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Abstract

In experiments where failure times are sparse, degradation analysis is useful for the analysis

of failure time distributions in reliability studies. This research investigates the link between

a practitioner’s selected degradation model and the resulting lifetime model. Additive and

mulitiplicative models with single random effects are featured. Simple, seemingly innocuous

assumptions of the degradation path create surprising restrictions on the lifetime distribution.

Keywords: additive model, bathtub and increasing failure rates, crack growth, random effects,

stochastic ordering
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1 Introduction

Reliability testing based on time-to-failure measurements are often hampered by the lack of observed

failures. Accelerated life testing (ALT) can hasten product failure during test intervals by stressing

the product beyond its normal use. In many tests, the failure data is supplemented by degradation

data, which refers to measurements of product wear available at one or more time points in the

reliability test.

Recently, degradation data has become a necessity due to extremely high product reliability

that yields sparse failure data in life tests. Meeker and Escobar [15] offer a comprehensive guide

to degradation analysis for various life tests, including ALT, and show that degradation analyses

have great potential to improve upon reliability analysis.

However, degradation analysis can also introduce the potential for inconsistency in the ex-

perimenter’s treatment of the data. The key to the analysis is the perceived link between the

degradation measurements and the failure time. The degradation model actually implies a lifetime

distribution, but those distributions rarely conform to industry needs for lifetime data analysis.

Typically, the resulting estimate of the lifetime distribution must be solved numerically with esti-

mate uncertainty computed using simulation and intensive re-sampling methods such as bootstrap

procedures.

In this article, we investigate the link between a chosen degradation model and the resulting

lifetime model. On a smaller theoretical scale, this relationship has been studied in terms of

stochastic processes (Aven and Jensen [1]). We consider additive and multiplicative models and

seek degradation models that lead to particular families (e.g., “bathtub” shaped failure rate) of

lifetime distributions.

2 Degradation Models

Degradation models vary markedly across the fields of reliability modeling. Many practical problems

can be modelled with a linear (or log-linear) rate of degradation, such as Lu, Park and Yang’s ([14])
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random effects model for semiconductor degradation. Bogdanoff and Kozin ([5]) employ both linear

and more complex nonlinear models to characterize degradation in materials testing (e.g., crack

growth). The random effects in the degradation model are the key link between the degradation

function and the resulting lifetime distribution. Some degradation models employ a single random

effect as an error term in an additive model. Modern degradation models are apt to consider several

random effects that enter into the degradation function in nonlinear form, including multiplicative

terms. For this research, basic additive and multiplicative models are considered, and the focus is

on a single random effect.

2.1 Additive Degradation Model

Consider the general additive degradation model

D(t; X, Θ) = η(t; Θ) + X, (1)

where η(t; Θ) is a deterministic mean degradation path with fixed effect parameters Θ for time

t ≥ 0. We focus on η being monotonic since most degradation measurements have this quality.

Bae and Kvam [2] consider the non-monotonic degradation of light displays, but this example is

the exception to the norm. X represents random variation around a mean degradation level η(t; Θ)

with a cumulative distribution function (cdf) GX and a probability density function (pdf) gX .

We assume that failure occurs when the test item’s degradation level reaches at a pre-determined

threshold value (Df ). For a monotonically decreasing degradation path (DDP), a failure is defined

as the time that the degradation level decreases below the threshold, i.e., D(t; X, Θ) < Df and

D(t; X, Θ) > Df for a monotonically increasing degradation path (IDP). Let FAD(t) denote the

lifetime distribution generated by the DDP in the additive degradation model (1). Then

FAD(t) = Pr[D(t; X, Θ) < Df ] = Pr[X < Df − η(t; Θ)]

= GX (Df − η(t; Θ)) , (2)

with survival function F̄AD(t) = 1 − FAD(t) = 1 − GX (Df − η(t; Θ)). For the IDP, the lifetime

distribution is FAI(t) = 1−GX(Df − η(t; Θ)).

3



Note that (2) is a valid distribution only if GX (Df − η(0−; Θ)) = 0 and GX (Df − η(+∞; Θ)) =

1. For the IDP, we require that GX (Df − η(0−; Θ)) = 1 and GX (Df − η(+∞; Θ)) = 0. If η(t; θ)

has finite asymptotes, for example, the additive degradation model will not necessarily produce a

proper lifetime distribution function. Along with these constraints on G, we assume G (and hence

F ) is twice differentiable on (0,∞). Hereafter, we write η(t) for η(t; Θ) for simplicity.

