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CHAPTER 1 INTRODUCTION

The system effectiveness is often used to describe the overall capability

of a system to accomplish its mission.. If the system is effective, it : ; :::-.s

out its intended function well. If it is not, attention must be directed to

those system attributes which are deficient. Of the major attributes deter-

mining system ef rectiveness , the one that has received the most thorough

and systematic study Ls reliability.

Reliability is the probability- of successful operation. )ne definj : -on

reads "Reliability is the probability of a device perform.::? its purpose

adequately for the period of time intended under the operating ;onditi

encountered" (Radio-Electronics-Television Manufacturers Association, L955 •

Therefore, the probability that a system successfully } = rr ?rms as c^si^rsd

is called the "system reliability." Such probability is also referred tc

as the "probability of survival." In most cases the probaoilicy with whi h

a device will perform its function is not known at first. Also the ::.;

reliability is never exactly known, which means zh^ exact numerical value

of the probability of adequate performance is not known. d\ic numerical

estimates quite close to this value can be obtained by the -use of statistical

methods and probability calculations.

Reliability has been a measure of the capacity of a system :; cperetc;

without failure when it is put into service. For convenience, reiiabil-t/

has also been describee as the ability 01 equipment to preserve its output

cnaracteris tics (parameters) within established ikmits under giver, operatj

. . -oas . From this concept, it also follows mat an unreiiic le system i~-

a syst_ aade inoperative by me;h3nr^^l or electrical iamage c ; system's



output characteris tics drift outside admissible limits [3J . Such character-

istics can be accuracy, the nature of transient responses, Che type of

frequency characteristics, etc.

System reliability is a measure of how veil a system performs or meets

its design objective, and it is usually expressed in terms of the reli-

abilities of the subsystems or components. The following terminologies are

defined. A "part" or "element" is Che least subdivision of a system, or

an item that cannot ordinarily be disassembled without being destroyed.

-a "circuit" is a collection of parts that has a specific function.

"component" then is a collection of parts and/or circuits, which represents

a self-contained element of a complete operating system and performs a

function necessary to the operation of that system. "Unit", "component",

and "subsystem" are synonymous. A "system" can Chen be characterized as a

group of subsystem especially integrated to perform a specific operational

f un ction or f un ctio ns .

The "reliability" of a system is the probability of a successful

operation of the system for a specified period of time. In describing the

reliability of a given system it is necessary to specify (1) the equipment

failure process, (2) the system configuration which describes bow the

equipmenc is connected and the rules of operation, and (3) Che state in

which the system is to be defined as failed. The equipment failure process

describes Che probability law governing those failures. The system :on-

figuration, on Che other band, defines the manner in whi le system

re. ;.i,r.bil L Cy function will behave. The tnird considerat_on in Leveloping

Che reliability Eunction for a non-maintained system is tc te: _ci Che

-."--- is of svstem failures.



There exist several methods to improve tne system reliability. Some

o: these methocs approach tne prociem by using Large safety factors, : -

ducing the complexity of the system, increasing the reliability of con-

stituent components through a product improvement program, osing structural

redundancy, and practicing a planned maintenance and repair schedule. A

good deal of effort has been made in the field of optimal redundancy

allocation.

A. system in many cases is not confined zo a single component. What

we really want to evaluate is the reliability of those systems which are

simple as well as those which are extremely complex. To develop functions

expressing the system reliability, both conventional staciscic (probabilistic)

jry and Markovian process have been used.

Reliability engineering appeared on the scene in the late L940's ai

early 1950 !

s and first applied to the field of communication and trans-

portation. Much or the early reliability work was confined to making

trade-offs between certain performance and reliability aspects of systems.

However, in zhe ever-increasing complex systems of today reliability

become increasingly important.

in this thesis a thorough discussion of reliability optimization

problems is presented. The concencs include a critical review of opti-

mization techniques for system reliability with redundancy, and the de-

termination of component reliability and redundancy for optimum system

rel Labili ty .

As complexity increases, so must reliability.



The objectives or this thesis are:

..j to pi^enc a critical aw and cla Lcation of I Li-

ability optimization problems which have been analyzed with vard

optimization techniques ;

(2. ) to study the generalized reduced gradient method (GRG) and a

generalized Lagrangian function method applied to systeia reliabi±i\

optimization problems. Both of taese methods have not previously been

applied to these problems:

(3.) to generalize the system reliability ;pcimc.2ation problem to include

reliability allocation and redundancy allocation simultaneously;

-..• to propose new methods for determining integer solution, particularly,

'.ieuris tl c methods

.

A state-of-the-art review of the literature related to optimal system

reliability with redundancy is presented in Chapter 2. The literature is

classified as follows.

Optimal system reliability models with redundancy

Series

Parallel

Series-parallel

Paralis

5 candby

Complex (nonseries. nonparallel)



Optimization techniques for abtaining oo r system configurations are:

Integer programming
namic programming

Maximum principle
Linear programming
Geometric programming
Sequential unconstrained minimization technique (SUMT)

Modified sequential simplex pattern search
Lagrange multipliers and Kuhn-Tucker conditions
Generalized Lagrangian function
Generalized reduced gradient (GRG)

juristic approaches
Parametric approaches
?s e ud c - 3co ]. e an pro gr ammir.

g

Miscellaneous

One goal of the reliability engineer is ta find the best way to in-

crease the system reliability. Six important methods for doing this are

(1) keep the sysr;an) as simple as is compatible with the performance re-

quirements. Nonessential components and unnecessarily complex configurations

3nly increase che probability of system failure. One aspect of complexity

which produces unreliability is subsystem interact!.>n which may be en-

Lronmental [2j. (2) increase the reliability of the components in the

system. (3) use parallel redundancy to the less reliable components z:

stages. (4) use standby redundancy which is switched to the active com-

ponents or stages when they fail. (5) use repair maintenance vnere failed

components are replaced but not automatically switched in as in (4).

