preventive maintenance or replacement). A renewal process is executed 

during succeeding cycles while further costs are incurred within each cycle. From the basic 

renewal theory, the long-run cost rate CR can be computed by (Grall et al., 2002) 

( )  
 

lim
t

E TCC t
CR

t E S→
= =                                                       (24) 

where ( )C t is the total maintenance cost incurred until time t, TC is the total cost within the 

renewal cycle and S is the length of the renewal cycle. 

The cost items include the inspection cost, the preventive maintenance cost, the replacement 

cost, and the penalty cost due to the malfunction of the system (Peng et al., 2010).  The expected 

total maintenance cost of a renewal cycle can then be expressed as  

 
   
 

+ , if replacement takes place

, if preventive maintenance takes place

I I F R

I I P

C E N C E C
E TC

C E N C

 += 
+

           (25) 



  Synthesizing the above two maintenance actions at the end of a renewal cycle, Eq. (25) can 

be rewritten as 

         ( )    replacement preventive maintenance
1 1I I F R PE TC C E N C E C E C E    = + + +              (26) 

where { }1 • is the indicator function, 
IC  is the cost of each inspection, 

FC is the cost rate during 

system downtime, 
RC  is the cost of replacement, 

PC is the cost of preventive maintenance, 
IN is 

number of inspections within a renewal cycle, and  is the system downtime, i.e., time interval 

between system failure to the next inspection time. 

The number of inspections within a renewal cycle is related to the system degradation level, in 

a manner that ( ) ( )( )1X i P X i   − . Let 
PT denote the time when the system degradation 

level reaches P, so that the expected number of inspections within a renewal cycle,  IE N  can be 

expressed as  
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where ( )
PTF  is the cdf of 

PT , which can be computed in a way similar to the calculation of  

( )TF . 

 The system downtime is the interval from the system failure time to the next inspection time, 

that is, i T = − . The expected system downtime is given as 
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The expected value of replacement occurring at the end of a renewal cycle can be expressed as  
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Similarly, the expected value of preventive maintenance occurring at the end of a renewal 

cycle is given by 
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The length of a renewal cycle is determined by the number of inspections and the interval  

between two inspections, that is, 
IS N = . Its expected value can be computed as 
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    Based on Eq. (24) to Eq. (31), the long-run maintenance cost rate, ( ),CR P  can be 

obtained as  
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 (32) 

The optimal value of   and P can be obtained by solving  

( ) ( )
,

, arg min ,
P

P CR P


   =                                                       (33) 

Due to the interaction between  and P and the complexity of ( ),CR P , it is difficult to 

obtain an analytical result of ( ), P  . Hence, we turn to a numerical method to jointly optimize 

the inspection interval   and the threshold for preventive maintenance P. 

 



5. Numerical Example 

To investigate the reliability model and maintenance policy, we took a load-sharing redundant 

microengine system as an example.  A microengine often fails due to the visible wear on rubbing 

surfaces between the gear and the pin joint (Peng et al., 2010). The wear is mainly caused by the 

ageing degradation process. Meanwhile, external load shocks contribute to the debris between the 

gear and the pin joint. Usually in a system, multiple microengines work together to perform tasks, 

which can thus be modelled as a load-sharing system. We consider a system consisting of three 

microengnes in a load-sharing parallel structure. Each microengine goes through a linear 

degradation process individually, ( )X t t = + , where the initial degradation amount   is a 

constant and the degradation rate   is a random variable, following a normal distribution, 

2( , )N     . In the following section, we consider the case that the system is subject to 

constant load L and cumulative load ( )L t respectively. The cumulative loads arrive according to a 

homogeneous Poisson process with rate  . The magnitude of each load arrived is assumed to be 

an i.i.d random variable, following a normal distribution, 2( , )k L LL N u  . A microengine fails 

when the overall wear amount exceeds the threshold, H. Preventive maintenance is conducted 

according to the observation of the visible wear amount. Table 1 summarizes the associated 

parameters for reliability analysis and maintenance policy. 

 

Table 1: Summary of the parameters 

Parameter value source 

  0 Peng et al. (2010) 

  8.4823×10-9 

ȝm3 

  Peng et al. (2010) 

  6.0016×10-10 

ȝm3 

Peng et al. (2010) 

  2.5×10-5  Peng et al. (2010) 



L  1×10-4 ȝm3 Peng et al. (2010) 

L  2×10-5 ȝm3 Peng et al. (2010) 

H 0.00125ȝm3 Peng et al. (2010) 

L 0.0002 ȝm3 Peng et al. (2010) 

CI $500 Assumption 

CP $10,000 Assumption 

CR $30,000 Assumption 

CF $10 Assumption 

 

5.1 Reliability analysis     

We first analyzed the reliability of the system under constant load. The system reliability 

function is given Eq. (12). However, it is very difficult to have the complete form of reliability 

function due to the complexity of the expression. Hence, we turn to Monte Carlo simulation to get 

the reliability function.  