The failure rate corresponding to the DDP, rAD(t), is defined by

rAD(t) =
fAD(t)

1− FAD(t)
=

[GX (Df − η(t))]′

1−GX (Df − η(t))

= −η′(t) · gX (Df − η(t))
1−GX (Df − η(t))

= −η′(t) · rX (Df − η(t)) , (3)

where rX denotes the failure rate of the degradation random variable X. If η(t) is continuous and

decreasing monotonically, rAD(t) ≥ 0 for rX(t) ≥ 0. Note that failure rate of the DDP is closely

related to that of the random effect X and the functional form of η(t). The cumulative failure rate

is RAD(t) =
∫ t
0 rAD(x)dx, and can be expressed as

RAD(t) = − log F̄AD(t) = − log [1−GX (Df − η(t))] , (4)

In slight contrast to the DDP, the lifetime failure rate corresponding to the IDP is

rAI (t) = − [GX (Df − η(t))]′

GX (Df − η(t))
= η′(t) · gX (Df − η(t))

GX (Df − η(t))
. (5)

with

RAI(t) = −log [GX (Df − η(t))] . (6)

The pth quantile of lifetime distribution with the DDP is the unique value tp that satisfies

FAD(tp) = GX(Df − η(tp)) = p, and assuming that η is invertible with inverse η−1,

tAD,p = η−1[Df −G−1
X (p)], (7)

and the pth quantile of the IDP is

tAI,p = η−1[Df −G−1
X (1− p)]. (8)
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2.2 Multiplicative Degradation Model

In some cases, multiplicative models are exchangeable with additive models through a log trans-

formation; for example, when X is a lognormal-distributed random variable in the multiplicative

degradation model, log X has a normal distribution in the additive degradation model. In cases

where η contains random effects, however, the multiplicative model is not interchangeable an ad-

ditive model. The general multiplicative degradation model can be expressed as

D(t; X, Θ) = X · η(t; Θ). (9)

A failure-time distribution corresponding to the DDP is

FMD(t) = Pr[X · η(t) < Df ] = Pr

[
X <

Df

η(t)

]
= GX

( Df

η(t)

)
, (10)

and for the IDP, the failure-time distribution is FMI(t) = 1 − GX( Df

η(t)). To satisfy FMI(0−) = 0

for IDP in the multiplicative degradation model, we need GX( Df

η(t))|t→0− → 1. The failure rate for

FMD in (10) is

rMD(t) =

[
GX

( Df

η(t)

)]′

1−GX

( Df

η(t)

) = −
( Df

η(t)

)
{log[η(t)]}′ · rX

( Df

η(t)

)
, (11)

and for the lifetime distribution based on the IDP, the failure rate is

rMI (t) = −

[
GX

( Df

η(t)

)]′

GX

( Df

η(t)

) =
( Df

η(t)

)
{log[η(t)]}′ ·

gX

( Df

η(t)

)

GX

( Df

η(t)

) . (12)

Similar to the additive model, the failure rates for the multiplicative model are scaled by the failure

rate for the degradation model. The pth quantile for FMD(t) is

tMD,p = η−1

[
Df

G−1
X (p)

]
, (13)

and for FMD(t),

tMI,p = η−1

[
Df

G−1
X (1− p)

]
. (14)
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3 Reliability Characteristics of Implied Lifetime Distributions

In this section, we investigate properties of lifetime distributions generated from the additive and

multiplicative degradation models. The lifetime distribution is uniquely determined by the degra-

dation distribution’s failure rate, and accordingly, we provide basic definitions for the classes of a

lifetime distribution in terms of failure rate.

Definition 3.1 Lifetime distribution F is an increasing failure rate (IFR) distribution if its failure

rate r(t) increases monotonically over time; that is, r′(t) ≥ 0 for all t ≥ 0. Likewise, F has a

decreasing failure rate (DFR) if r′(t) ≤ 0.

Definition 3.2 Lifetime distribution F is defined as increasing (decreasing) failure rate average

(IFRA) or (DFRA) if −(1/t)log F̄ (t) is nondecreasing (nonincreasing) in t on {t ∈ R+ : F̄ (t) > 0}.

Definition 3.3 Lifetime distribution F is bathtub (BT) or upside-down bathtub (UBT) shaped, if

there exists t∗ > 0 such that r′(t) < (>) 0 for all t ∈ [0, t∗), r′(t∗) = 0, and r′(t) > (<) 0 for all

t > t∗.

Obviously, the IFR class is a subset of the IFRA class. A bathtub failure rate characterizes life

tests in which some early failures occur for a short time until failure rate stabilizes, then eventually

increases as the test item ages.

3.1 Additive Degradation Model

Firstly define α(t) as the reciprocal of the failure rate,

α(t) = r(t)−1 =
F̄ (t)
f(t)

.