(6) use preventive maintenance wnere components are replaced by new cues

whenever ~':^-r fail or at some specific time, -.vd~ichever comes first. '-..

A good ieal of effort has been made in the Eield of optimal redundancy

allocations. However, to increase the system reliability, the system will

spend more 'cost" in weight, volume size, money expenditure, etc. to meet

d reliability. Etence, in Chapter ?



optimization techniques are introduced which include (a) to maximize the

system reliability of various system configurations subject to the "cost"

constraints, or (b) to minimize any specific "cost" while satisfying the

minimum requirement of the system reliability.

In this chapter, the literature published on optimal system reliability

is classified and critically reviewed. Various problems are also classified

and solved by a heuristic approacn, dynamic programming, and integer pro-

gramming. These optimization techniques always give solution of integer

numbers which meet the implied integer requirement of redundancy allocation

problems

.

Sequential Unconstrained Minimization Technique (SUMT) has been wide!

used in solving many optimization problems. The problem with a tangent form

cost function is successfully solved by SUMT. Generalized Reduced Gradient

method (GRG) and generalized lagrangian functions method have been developed

but have never been used in system reliability optimization problems. The

GRG method is an elaborate extension of hill-climbing gradient techniques,

and has been coded in FORTRAN in a program named G'c'JGG. A new type oz the

generalized or augmented Lagrangian function proposed by Sayama et al.

for finding the solution of a non-linear programming problem with inequality

constraints is also explored in this chapter. Since neither method gives

integer solutions, rounding off procedures are applied whenever the re-

dundancy allocation problem is solved.

The maximum principle, the method of Lagrange multipliers and the

Kub.n--Tuck.er conditions, geometric programming, and several miscellaneous

optimization techniques (eg. linear programming and separable programming^



are also effectively introduced in this chapter which provides a compre-

isive discussion of optimization techniques having been used in studying

system reliability optimization problems.

It is noted that most of the optimization techniques employed in this

thesis, are limited to solving small system reliability optimization

problems

.

In Chapter 4 a problem is presented which simultaneously induces the

determination of the optimal level of component reliability and the number

of redundancies in each of the stages. The problem is one in which the

component failure rates are variables and the optimal trade-off between-

adding components in redundancy or the improvement of an individual com-

ponent's reliability is considered. This becomes a mixed integer pro-

gramming problem in which the system reliability is to be maximized as a

function of component reliability level and the number of components lsed

at each stage. The Hooka and Jeeves pattern search technique in combin-

ition with the heuristic approach by Aggarvai, et al. is utilized to solve

this problem.

Chapter 4 extends the usual reliability optimization problem to detem

jptimization of component reliability and the number of redundancies

Ln :'i^; j~: the stages.
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CHAPTEI IPTIMIZ IIQUES FOR SYSTEMS RELIABILITY

REDUNCANCY -
'

I. INTRODUCE

The reliable performance of system i sion under various ;cn-

ditions is of utmost importance in many i i trial, militar rid everyday

e situations. Although the qualitative concepts of re liar - Lre r\ot

new, its quantitative asDects have beer developed over the past two decad

Such development has resulted from the increasing needs for Lghly reliable

stems and components with more safety and less cost.

There exist sever-: methods to improve the system reli -
. 5ome

r

of these methods approach the problem by using large safety factors, re

the complexity of the system, increasing the rel iabi lity -jf constituent

ponents through a product improvement program, using structural redundancy,

md practicing a planned maintenance and repair schedule- A ^ocd deal

effort has been centered in the field of optimal redundancy allocation.

A state-of-art review of the literature related to optimal systems

reliability with redundancy is presented in this paper. The first part of the

reference list is concerned with basic reliability '1-17] md jptimizat

techniques [18-66]. The reference for the various optimization techniques

ire: optimization techniques in general [18-251, integer programming [24-29],

the maximum principle [50-33], the generalized reduced gradient metfc i

[34-42], nodified sequential simplex pattern sea 13-46], the s

in-constrained minimization technique (SUMT) [47-52], the method of Lagrange

.1 the Kuhn-Tucker conditions [53-54] the generaliz

m functions method [53-58], dynamic programming [59-65], and

un Lng [64-66] .

rt of the reference list cone entr "tides

jvant t c
••"" Lon of systems reliability »vith redu '-IA
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which are classified into two categories: the system configurations and the

-imitation techniques employed , see Tables 1 and 2. In Table 1. the liter-

ature for the different system configurations is separated into the following

model sub-categories: series, parallel, series-parallel, parallel-series,

standby, and non-series-parallel models. In Table 2, the same literature

is reclassified to indicate the variety of optimization techniques utilized.

Although the authors have tried to give a reasonably complete survey,

those papers , not included, were either inadvertently overlooked or considered

not to bear directly on the topics of this survey. The authors apologize

to both the readers and the researchers if we have omitted any relevant papers.

2. SYSTEMS MODELS

In this review, we assume that the reader is familiar with the material

treated in these models. For a discussion of the definitions and formulations

of the basic concepts, the authors suggest reviewing the books on reliability

as stated in the references [1-17]. We will briefly review each of the models

considered in this survey.