We compute system reliability with the number of repetitions Nr=10,000. Fig. 3 shows the 

reliability variation noted within the time period 5 5
0.5 10 ,1.5 10    . Fig. 4 shows the pdf of 

failure time under constant load. The pdf was computed numerically using the equation

( )( ) ( ) ( ) /T T Tf t F t t F t t= +  −  , where t  is the time increment. We can observe that the system 

reliability began to decrease at time 5
0.98 10t =  and reached 0 at time 5

1.12 10t =  . We believe 

that small variation in the degradation process accounts for the rapid decrease. We also 

investigated the impact of failure threshold on system reliability and undertook a sensitivity 

analysis of failure threshold (see Fig. 5). Note that the failure threshold had shifted from 0.00115 

ȝm3 to 0.00135 ȝm3, which implies that higher failure threshold increases the reliability of the 

system. 

Also, to examine the effect of number of repetitions, we selected the system reliability at 

several times and compare the results for various Nr. We selected the system reliability from 

5
1 10t =  to 5

1.1 10t =   and compare the results for various Nr (varying from 100 to 10,000). Table 



4 showed the system reliability for various number of repetitions Nr. It is indicated that when

1,000rN  , the difference of system reliability is within 0.01, which implies the effectiveness of 

the Monte Carlo simulation method. 

 

 

Fig. 3: Reliability of system under constant load 

 

 

Fig. 4: pdf of system reliability with constant load 

 



 

Fig. 5: Sensitivity analysis of failure threshold 

 

Table 2: reliability variation with number of repetitions 

        t 

Nr     

30 32 34 36 38 40 42 44 46 48 50 

100 0.990 0.980 0.950 0.940 0.860 0.720 0.60 0.470 0.300 0.150 0.030 

500 0.998 0.984 0.97 0.926 0.852 0.748 0.61 0.442 0.268 0.118 0.042 

1,000 0.99 0.976 0.953 0.916 0.847 0.738 0.593 0.429 0.264 0.129 0.049 

5,000 0.989 0.978 0.961 0.923 0.847 0.739 0.596 0.437 0.272 0.136 0.059 

10,000 0.992 0.978 0.951 0.919 0.845 0.740 0.603 0.436 0.270 0.138 0.053 

 

According to Eq. (23), we plotted the reliability of the system subject to cumulative load, as 

shown in Fig. 6. We can observe that the reliability of the system started to descend at time 

5
0.8 10t =  and hit 0 at time 5

1.7 10t =  . Compared with the reliability variation with constant 

load, the system reliability with cumulative load possessed longer deteriorating duration. This is 

due to the fact that the randomness of the arriving load adds more uncertainty to the degradation 

process. For system subject to cumulative load, monitoring/inspection techniques play a more 

significant role in reducing the uncertainty of the system. We also plotted the pdf of failure time 

( )Tf t in Fig. 7.  

We are interested in the parameter of failure threshold H and load arrival rate , and make 

sensitivity analysis of the two parameters, as shown in Fig. 8 and Fig. 9. Fig. 8 suggests that a 



larger threshold would lead to a higher reliability performance. In Fig. 9, when   increases from 

5
1.5 10 −=  to 5

3.5 10 −=  , system reliability shifts to the left. This indicates that reliability 

deteriorates faster when the system is subject to loads with higher arrival rates. 

 

 

Fig. 6: Reliability of a system under cumulative load 

 

 

Fig. 7: pdf of system reliability under cumulative load 

 



 

Fig. 8: Sensitivity analysis of failure threshold 

 

 

Fig. 9: Sensitivity analysis of   

 

5.2 Optimal preventive maintenance policy 

    The optimal values in Eq. (33) were determined using a numerical method. The cost 

parameters are listed in Table 1. Table 3 shows the maintenance cost rate results ( ),CR P  as a 

function of inspection interval and preventive maintenance threshold for a system subject to 

constant load. Note that the minimum cost rate was 5.245 at ( ) ( )4 4, 10.5 10 ,7.7 10P −  =   .    

          For a system subject to cumulative load, we can obtain the minimum cost rate of 5.437, at    

( ) ( )4 4, 11 10 ,5.7 10P −  =   . Table 4 shows the variation of maintenance cost rate ( ),CR P as 

a function of  and P. 



From Table 3 and Table 4, we can observe that the cost rate ( ),CR P decreases with   before

 =  , and increases afterwards. However, the effect of preventive maintenance threshold P is 

rather obscure. It can be concluded that the inspection interval  is the main contributor to the 

variation of the cost rate.  