It follows that α(t) is positive, continuous, and twice differentiable on (0,∞). For the DDP in an

additive degradation model, we have

α′AD(t) = −{
[η′(t) · rX (Df − η(t))]−1

}′

= αAD(t)
[
η′(t)ξX (t)− η′′(t)

η′(t)

]
, (15)
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where ξX(t) is defined by

ξX (t) =
r′

X
(Df − η(t))

rX (Df − η(t))
. (16)

It can be easily proven that the lifetime distribution derived from the DDP has DFR if GX(t)

possesses DFR since ξX (t) ≤ 0 for the increasing function Df − η(t). Consequently, α′AD(t) > 0

for all t ≥ 0, which, from (15), implies that FAD(t) is a DFR distribution. More conditions are

necessary in order for FAD(t) to possess IFR.

Theorem 3.1 For the additive degradation model with decreasing η(t) with random error X ∼ G,

if ξX(t) is bounded with lower limit −(d/dt)η′(t)−1, then FAD(t) has increasing failure rate.

Proof : FAD(t) has IFR ⇐⇒ α′AD(t) ≤ 0 ⇐⇒ ξX(t) ≥ η′′(t)[η′(t)]−2 = −(d/dt)η′(t)−1. ¥

Theorem 3.2 If GX(t) is an IFR distribution, then FAD(t) possesses IFRA.

Proof : By Theorem 4.1 in Barlow and Proschan [3], the IFR property implies that RX(T ) =

−logḠX(T ) is convex, that is, RX(γT ) ≤ γRX(T ). Since Df − η(t) is an increasing function,

by taking T = Df − η(t), RX(γ(Df − η(t))) ≤ γRX(Df − η(t)) ⇐⇒ RAD(γt) ≤ γRAD(t) ⇐⇒

F̄AD(γt) ≥ [F̄AD(t)]γ . This is equivalent to the IFRA property. ¥

A bathtub-shaped failure rate for the lifetime distribution can be generated from the additive

model. Following Theorem 3.1, it can be shown that FAD(t) holds BT (or UBT) shaped failure

rate provided that there exists t∗ > 0 such that ξX(t) < (>) − (d/dt)η′(t)−1 for all t ∈ [0, t∗),

ξX(t∗) = −(d/dt)η′(t)−1|t=t∗ = 0, and ξX(t) > (<)− (d/dt)η′(t)−1 for all t > t∗.

Similar results hold if the degradation path is increasing, rather than decreasing. Consider the

IDP in an additive degradation model. Combining (5) and (15),

α′AI(t) =
GX (Df − η(t))
gX (Df − η(t))

[
− η′′(t)

[η′(t)]2
+ δ(t)

]
− 1, (17)
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where

δ(t) = g′X(Df − η(t))/gX(Df − η(t)).

Noting that GX(Df − η(t)) = − ∫ t
t0

η′(y) · gX(Df − η(y))dy, where t0 = inf{t : Pr[gX(Df − η(t)) =

0] → 1)}, α′AI(t) can be represented as

α′AI(t) =
∫ t

t0

−η′(y)gX(Df − η(y))
gX(Df − η(t))

[
− η′′(t)

[η′(t)]2
+ δ(t)− δ(y)

]
dy

+
∫ t

t0

−η′(y)gX(Df − η(y))
gX(Df − η(t))

· δ(y)dy − 1.

However,

∫ t

t0

−η′(y)gX(Df − η(y))
gX(Df − η(t))

· δ(y)dy =

∫ t
t0
−η′(y)g′X(Df − η(y))dy

gX(Df − η(t))

=
gX(Df − η(t))
gX(Df − η(t))

= 1,

and consequently,

α′AI(t) =
∫ t

t0

η′(y)gX(Df − η(y))
gX(Df − η(t))

[
δ(y)− δ(t) +

η′′(t)
[η′(t)]2

]
dy, (18)

which leads to the following result.

Theorem 3.3 For the IDP η(t), if δ(t) = g′X(Df − η(t))/gX(Df − η(t)) decreases monotonically,

then FAI(t) has DFR.

Proof : Based on (18), if δ′(t) < 0, then α′AI(t) > 0 for all t ≥ 0, which implies that FAI(t) is a

DFR distribution. ¥

The result in (18) will be also useful to define sufficient conditions for BT or UBT shaped failure

rate of FAI(t).