The first model considered is an N-stage series system and is shown in

Fig. 1. In this system, the functional operation depends upon the proper

operation of all system components. The second model is an M-stage parallel

system which is shown in Fig. 2. There are M oaths connecting the input to

the output, and all components must fail for the system to fail.

Figure 3 shows a mixed series-parallel system in which N components are

connected in a series arrangement where M such series connections are con-

nected in parallel to form the system. Figure 4 shows a mixed parallel

-

series system. In this system, N stages are connected in series where *nts

ire connected in parallel at euch stage.



Table 1. The reference classification for the optimization
of reliability with redundancy with rega.-i

to varicu? system configuration.

Svstem Configuration Referen;

Series 70, 72, 76, 77, "3, 79, 83, 37, 88, 39, 108,

122, 125, 129, 130, 136, 139, 141, 142

Parallel 70, 71, 79, 88, 39, 95, 104, 122, 129, 136,

139, 141, 142

Series-parallel 79, 88, 39, 94, 95, 110, 122, 124, 129, 130,

141, 142

Parallel-series 62, 69, "2, "5, 77, "3, "9, 80, 81, 82, 33, 34,

87, 83, 39, 92, 93, 94, 96, 93, 100, 101, 104,

105, 10C, 107, 108, 109, 110, 111, 112, 114,

115, 116, 117, 118, 119, 120, 122, 124, 126,
12", 128, 129, 130, 132, 134, 155, 156, L37,

±58, 139, 141, 142, 143

Standby 77, 39, 90, 95, 108, 120, 121, 122, 12".. 129,

150, 135, 141, 142

Non-series-parallel 68, 70, "1, "3. "9, 30, 91, 97, 156, L4

;' including bridge network)
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Table 2. The reference classification for the optimization techniques
employed L

:or svstems reliability with redundancy

.

» Vi n i -

aptlmi za1 1on t e c n

n

References

Integer programming 86, 87, 90, 92, 98, 105, 105, 106,

107, 112, 116, 120, 1 35 , 157, 159

Dynam Lc programm ing 75, 80, 84, 94, 96, 99, 101, 104,

108, 127, 123, 155, 145

'

r i i s in aximura principle 82, 110, 158

Linear programming 98, 151

Geometric programming i5, 114

5 ecu ent ial un cons t ra ined
7. i n Lmi nation technique

91, 154, 156, 140

Modified sequential simplex
pattern search

71 1 1 Q

pliers and the Kuhn-Tucker "7, 78, Si, 108, 110, 111, 155

.tunction method
100

Generalized reduced gradient
metnod

1C0

heurist?uC aoproac ? 63, 69, 100. 152

arametric iporoac; , • J
, B

Pseudo-Boo 1 ean programming 9 5

Qtners [miscellaneous 76, 77, 78, S3, 39, 95, 100, L09, "15,

II", 119, 121, 122, 125, :i9, 150,

1-:, 142
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t standby system .; . 5 , which has the same form

as a mixed 'allel-series system, however , in th stern the parall

components ire not ail active it the same time. Figure 6 shows i system

•
.. lich has the same form as a mixed series-parallel sysr

However, when a system standby system is used, the parallel M series sub-

orns are not ail active at the same time.

Figure 7 shows a typical non-series-paraiiel reliability system. The re-

liabi: -
: this system can be evaluated by using conditional probabilities

:r other Lches. Figure S shows a complex bridge network system

one of the complex reliability systems Ln the form of the bridge fretwork.

Table 1 presents the literature on the optimization of systems reli U t

for the ibove systems models.

5. STATEMENT OF THE VARIOUS OPTIMIZATION' PROBLEMS

The structure of fhe optimization problems, which are relevant to

survey j are stated below and the literature is identified in Table .S

.

For an N-stage series model (see Fig. 1), the problem is one of a] iting

the reliability to each of the components so that the reliability _s -

and can be stated as

Proble

Maximize R = II P.
s

j-i }

subject to

I

I g .
.
( R. ) < b. , i=l, 2, ,m

3=1
:

" "

where R is the systems reliability, P. is the comocnent reliability d£ the
s '

2

Is the resource i consumed at stage ;

. md b. Is the

t of resource i vailable. T he function, ;. ;
-: . . - ~ either be

ict to the c nponent ibility, R.

.
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Table 5. The reference classifications with regard to the structure of

optimization problems

Formualtion of problems References

Problem 1: Optimum reliability allocation 9, 76, 99, 100, 110, 115.

for an N'-stage series system

Problem 2: Optimum redundancy allocation, 69, 72, 75, 77, SO, 81, 85,

84, 88, 89, 90, 92, 95, 94,
maximization of systems reliability subject

to cost constraints
96, 98, 100, 105. 106, 107,

108, 109, 110, 111, 112, 115,

114, L15, 116, 11", L18, :.

120, 121, 122. 125, 126, 129,

150, 152, 154, 155, 136,

15", 158, 159, 141, 142, 143

Problem 5: "Cost" minimization problems "2, "3, 90, 91, 35, 100, 112

115, 122, 128, 151, 155, 15"
subject to the minimum requirement of the

system reliability
159

-robL.'m 4: System reliability maximization

for a non-series-parallel

Reliability allocation SO, 91, 100, 140

Redundancy allocation 68, 71, 156

Others

Maximization of the system profit 82, 12S

Maximization of the ratio of the

system reliability to the power 104

demand of the svstem
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V further de lation of this problem :an be stated as finding the

optimum number of redundancies (see Figs. 2-6) which maximize the system re-

liability sub set to "cost" constraints, or the minimization

subject to the condition that the system reliability is equal to or greater

thai ^ired level. These problems are stated as:

Problem 2

N

Maximize R = tt R. (X.)
s i_i 3 3j-l

subject to

E g 4 ,CXJ < b , i = 1, 2, ...., m

j = l
'U "

J - i

where R^ is the reliability of the jth stage (subsystem), which is I

function of the number of components, X..