 

Table 3: Maintenance cost rate with constant load vs P  and   

 (104) 

 

P(10-4) 

8 8.5 9 9.5 10 10.5 11 11.5 12 12.5 13 

7.5 6.831 6.609 6.165 5.784 5.435 5.261 5.414 5.619 5.797 5.962 6.128 

7.7 6.831 6.666 6.213 5.749 5.435 5.245 5.417 5.613 5.799 5.960 6.118 

7.9 6.847 6.703 6.250 5.808 5.456 5.264 5.408 5.619 5.800 5.962 6.121 

8.1 6.837 6.768 6.313 5.858 5.448 5.253 5.420 5.621 5.811 5.962 6.122 

8.3 6.842 6.798 6.439 5.900 5.501 5.258 5.412 5.615 5.793 5.967 6.127 

8.5 6.843 6.878 6.490 5.977 5.534 5.275 5.418 5.621 5.799 5.962 6.121 

8.7 6.853 6.897 6.608 6.043 5.564 5.280 5.417 5.619 5.807 5.970 6.117 

8.9 6.843 6.919 6.650 6.152 5.680 5.305 5.427 5.608 5.798 5.966 6.124 

9.1 6.842 6.957 6.802 6.223 5.698 5.326 5.444 5.641 5.794 5.970 6.124 

9.3 6.847 6.986 6.835 6.353 5.756 5.366 5.460 5.623 5.792 5.964 6.122 

9.5 6.846 6.994 6.902 6.449 5.784 5.417 5.483 5.625 5.808 5.973 6.118 

 

 

Table 4: Maintenance cost rate with cumulative load vs P  and   

 (104) 

 

P (10-4) 

8 8.5 9 9.5 10 10.5 11 11.5 12 12.5 13 

5.5 6.511 6.194 5.838 5.602 5.510 5.504 5.475 5.613 5.752 5.874 6.078 

5.7 6.509 6.116 5.888 5.587 5.480 5.455 5.437 5.628 5.762 5.965 6.008 

5.9 6.479 6.154 5.823 5.616 5.538 5.472 5.521 5.548 5.771 5.944 6.088 

6.1 6.564 6.144 5.846 5.599 5.518 5.464 5.534 5.623 5.742 5.899 6.062 

6.3 6.485 6.167 5.871 5.636 5.517 5.447 5.529 5.644 5.785 5.900 6.025 

6.5 6.448 6.154 5.869 5.624 5.488 5.475 5.486 5.638 5.717 5.911 6.086 

6.7 6.422 6.178 5.856 5.588 5.494 5.494 5.474 5.662 5.822 5.945 6.046 



6.9 6.375 6.132 5.844 5.682 5.495 5.495 5.539 5.610 5.762 5.843 6.119 

7.1 6.340 5.881 6.802 5.590 5.507 5.507 5.499 5.634 5.727 5.910 6.012 

7.3 6.431 5.814 6.835 5.624 5.496 5.496 5.540 5.642 5.758 5.890 6.119 

7.5 6.332 5.836 6.902 5.642 5.523 5.523 5.511 5.585 5.786 5.860 6.076 

 

6. Conclusion 

 This paper has developed two reliability models for assessing the reliability of load-sharing 

systems with continuously degrading components. The first has considered the case of constant 

load and assessed the effect of failures of components on the surviving components. The second 

has modeled systems subject to cumulative load and examined the influence of random load and 

the influence of inner failures. Finally, the proposed models have been utilized to formulate 

preventive maintenance policies for load-sharing system.  

Future investigations can aim at relaxing some assumptions in this study. For example, this 

study considers cumulative load model; future works can consider competing failure modes, 

where the system may fail due to either soft failures (e.g., degradation) or catastrophic failures 

(e.g., shocks). In addition, this study conducts reliability analysis and maintenance policy for 

load-sharing systems in parallel structure. Extension to other complex structures (e.g., parallel-

series, series-parallel bridge structure) is also of interest to investigate. Also, compared with equal 

load-sharing rule used in this study, other load-sharing rules (e.g., local load-sharing rule or 

monotone load-sharing rule) may be more practical in some real applications. Load-sharing 

systems with non-identical components can also be investigated.  
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Appendix 

    The probability that i  components have failed by time t can be expressed as 
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    Note that the time to the ith failure, 
iT is a random variable. The probability that a 

component fails in an infinitesimal interval 
idT at time 

iT  is given as 

1 2 1( | , ,..., ) ( )e i i i i iP t T T T T f T dT−= =                                            (A2) 

    Note that there are 1n i− +  surviving components in the system by time 
1i iT t T−   , then 

the probability that the ith failure occurs in an infinitesimal interval 
idT at time 

iT  is 

1 2 1( | , ,..., ) ( 1) ( )i i i i iP t T T T T n i f T dT−= = − +                                   (A3) 

    Since ( )iF t is related with the previous failure times, we can obtain the joint probability of 

the ith failure time and the previous inner failure times as 
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    ( )iF t can be viewed as the marginal distribution of 
1 2 1( , , ,..., )i iP T t T T T− , and can be 

obtained as 
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    The second item is due to 
1 2 1... i iT T T T−    , and the third item is due to the definition of 

( )i if T in Eq.(6). 

    Then, we can get 
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which concludes the proof.  

 