It was proven in this section that properties of the lifetime distributions derived from additive

degradation models are largely determined by the functional form of the mean degradation function

η(t), as well as the distribution of random effect X.
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3.2 Multiplicative Degradation Model

The failure rates of lifetime distributions derived from the multiplicative degradation model, as

given in (11) for the DDP and (12) for the IDP, depend directly on the deterministic degradation

function η(t). For example, consider the following DDP

D(t; X, Θ) = X · (θ1t + 1)−θ2 , θ1, θ2 > 0, (19)

where X follows a Weibull distribution with a scale parameter λ > 0, and a shape parameter

κ > 0. As shown in the Figure 1, failure rates at fixed values of θ1 = 0.1 and λ = 1 are decreasing

(θ2 < 2.0), constant (θ2 = 2.0), or increasing (θ2 > 2.0) even if X has DFR (κ = 0.5) .

In this example, the failure rate of the IDP eventually decreases to zero, and this phenomenon

can be easily explained in that η(t) À {log[η(t)]}′, consequently

rMI (t) ≈
{log[η(t)]}′

η(t)
·

gX( Df

η(t))

GX( Df

η(t))
→ 0

as t →∞. From simulation results, it could be observed that resulting failure rate from the IDP is

decreasing or unimodal function according to the form of η(t).

4 Examples

In this section we provide some illustrations of degradation path models that lead to specific lifetime

distributions. Beyond the scope in Lu and Meeker [13], lifetime distributions with BT shaped failure

rate are derived using the relationship between GX and η(t).

4.1 X is Weibull-Distributed

Consider the simple IDP D(t; X, Θ) = θt, where X ≡ θ(> 0) is the degradation rate. Assuming X

is Weibull distributed with cdf

GX(x) = 1− exp[−(λx)κ], λ, κ > 0 (20)

then the lifetime distribution is

FMI(t) = Pr [θt ≥ Df ] = Pr

[
θ ≥ Df

t

]
= exp

[
−

(
λDf

t

)κ]
,

9



and by letting ν = λDf ,

FMI(t) = exp [− (υ/t)κ] . (21)

This is a cdf of the rarely applied inverse-Weibull distribution. Huang and Askin [10] applied

the Weibull distribution to characterize item-to-item variability of electronic devices which degrade

linearly, but the inverse-Weibull lifetime distribution (and its difficulty in use) is not discussed.

The failure rate of inverse-Weibull distribution is given by

rMI (t) =
κυκt−κ−1exp [− (υ/t)κ]

1− exp [− (υ/t)κ]
,

which has a unimodal failure rate with limt→0 rMI (t) = limt→∞ rMI (t) = 0, in strong contrast to

the Weibull distribution.

For the DDP, we consider the model used by Fukada [8] to characterize the degradation of

electronic devices:

D(t;X, Θ) = θ3 · exp[−exp{(θ1t)θ2}]. θ1, θ2 > 0, θ3 ≥ 1 (22)

After a logarithmic transformation,

log D(t; X, Θ) = logθ3 − exp{(θ1t)θ2}.

If X ≡ log θ3(≥ 0) is assumed to be a random effect that follows a Weibull distribution with cdf

given in (20), then for η(t) ≡ −exp{(θ1t)θ2}, which satisfies Df − η(t) ≥ 0, we obtain the lifetime

distribution

FAD(t) = GX(Df − η(t)) = 1− exp[−{λ(Df + exp{(θ1t)θ2})}κ].

In the case κ = λ = 1, (i.e., X has a standard exponential distribution), the survivor function is

given by

F̄AD(t) = exp[−Df − exp{(θ1t)θ2}]. (23)

Suppose that a failure is considered as Df (= logD) = −1, then Eq. (23) is reduced to the survivor

function of an exponential power distribution with a failure rate rAD(t) = θ1θ2(θ1t)θ2−1exp[(θ1t)θ2 ].
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The exponential power distribution is one of the few tractable two-parameter distributions that

possess a BT shaped failure rate (see Figure 2). Its failure rate is BT shaped when θ2 < 1,

achieving a minimum at [(1 − θ2)/(θ1θ2)]1/θ2 . For θ2 = 1, the exponential power distribution is

reduced to an extreme value distribution (Dhillon [6]).

Next, consider the following DDP where a random effect is entered into the model multiplica-

tively:

D(t; X, Θ) = θ3 · {log[θ1t + 1]}−θ2 , θi > 0, i = 1, 2, 3 (24)

with deterministic degradation function {log[θ1t + 1]}−θ2 . Suppose that X ≡ θ3 follows a Weibull

distribution with cdf given by (20). Then, combining (10) and (20), a lifetime distribution function

derived from degradation model (24) is

FMD(t) = 1− exp[−(λDf )κ · {log[θ1t + 1]}κθ2 ]. (25)

by In the case κ = 1, λDf = 1, and θ2 ≥ 1, the distribution (25) can be expressed as

FMD(t) = 1− exp[−{log(θ1t + 1)}θ̃2+1],

for θ̃2 ≥ 0. This is called a 2-parameter distribution II in Dhillon [6], and its failure rate

rMD(t) =
θ1(θ̃2 + 1) · (log[θ1t + 1])θ̃2

θ1t + 1

exhibits increasing and decreasing failure pattern, as shown in Figure 3.