Problem 5

N

Minimize C = Z C.(X.)
5

1 = 1 -

1
' -1

subject to

M
-

i = i

1

;x .) > r
3 3- r

where C is the total cost of the system and C. is the cost of the jth stag
s J

J 6

which is a function of the number of components in each stage, X.. The

systems reliability, R » has to be greater than or equal to the required systems

reliability, R .
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The systems reliability for the complex systems (see Figs. 7 and 8)

are obtained by using Bayes ' theorem involving conditional probal es

or other network approaches. The optimization problem is stated as

Problem -1

Maximize R = f(R. , R_, . . . , R.J
5 1 Z N

subject to

N

I g,,(R.) = b., i - 1, 2, ... , m

3=1 ' '

where the systems reliability is a function of the component reliability, R..
j

4. OPTIMIZATION TECHNIQUES USED TO DETERMINE THE OPTIMAL SYSTEMS RELIABILITY

Most of the problems stated are nonlinear integer programming problems.

These problems are more difficult to solve than the general nonlinear pro-

gramming problems because the solutions are required to be integers. Many

algorithms have been proposed but only a few have been demonstrated to be

effective when applied to large-scale nonlinear programming problems. None

have proven to be superior over the others so that it could be classified as

the algorithm for solving general nonlinear programming problems [22].

The literature on the optimization techniques which are relevant to this

survey is classified and presented in Table 2. All the optimization

techniques employed in the ~~ papers [67-145] have limited success in solving

all of the problems.

Although integer programming [24-29] yields integer solutions, the

transformation of nonlinear objective functions and constraints into a linear

form so that integer programming can be applied is a difficult task. In
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addition, the various integer programming techniques do not guarantee that

optimal solutions can be obtained in a reasonable time. Dynamic
|

.^g

has the dimensionality difficulties which increase with the increase

of the number of state variables, and it is hard to solve problems with more

than three constraints. Similarly, the maximum principle [30-33] has diffi-

culty in solving problems with more than three constraints. Likewise

geometric programming [64-66] is restricted to problems that can be formulated

by posynomial functions.

The sequential unconstrained minimization technique CSUMT) [47-32],

the generalized reduced gradient method (GRC) [34-42] modified sequent

simplex pattern search [43-46], and the generalized Lagrangian function method

[55*58] are probably the few techniques that have been demonstrated to be

effective when applied to large-scale nonlinear programming problems. sver,

the solutions are nonintegers and hence the optimal solution winch must be

integer is not guaranteed.

5 CONCLUDING REMARKS

Ml the optimization techniques employed in the papers surveyed have

limited success in solving some small-scale system reliabilit t: lization

problems. Few techniques have been demonstrated to be effective when Led

to large-scale system reliabilit;/ optimization problems.

ere are some new directions which additional optimization work would be

fruitful. For example, one extension to the usual reliability optimization

ilem is to include the determination of the optimal level of comuonent

reliability and the number of redundancies in each of the stages simultaneously

T':\e problem is one in which the comDonent failure rate is a variable and
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the optimal trade off between adding components in redundancy or improvement

of the individual component reliability is to be determined. Another example

is one where the optimization of multi-stage system reliability is achieved

by choosing a more reliable component out of several possible candidates at

stage 1, adding redundant components in parallel at stage 2, and using a

k-out-of-n: G configuration at stage 5.

Cost data for improving systems reliability are critically needed.

Very little of these cost data are available. In the formulation of objective

functions or constraints, actual cost data are necessary to realistically

model the problems.

Increasing complexity of modein-day equipment, both in military and

commercial areas, has brought with it new engineering problems involving hign

performance, reliability , and maintainability. In this regard availability,

which is a combined measure of maintainability and reliability, has received

wide increased usage as a measure of system effectiveness. A survey of this

literature is presented in reference (144) . A logical classification of

various aspects of this problem is presented.
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CHAPTER 3 OPTIMIZATION OF SYSTEM RELIABILITY

Optimization techniques have their inherent characteristics and specific

superiorities to solve general linear or nonlinear programming problems. In

this chapter, various optimization techniques are treated to

(1) maximize the system reliability by adding the redundant components in

each specified subsystem,

(2) maximize the system reliability by choosing a suitable stage reli-

ability in each specified subsystem, cr

(3) minimize the "cost" of the system while satisfying the minimum require-

ment of the system reliability.

(-0 minimize the "cost" of a multi-function system while satisfying the

minimum requirement of each individual system reliability.

"Cost" constraints of cost, weight, volume, or some combination of these

factors are imposed to a system with series, parallel, or complex con-

figuration. Each of the constraint functions is an increasing function of

the component reliability and/ or the number of components used at each

stage. Various "cost" functions are used.

En the previous chapter, references for optimization techniques for

system reliability with redundancy have been reviewed. The computational

procedures of the optimization techniques, which have or have net been

applied in the optimization of system reliability, will be described in

this chapter. These optimization techniques are:
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1. heuristic approacn

1. dyanmic pro granting

3. the discrete maximum principle

the sequential unconstrained minimization technique (SUMT)

5. the generalized reduced gradient method (GRC)

6. method of Lagrange multipliers and the Kuhn-Tucker conditions

7. the generalized Lagrangian functions method

8. geometric programming

9. integer programming

10. others (a classical approach, parametric method, linear programming,

snd separable programming)

.