4.2 X is Gamma-Distributed

Suppose that the random effect X follows gamma distribution with a scale parameter λ > 0 and a

shape parameter γ > 0. The pdf of X is

gX(x) =
λγxγ−1e−λx

Γ(γ)
, x ≥ 0,

where Γ(·) denotes the well-known gamma function.

To investigate general characteristics of the lifetime distribution from a gamma-distributed

degradation path, for example, we consider the following metal corrosion process. The rate of
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metal corrosion decreases in time as dη(t)/dt = θ2/(θ1 + t), where θ1 and θ2 > 0 are material-

specific constants, hence the mean degradation path is η(t) = θ2log[θ1 + t] (Tomashov [19]). When

we assume X ≡ θ2 is gamma-distributed, the failure-time distribution is

FMI(t) = 1−GX

( Df

η(t)

)
= 1−

∫ Df
η(t)

0

λγxγ−1e−λx

Γ(γ)
dx

= 1−
∫ Df

log(θ1+t)

0

λγxγ−1e−λx

Γ(γ)
dx, (26)

and the pdf is obtained by differentiating (26)

fMI(t) =
(λDf )γe

− λDf
ln(θ1+t)

Γ(γ)[log(θ1 + t)]γ+1
· 1
θ1 + t

, t ≥ 0. (27)

Its failure rate can be obtained by using (26) and (27). While the gamma distribution’s failure

rate can be increasing (γ > 1), constant (γ = 1) or decreasing (γ < 1), failure rates of the metal

corrosion process with a gamma distributed item-to-item variability are always unimodal regardless

of the shape parameter’s value as shown in Figure 4.

4.3 X is Log-logistically Distributed

The pdf of a log-logistic or a Weibull-exponential distribution (Dubey [7]) is

gX(x) =
βeαxβ−1

(1 + eαxβ)2
, x > 0, β > 0,

with cdf

GX(x) = 1− 1
1 + eαxβ

.

The log-logistic distribution is a special case of Burr’s type XII family of distribution. Consider

the following DDP:

D(t;X, Θ) = θ3(θ1t)−θ2 , θi > 0, i = 1, 2, 3,

with a random effect X ≡ θ3. If X follows a log-logistic distribution with parameters α and β, a

lifetime distribution of D is

FMD(t) = 1− 1
1 + eα[Df (θ1t)θ2 ]β

,

12



and by letting b = e−α/(θ2β)D−1/θ2

f θ−1
1 ,

FMD(t) = 1−
[
1 +

(
t

b

)θ2β
]−1

, b > 0, t ≥ 0. (28)

In the special case where θ2β = 2, the distribution (28) represents b(F 1/2
2,2 ), where F2,2 denotes a

(central) F random variable with (2,2) degrees of freedom. The pdf of Z = bF
1/2
2,2 is

fZ(z) =
(b/2)−1(z/b)

B(1, 1){1 + (z/b)2}2
,

where B(·) denotes the beta function. The resulting failure rate

rMD(t) =
2t

b2 + t2

increases to time t = b and then decreases; see Figure 5.

4.4 X is a Gaussian Process

In a large number of applications, the random variation confounded in a deterministic degradation

path is time-dependent, so X = {X(t) : t ≥ 0} can be modelled as a stochastic process. Sobczyk

and Spencer [18] provided broad applications of a stochastic process in modeling random fatigue

growth. Apart from developing a theoretical framework, we focus on deriving the distribution

of failures as the result of performance degradation using a stochastic process, specifically the

Gaussian process. A Gaussian process is defined as the stochastic process where X(t1), . . . , X(tn)

has a multivariate normal distribution for any ti ∈ Rn
+.

A stochastic process {W (t) : t ≥ 0} is said to be a Wiener process if Pr[W (0) = 0] = 1,

{W (t) : t ≥ 0} has stationary and independent increments, and for every t > 0, W (t) is normally

distributed with mean 0 and variance σ2
W

t. The covariance of the Wiener process is defined as:

γW (s, t) = σ2
W
· (s ∧ t), where ‘∧’ means the minimum value of the two.

In relating F (t) to GX(t) where X ≡ X(t) follows the Wiener Process, consider the IDP in an

additive degradation model. The lifetime distribution is given by

FAI(t) = 1−GX(Df − η(t)) =
1√

2πtσW

∫ ∞

Df−η(t)
exp

[
− x2

2tσ2
W

]
dx.

13



By letting y = x(tσW )−1/2,

FAI(t) =
1√
2π

∫ ∞
Df−η(t)√

tσ
W

exp
[
−y2

2

]
dy = 1− Φ

{Df − η(t)√
tσW

}
,

where Φ{·} denotes the cdf of the standard normal distribution. For example, if η(t) = θt for θ > 0,

then

FAI(t) = 1− Φ
{ Df√

tσW

− θ
√

t

σW

}

= 1− Φ

{
1
α

[√
β

t
−

√
t

β

]}
= Φ

{
1
α

[√
t

β
−

√
β

t

]}
, (29)

for α = σW (Dfθ)−1/2 and β = Df/θ. It is noted that the derived lifetime distribution (29) is a

Birnbaum-Saunders distribution [4] with a shape parameter α > 0 and a scale parameter β > 0.

The failure rate of the Birnbaum - Sanuders distribution is

rAI (t) =

√
t
β

+
√

β
t

2αt · φ
{

1
α

[√
t
β −

√
β
t

]}

1− Φ
{

1
α

[√
t
β −

√
β
t

]} . (30)

where φ{·} is the pdf of the standard normal distribution. It is known that this failure rate is

always unimodal with limt→0rMI (t) = 0, and limt→∞rAI (t) = 1
2α2β

.

For another example using a Gaussian process, we consider a fatigue crack growth model.

The prediction of stochastic crack growth accumulation is crucial for the reliability and durability

analysis of various material in manufacturing. Yang et al. [21] and Sobcyzk [17] proposed the crack

growth rate model
dα(t)

dt
= X(t) · η(∆K(α)), (31)

where α(t) is the crack size at time t, ∆K(α) is the stress intensity range which is a function of

crack size α. Based on the principles of fracture mechanics, η(·) represents a mean crack growth

rate, whereas the random process {X(t) : t ≥ 0} accounts for the statistical variability of the

crack growth accumulation. A commonly used crack growth rate function is the Paris-Erdogan

relationship [16], i.e., η(∆K(α)) = C(∆K)m, where C and m are assumed constants for a given

material.

14



Yang et al. [21] assumed that X(t) is a stationary lognormal random process with a me-

dian value of unity, equivalently, the process Z(t) = log X(t) is a Gaussian process with zero

mean. The stationary lognormal random process is defined by the autocovariance function γX (τ) =

E[X(t)X(t + τ)]. Here, γX (0) = V ar[X] = σ2
X . The autocovariance function plays a significant

role in random process analysis and specifies the statistical behavior of the random process. From

a physical standpoint, the autocovariance function of the crack growth rate should decrease as the

time difference τ increases. According to Yang et al. [21], the autocovariance function γX (τ) of the

random fatigue crack growth process is an exponentially decaying function of time difference τ :

γX (τ) = σ2
X · exp(−ζ|τ |), τ > 0 (32)

where ζ−1 is a measure of the correlation between X(t) and X(t + τ). This autocovariance scheme

provides flexibility in covering a wide range of dispersion of crack growth accumulation through

the correlation parameter ζ. Based on the mean crack growth rate η(∆K(α)) and the lognormal

random process X(t) with the autocovariance (32), we can derive a lifetime distribution of a fatigue

degradation process.

Denote a deterministic initial crack size as α0 at t0 = 0 and the crack size at service time τ as

α(τ). Then the mean service time to reach α(τ) from α0 is
∫ α(τ)

α0

dα

η(∆K(α))
=

∫ τ

0
X(t)dt,

since K(α) is a function of the crack size α. Let ω(τ) =
∫ τ
0 X(t)dt, then the crack size α(τ)

is a monotone increasing function of ω(τ). The integration of the lognormal random process,

{ω(τ) : τ > 0} is also a lognormal random process with mean

E[ω(τ)] =
∫ τ

0
E[X(t)]dt = µXτ,

and variance

V ar[ω(τ)] =
∫ τ

0

∫ τ

0
E[X(t1)X(t2)]dt1dt2

=
∫ τ

0

∫ τ

0
σ2

X · exp[−ζ(t2 − t1|)dt1dt2

= 2
(

σX

ζ

)2

· (exp(−ζτ) + ζτ − 1).
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For a fatigue process, lifetime is defined as the time that a crack size increases beyond a pre-

determined threshold value αf , therefore

Pr[α(τ) ≥ αf ] = Pr[ω(τ) ≥ ωf ] = 1− Φ
[
log ωf − µω(τ)

σω(τ)

]
, (33)

where ωf =
∫ αf

α0
(η(∆K(α)))−1dα, and µω(τ), σω(τ) can be obtained by solving the following

equation: E[ω(τ)] = exp[µω(τ) + σ2
ω(τ)/2] and V ar[ω(τ)] = exp[2µω(τ) + σ2

ω(τ)] · (exp[σ2
ω(τ)]− 1).