Among these optimization techniques, both GRG and the generalized

Lagrangian functions method are very promising ones and have never been

applied; heuristic approach and dynamic programming, having been

successfully applied for the redundancy allocation problems, will be

critically reviewed, classified, and modified. To cover a comprehensive

discussion, the other optimization techniques will also be used to solve

various reliability optimization problems.. Before dealing with each

specific optimization tecnnique to system reliability problems, the following

() assumptions are made:

(1). Each subsystem is considered to be essential for the overall operational

success of the mission, if all the subsystems are operationally in

series.

(-') . All the suosystems in series, parallel, or complex configuration are

s-indeoendt:> : , else there are statistically independent parallel
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redundant components in each subsystem. In parallel redundancy,

all units have the same risk of failure (or success) regardless or

whether or not they are spares or active.

(3) . Before the requirement of linearization for some specific opti-

mization techniques, if necessary, the constraints of "cost" are

not necessarily in linear forms.

(4). Good/bad is a sufficient description for each component, subsystem,

and the whole system. In parallel case, unless being specified,

only one component needs be good for the subsystem to be good, namely,

it is generally 1-out-of m: G configuration. No assumption is

made about the hazard rates of the components, except that it is re-

flected in the reliability of the components.

(5) . Without the specific optimization knowledge of the mission require-

ments, realistic aecisions on redundancy, design change, and other

aspects of reliability improvement can not be reached. Tradeoffs

between optimal redundancy components and "cost" measures can be

considered only.

(6). So far as constraints are considered, each one is additive among

subsystems

.

(7). The redundant models are also based on the assumption that in-

dividual component or path failure has no effect on the operation

of the surviving paths. Consider a simple parallel unit composed

of two components, A and B, each of which can fail in either of

two ways-open failure or short-circuit failure (diodes are a good

example of elements which can fail in either mode) . A short in
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either or two elements will result in unit failure; however,

it is generally assumed that individual path failure dees not resuii

in unit failure or the probability of a short-circuit failure is 0.

(8). The connection nodes may spend some "cost", but are assumed perfect

with the reliability of one as long as the system functions good.
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5.1 HEURISTIC METHODS IN OPTIMAL SYSTEM RELIABILITY

1. Introduction

[t is well-known that by using redundancy we can increase system

reliability. Many techniques have been applied to obtain the solution

of optimization problem, however, several heuristic approaches are very

attractive for solving the redundancy allocation problems.

Four kinds of heuristic approaches are presented in this section.

Sharma and Venkateswaran [1971] developed an intuitive procedure for

allocating redundancy among subsystems. To improve the system reliability

at each step of the algorithm, the procedure is to add a redundancy in

the stage which has the highest stage unreliability. The algorithm was

applied for solving multistage system problems subject to multiple nonlinear

constraints. In this approach, the constraints are never in active. Misra [19 7 2]

r,hen introduced an approach for redundundancy optimization problem with multiple

linear constraints. In the process of solving a problem, the problem with r-

constraints is decoupled into r-problems, each has one constraint. "Desirability

factor", i.e. ratio of the percentage increase in the system reliability to the

percentage increase of the corresponding cost, is introduced to determine a stage

which a redundancy, is to be added. Aggarwal et al . [1975] improved Sharma-

Venkateswam approach by introducing a relative increment in reliability

versus decrement in slacks (the balance of the resources) as a criterion

to select the stage to which a redundancy is to be added for solving series

system problems with multiple nonlinear constraints. Aggarwal [1976]

extended the approach to a problem of complex systems. Recently, Nakagawa

and Nakashima [1977] presented the fourth approach to solve a different

type of series system (described later) . In this approach a thorough

consideration of the balance between the objective function and the con-

straints is especially emphasized. A modified Nakagawa-Nakashi

for solving complex system problems is also presented.
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The approaches are illustrated by solving four examples. Tne first

example is a five-stage series system with three non- linear constraints.

Tne second one is a complex (non-series-parallel) system to which one linear

constraint is imposed. The third one is a four-stage series system with

two linear cost constraints. The fourth one is more complex than a simple

parallel redundancy problems. These examples are presented here.

Example 1

This problem was presented oringinally by Tillman - ttschiv* Lger

[1967], and used by Tillman et al. [1968], Sharma - Venkateswaran [1971],

and others for demonstrating many optimization techniques .

The five-stage problem is stated as

Maximize

5 x.

r = .n [i - (i - r.) j
]

(i)
s 3 -J- J

subject to

j=i
*1

=
h P

j

(X
j

r 1 P

D

go =
I

c (x + exp ix /4)j < C

j=l ] > J

?

g = I w.x .exp fx./4^ < W ."-

J
i=l ^

where x. ^> l, i = 1 2, ..., 5, are integers.
J
~

The constants associated with the five-stage problem are

onstants Assigned for Five- Stage Problem

1 0.80 :

: 0.S5

3 0.90 5

4 ).65 i

-r

5 0."5 2

]

7

7

110 3 175 ; 20C

9

4 ?
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Example 2

Consider a non-series-parai lei system shown in Fig. 1 [Aggarwal , 1975]

Let there be only one cost constraint and 20 units is the maximum per-

missible cost. The data for the various subsystems are

R. = 0.70, R = 0.8S, R, = 0.75, R = 0.30, R
c

= 0.90
1 L b 4 o

C. = 2 , C_ = 5 , C, = 2 , C, = 5 , C_ = 1
1 2 j 4 3

The problem is

Minimize

q
s

- q;q 5
q;q; q;q;q- q^q-q- - q;q;q-

- q;q:q_;qi -
QJQ;q:q:

-
QJQJQiQJ

- Q2Q3QiQs

+ 2Q|q;q:q;q^

subject to

g = .1, c
.
x

. < C

x

where Q' = (i - R.) ,
x

. >_ I
, j = i, 2, ..., 5, are integers.
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Fig. 1 A Bridge Structure
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Examp l e 5

Consider an example of a series system of four stages. The component

reliability, cost, and weight data are:

Stage,
j

12 3 4

Component reliability, R. 0.S0 0.70 0.75 0.85

Cost, c. 1.2 2.3 3.4 4.5

Weight, w. 5 4 8 7
]

The system cost and weight are 56 and 120, respectively.