The lifetime distribution presented in (33) is flexible enough to cover a broad domain of fatigue

growth failures by taking into account the correlation parameter ζ. In the case in which the

correlation parameter ζ approaches zero, for example, from (32) the autocovariance function γX (τ)

is independent of τ and (33) is reduced to a lognormal distribution for ω(τ) = Xτ . For the Paris-

Erdogan relationship, the failure rate of (33) is decreasing in τ . It can also be observed that the

failure rate decreases as the correlation parameter ζ increases (see Figure 6).

5 Stochastic Ordering of a degradation lifetime distribution

Denote the distribution function and survival function of a random variable Xi by Fi and F̄i

respectively for i = 1, 2. In this section, we employ stochastic orders in the degradation distributions

to derive properties for the implied lifetime distribution.

Definition 5.1 X1 is said to be stochastically smaller than X2, written X1 ≤st X2, if F̄1(t) ≤

F̄2(t) for all t; or equivalently, if E[ψ(X1)] ≤ E[ψ(X2)] for all increasing function ψ(·) for which

the integrals are well-defined.

Definition 5.2 X1 is smaller than X2 in the sense of likelihood ratio, written X1 ≤lr X2 if,

when X1 and X2 are absolutely continuous random variables with density f1(t) and f2(t),

f1(t)
f2(t)

is nonincreasing in t.

It is well-known that

X1 ≤lr X2 ⇒ X1 ≤st X2.

16



Theorem 5.1 Let X1 and X2 be random effects of corresponding degradation paths D1 and D2.

For the DDPs (IDPs) D1 and D2 of the multiplicative form,

(i) If X1 ≤st X2, then D1 ≤st D2.

(ii) If X1 ≤lr X2, then D1 ≤lr D2.

(iii) If D1 ≤lr D2, then D1 ≤st D2.

Proof : For (i),

Pr[X1 ≤ x] ≥ Pr[X2 ≤ x] ⇔ Pr[X1 · η(t) ≤ Df ] ≥ Pr[X2 · η(t) ≤ Df ] for η(t) > 0

⇔ Pr[D1 ≤ Df ] ≥ Pr[D2 ≤ Df ]

= FMD,1 ≥ FMD,2 (F̄MI,1 ≥ F̄MI,2),

which implies that D1 ≤st (≥st)D2.

For (ii),using the DDPs D1 and D2, a partial ordering of X1 and X2 can be translated into a

partial ordering on an increasing function of t, Df/η(t) ≥ 0, where Df ≥ 0 is a constant and t ≥ 0.

Therefore,

{
GX1(x)
GX2(x)

,
gX1(x)
gX2(x)

}
↙ x ⇔

{
GX1(Df/η(t))
GX2(Df/η(t))

,
gX1(Df/η(t))
gX2(Df/η(t))

}
↙ t

⇔
{

FMD,1(t)
FMD,2(t)

,
fMD,1(t)
fMD,2(t)

}
↙ t.

Similarly for the IDPs D1 and D2, a partial ordering of X1 and X2 can be reversely translated into

a partial ordering on a decreasing function of t, Df/η(t) ≥ 0, therefore

{
GX1(x)
GX2(x)

,
gX1(x)
gX2(x)

}
↙ x ⇔

{
GX1(Df/η(t))
GX2(Df/η(t))

,
gX1(Df/η(t))
gX2(Df/η(t))

}
↗ t

⇔
{

FMI,1(t)
FMI,2(t)

,
fMI,1(t)
fMI,2(t)

}
↗ t.

See Keilson and Sumita [11] for detailed proof of (iii). ¥
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It can be easily shown that the partial ordering of random effects X1 and X2 is preserved with

the DDPs D1 and D2 in the additive model. Therefore, Theorem 5.1 can be identically applied to

the DDPs (IDPs) D1 and D2 in the additive model if only a failure is defined for Df ≥ (≤)η(t).

6 Reliability Ordering of a degradation lifetime distribution

Partial orderings of life distributions in terms of their aging properties were introduced by Kochar

and Wiens [12]. We will employ some of those definitions, summarized below, to investigate how

the stochastic orderings affect comparisons in the lifetime distributions. The orderings are based

on the previously defined stochastic orders IFR, IFRA and another ordering called “New Better

than Used” (NBU). A distribution F is NBU iff

F̄ (x)F̄ (y) ≥ F̄ (x + y)

for all values of x and y. Note that this ordering is less restrictive than the IFRA ordering.

Definition 6.1 F1 is more IFR than F2, written F1 <IFR F2 if F−1
2 (F1(t)) is a convex function

in t on the support of F1. This is also equivalent to convex ordering denoted by F1 <c F2. If the

failure rates exist, an equivalent formulation is

r1(F−1
1 (z))

r2(F−1
2 (z))

is nondecreasing in z ∈ [0, 1].

Definition 6.2 F1 is more IFRA than F2, written F1 <IFRA F2 if F−1
2 (F1(t)) is star-shaped.

This is also equivalent to star-ordering denoted by F1 <∗ F2.

Definition 6.3 F1 is more NBU than F2, written F1 <NBU F2 if F−1
2 (F1(t)) is superadditive.

This is also equivalent to superadditive ordering denoted by F1 <SU F2. F1 is said to be super-

additive with respect to F2 if

F−1
2 (F1(x + y)) ≥ F−1

2 (F1(x)) + F−1
2 (F1(y))
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for all x and y in the support of F1.

Each of the above orderings are scale invariant, and has the property that for a standard

exponential distribution F2(t) = 1 − e−t, if F1 has aging property κ, then F1 <κ F2 for κ ∈

{IFR, IFRA, NBU}. It also follows that

F1 <IFR(c) F2 ⇒ F1 <IFRA(∗) F2 ⇒ F1 <NBU(SU) F2.

Theorem 6.1 Let GX1 and GX2 be distribution functions of random effects X1 and X2 for corre-

sponding degradation paths D1 and D2 in a multiplicative degradation model, then

(i) If GX1 <IFR(IFRA) GX2, then FMD,1 <IFR(IFRA) FMD,2 if η(t) is a decreasing function of t.

(ii) If GX1 <NBU GX2, then FMD,1 <NBU FMD,2 if η(t) is a convex increasing function of t.

Proof : (i) For the distribution functions of the DDPs D1 and D2, FMD,i(t) = GXi(Df/η(t)),

i = 1, 2, let Z(t) = Df/η(t). Then

F−1
MD,2(FMD,1(t)) = {GX2(Z(t))}−1 [GX1(Z(t))]

= Z−1
{

G−1
X2

[GX1(Z(t))]
}

.

Since G−1
X2

(GX1(x)) is a convex (star-shaped) function, G−1
X2

(GX1(Z(t))) is also a convex (star-

shaped) function with respect to t, t ≥ 0. For any monotonic increasing function Z(t), an in-

verse function Z−1(t) is also increasing. Consequently, an increasing function of a convex (star-

shaped) function, Z−1{G−1
X2

[GX1(Z(t))]} is also a convex (star-shaped) function, which proves that

FMD,1 <IFR(IFRA) FMD,2.

(ii) Since η(t) is convex, Z(t) = Df/η(t) is concave, hence Z(t1+t2) ≥ Z(t1)+Z(t2) for arbitrary

values of t1 ≥ 0 and t2 ≥ 0. Therefore,

Z−1
{

G−1
X2

[GX1(Z(t1 + t2))]
}

≥ Z−1
{

G−1
X2

[GX1(Z(t1) + Z(t2))]
}

≥ Z−1
{

G−1
X2

[GX1(Z(t1))]
}

+ Z−1
{

G−1
X2

[GX1(Z(t2))]
}

,

which proves FMD,1 <NBU FMD,2. ¥
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7 Conclusion

In modeling material fatigue and degradation, the relationship between the randomness in degra-

dation and randomness in the resulting lifetime distribution is strong and direct, albeit hard to

discern. By making tacit assumptions about the degradation distribution, the resulting implications

to the lifetime distribution may surprise the experimenter or contradict the assumptions about the

failure characteristics in the study.

This research reveals surprising restrictions on the properties of the degradation path when as-

sumptions are made on the degradation distribution. Interestingly, some degradation models, under

distributional assumption of random parameters in the model, directly imply lifetime distributions

having bathtub shaped failure rate.

The comparisons in this article are based on basic degradation functions that are applied to

show the relationships between degradation and lifetime with minimal complexity. Certainly, many

practical applications would use degradation functions extended beyond the elementary ones listed

here. The results bolster the need for further attention to this implied relationship of interest; few

efforts have been pursued toward this end.

While degradation modeling is growing beyond the purview of manufacturing and materials

testing (e.g., logistics-performance degradation in supply-chain networks [20]), reliability prediction

through degradation modeling will be further emphasized as a supporting tool in lifetime data

analysis.
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Figure 1: Failure rate plot of the DDP in a multiplicative model with random effect X distributed

Weibull
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Figure 2: Failure rate plot of exponential power distribution
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Figure 3: Failure rate plot of 2-parameter distribution II
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Figure 6: Failure rate plot of a crack growth rate model with the Paris-Erdogan relationship
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