The problem is

Maximize

4 x.

R = n [i - (i - R.) J
]

1=1 J

subject to
i

i
=

4

c . x . < 56

g„ = w.x. < 120
2

j=l J ] ~

where x. >_ 1 , \ = 1, 2, 3, 4, are integers.

Example 4

rhis example presented by Nakagawa-Nakashima [1977] is more complex

than a simple parallel-series redundancy problem.

Consider the system composed of 3 stages operating in series. The

system reliability is increased by choosing a more reliable component out

of 4 candidates at stage I, adding redundant components in parallel at

stages 2 and using 2-out-of- (x„ +1): G configuration at stage 5. The

problem is

Maximize

R
3

=

jlj
R

!

(x
r



subject to

0.02
= 4

'

exp
I

i - wj 5x- - 2(x_ + 1) < 45

X
l/3 ., *2/4

,
. *3/4,

g = o + e + o(x 9
* e ) + 5(x- * 1 - e ) 75

_ — O

'2/4
4, = 10 + 3x • e + 6x„3
j 2 j

i/4
< 240 (6)

where

R'(x) = 0.88, 0.92, 0.98, 0.99 for x_ = 1, 2, 3, 4 respectively

R^'xJ = 1 - (1 - 0.81)

x, +1

R'CxJ = Ij • 5
k = 2

[ x. +1 ] , x_ + 1 - k
3

k
0.7- K (1 - 0.77)

2xam.pl e 5

A multi-function system is considered, which contains N distinct :om-

ponents and to increase the reliability of each, parallel or stand-by

redundancy can be used. The problem is stated by Ushakov [9] as:

Minimize

C

N

c . x .

= =1 -
1

-
1

J

subject to

R ,

= n R!(x.) > R i = 1,2, . . . , k
si . ] j — si,mm

3£J.

x. >_ 0, j = 1,2, ..., X, are integers.

where J. denotes the subset of components that ensure the execution of

function i with the minimum requirement for the ith function reliability ,

x, , i = 1,2, .... k.

The dal :iated with this example are:

Cage, 1 2 5

Component re La .lity, r

Co s t , c 3

0.75 0.85 •
= -

•

si,mm
i R - =Cs2,mm



2 Heuristic Method - Sharma - Venkateswaran' s Approach

Fo rmulation of the Problem

In addition to the general assumptions made for the system reliability

optimization problems of an N-stage in series with x. redundant components

at stage j, the unreliability of one component at the j th stage, Q . , j = l ,2 , . . . ,N

,

should be small enough ( £ 0.3) so that

N x.

Q = l - n C l - Q.
3
)

i = i
]

can be approximated to

N x.

q * y q.
J

s
jii ]

where Q is the svstem unreliability. Therefore, the system reliability
s

problem subject to nonlinear cost constraints can be formulated as

Minimize
N x.

= Q.
J

f7>s - 1 *• J

j = 1
J

subject to

N

g. . (xj 1 b. 1 = 1,2,... ,r (3)

i=l
'ii ^ r - 1

where g. (x.) is the resource i consumed in stage j, and b. is the available

resource for constraint i.

The objective is to reduce in successive steps. The procedure at

each srep is to add one redundant component to the stage with the highest

x.

Q. •' Ln 5g. ( .

"
.. if constraints in e.g. ( .3) are not violated.



Therefore, the constraints become active only in the neighborhood of the

hot.:: . of the feasible region. The sequential steps involved in solving

the problem are as follows:

Step i. Ji x. = 1 for j =1 ,2 , . .
.
,N. Because this is a cascade system,

there must be at least one component in each stage and should not violate

any constraints at all.

Step 2. Find the stage which has the highest unreliability. Add a redun-

dant component to that stage.

Step 3. Check the constraints:

a) if any constraint is violated, go to Step 4.

b) if no constraint has been violated, go to Step 2.

c) if any constraint is exactly satisfied, stop.

The current x.'s are the optimum numbers of allocation.

Steo 4. Remove the redundant component added in Step 2. The resulting num-

ber is the optimum allocation for that stage. Remove this stage from further

consideration.

Step 5. If all stages have been removed from consideration, the ; t jc.'s

are the optimum solution. Otherwise, go to Step 2.

Numerical Examples

Example 1

The five-stage with three nonlinear constraints problem shall be solved

here. The objective of the problem (e.g. (1)) can be approximated by

Min Lmize
x x 9 X X X

Q
s

= (1 - R{j + CI - R
2
) + (1 - R

3
) + (1 - R

4 ) + (1 - R
5

)

X X, X, X X

where (1 - R^ \ (1 - R,) ', (1 - R.) ~
, (1 - KJ , (1 - R

$
) ^re

5ta Llities md ire represented by Q'
,

QJ, , Ql, Qi, OL , respectively
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The basic allocation (i, 1, 1, 1, 1) is assigned to the system. The stage

unreliabilities under this configuration are (0.20, 0.15, 0.10, 0.33, 0.25).

The resources consumed are (12, 73.1, 48.3) which have not violated the con-

straints. Since stage 4 has the highest unreliability, i.e.,Q' = 0.35, we

add one redundancy to this stage to form the system configuration (1, 1, 1, 2, 1)

and consume the resources (24, 35.4, 60.3). Following the steps of the al-

gorithm, we obtain the results presented in Table 1. The optimum result is

(x, , x„. x,, x,, x_) = (5, 2, 2, 3, 5) with the svstem reliability of12 3 4 5

R = 1 - (0.008 + 0.0225 + 0.01 + 0.04238 + 0.01362) = 0.90.
s

It is worth noting that at the optimal configuration (3, 2, 2, 3, 5),

no constraints are violated, Q' is already removed from further consideration,
4

and Q; = 0.0225 is the highest unreliability, so a redundant component may be

added to stage 2 to form a new system configuration (3, 3, 2, 3, 5) [Step 2].

However, constraint 5 is violated [Step 5a]; therefore, x^ = 2 is the optimal

one, and stage 2 is removed from further consideration [Step 4]. Go back to

(5, 2, 2, 5, 5) configuration. Similarly, following the steps of the algorithm,

a redundancy may be added to stage 5 (Q' = 0.015625, the largest unreliability

among Q' ,
QI, and Q^ ) [Step 2]; however, constraint 5 is again violated [Step 3a],

therefore, Step 5 is removed from further consideration [Step 4]. Similar pro-

cedures are applied to stage 3 and then to stage 1, but constraint 5 is violated

in both C3ses as shown in Table 1. Therefore, the optimum allocation is (3, 2, 2, 3,

3)-
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E sample 2

A solution for the complex (non- series -parallel) system is presented.

The basic allocation (1, 1, 1, 1, Ij is again assigned to the system. T3

stage unreliabilities under this configuration are [0.30, 0.15, 0.25, 0.20, O.li

which consumes 1] cost units and obviously does not exceed the available resource.

Since stage 1 has the highest unreliability, i.e.,Qj = 0.50, we add one redundancy

to this stage to form the new configuration (2, 1, 1, 1, 1) and check the con-

sumed resource. Following the steps of the algorithm, we obtain the results

which are summarized in Table 2. The last row of Table 2 shows the cost 20 is

consumed under the allocation of (2, 1, 2, 2, 5). The system unreliability

after substituting (2, 1, 2, 2, 5) into eg. ( .5) is 0.0116, hence

the system reliability is 0.9884.

Exampl e 5

The procedures to reach the solution for this example are presented in Table 3.

Example A

Tne results of this example are listed in Table 4.
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5 Heuristic Method - Aggarwal's Approach

Femulation of the Problem

Sharma-Venkateswaran's heuristic approach consists of adding redun-

dancy to the stage where the stage unreliability is so far the highest. The

metnod is applicable to problems with any number of general constraints. The

method may not yield an optimum solution if the stages have components of

similar reliability but quite different cost. Aggarwal et al. then proposed

an alternate algorithm using a new criterion for selecting the stage where

redundancy is to be added. In certain cases of Sharma-Venkataswaran' s approach,

slacks (balance of. resources) prevent the addition of only one component to the

particular stage having the lowest reliability but these slacks permit the

addition of more than one component to other stage having higher reliability.

The net increase in reliability for the latter might be more than that for

the former.

This heuristic approach is based on the concept that a component is added

to the stage where its addition produces the greatest ratio "increment

increases in reliability" to the "product of decrements in slacks". This

ratio is defined by

A(l-R.)

X
i (9)

F.(x.J =
1 iWV

wnere

and

x . x . x . +

1

x

.

A(l-R.) ] = (1-R.J 3 - (1-R.) J - R. (1-R.J ]

3 3 J J J

Ag. . (x. } = g. . fx.+l) - g. . (x.J

F.
, x ! is a function of i as well as x. ; hence in the computation, it keeps

i :

'

j

:;iangin^ e ,r
er. for fixed j. In the case of linear cons traints , however,



F.i'x.) can be evaluated bv using recursive relation

F (x. + l) = QjFjC-^) ( 10)

The computational procedure is

Step 1. Let x = ( x , X , ..., x^ = (:, 1, . .., 1).

Step 2. a) Calculate F.fx.) for all j using (.9).

b) Select the stage having the highest F.(x.j. \ redundant component

is proposed to add to that stage.

Step 3. Check to see if the constraints are violated.

a) If the solution is still feasible, add >ne redundant component

to the stage having the highest F.fx.). Modify the value of x.

3 J

and hence F.fx.) and go to Step 2.
J J

b) If at least one constraint is exactly satisfied; the current value

of x is an optimal solution.

c) If at least one constraint is violated, cancel the proposed

addition of the redundant component; remove that stage from

farther consideration and repeat step 2. When all the stages

are excluded from further consideration, the current values of

x are the optimal solution.

Step 4. Calculate the system reliability, R,, for the optimum x*

.

Numerical Examples

Examole 1 To obtain the selection factors, &g i'x ). i=l 2 5 are-

2 2
" g lj

(x
j

)
=

Pj U
j

+1) " Pj Cxj^

Ag,.(xJ = G,{(x, + lJ + exp[Cx +l)/4]} - c [x - exp x /4) ]

Ag„.Cx ) = w. (x.+ljexp[(x.+l)/4l - w .x. exp(x./4)
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and the selection factors are:

R.Q,

F (XJ = -y-1-2

, j = l, 2, .... 5

iSxAiijCXj)

Starting with x = (I, 1, 1, 1, 1) and add one component to a stage

at a time as shewn in Table 5. The stage selection factors of (1, 1, 1, 1, 1)

are (0.000396, 0.000158, 0.000091, 0.000128, 0.000316). The resources con-

sumed are (12, 73.09, 48.79) which have not violated the constraints. Since

stage 1 has the highest stage selection factor, i.e., F (x ) = 0.000396, we

add one redundancy to this stage to form the system configuration (2, 1,1,

1, 1), and check the consumed resources (15, 82.64, 62.88). Following steps

of the computational procedures, the final optimum recuit is obtained as

fx, , x_, x_, x,, x_) = (5, 2, 2, 5, 5). The optimum svstem reliability is
1 _ j 4 o

0.9045.

Example 2

This example, solved by Aggarwal's approach, shows that the

irma-Venkateswaran's approach will not always give an optimum

so Lution.

The allocation of redundancy at each subsystem is started at x = (1 , 1,

1, 1, 1). The stage selection factors of this configuration are (0.02649,

0.01783, 0.02759, 0.01068, 0.00553) and the resource consumed is 11. Since

subsystem 5 has the highest stage selection factor, i.e., F (x_) = 0.02759,

we add one redundancy to this stage to form the system configuration (1, 1,

2, i, 1) and to consume 15 units cost. Following the computational procedures,

the final optimum result is with the system configuration of x , x „ , \_,

x,, x_) = '5, 1, 2, 2, 11 as shown in Table 6. The optimum svstem re I:
4 D

.9914. [t is toted that this problem solved by Sharma - Venkateswaran 1

s
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ration of (2, 1 , 2, 2, 2

- eliability of ..... tion.

pic 3

Since this example contains linear constraints, all F. .:-.., car. be

evaluated by using recursive relation of e.g. (10). This equation

makes it more convenient to find the stage selection factors from which .••:- 'jecic

the stage to acid a redundancv. The summarized results is shown ".-:".
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•
• : - Misra' s Appro..

Formal at : the Problem

The approach is for the solution of the redundancy problem with mul-

tiple linear constraints. Basically, the solution to an r-constra_ -

problem is obtained successively from the solution of r-unconstrained

problems. At each step, an active constraint is picked out, and then the max-

imum gradient concept (explained later) is used to find a closer point. The

actual computational procedure is presented in the following 3 steps.

Step 1. Within the feasible solution domain, the attainable reliability

should be roughly estimated by the allocation of redundancy* stage by

stage, until any constrainted resource is met.

Step 2. Using this estimate of system reliability, R , find the individual

ootimum allocations with respect to each "cost" constraint by

a

.

log Cl - R 3 ")

x .

=

J log Q.5 ^

where
c.AnQ.

a .
= m . - ,

J N

c.AnQ.
i = l 3

J

, i=l,2,. ..,N

Usually a different system configuration is obtained for each con-

straint.

Step 5. From these allocations choose the highest system reliability as

the reference reliability index for comparison. Other all ens

U be I )n a lower reli ty plane. To each allocati
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having lower system reliability, add one component to the stage which

has the highest desirability factor defined by

l\R /R

F
j c .

/b .

, j=l,2,...,N.

Step 4. Now, each allocation is moved to a higher system reliability point,

except the reference reliability index. Then

(a), go to Step 5, if none of these allocations give the same system

reliability within the domain of feasible solutions fthe consr.r3Lr.t5

are not violated if "moved" to a higher reliability point)

.

(b) . go to Step 3, if all allocations give the same system reliability

and no constraint is violated by changing to a higher reliability

point. Otherwise, go to Step 5 (a).

Step 5.

fa). Stoo, the common allocation is the optimum one.

(b) . If a common reliability point is not available, the allocation

with the highest reliability will provide a near optimum point.

A Numerical Example

Example 3

To find a suboptimal system reliability which does not violate any of

the cost or weight constraint, an enumeration method is used (see Table 8 ).

The system reliability, R , is 0.99577 [Step 1]. Using this system re-

liability in eq. ( H), the optimum, allocations with respect to cost con-

straint and weight constraint are obtained as (5, 5, -i , 3) and '-
, 6, l

, 3),

respectively [Step 2].
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Table 8 Suboptimurr. Results of Example 3 by an Enumeration Method

Stage 1 StaQe 2 Stage :age Cos-

11.4 .

L2 .
2<

,
35

18.3 -:

2; 4*

5 .

T

26.3 57

29.7 65

54.2 "2

55 .4

38.7

41.1 89

45.6 96

46.8 101

49.1 105

52.5 115

57. 12

R = 0.99577
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Now we can construct Table 9 in the following. The reliability of

system configuration of (5, 5, 4, 5) and (4, 6, 4, .3) are 0.9900 and

0.9904, respectively. Since 0.9900 is smaller than 0.9904, we then add

one more redundancy to a stage of the system (5, 5, 4, 5). Since the

desirability factors, F., for each stage are (0.0159, 0.0556, 0.05-36,

0.0310), and 0.0586 is the largest, one redundancy is added to stage 5.

The system reliability for (5, 5, 5, 5) is 0.9929. [Step 5]

This reliability is better than the system reliability (0.9904) of

(4, 6, 4, 3). (5, 5, 5, 5) and (4, 6, 4, 5) are obviously not giving

same system reliability and if we move to a higher reliability point the

constraints are not violated. [Step 4a]. We, therefore, add one component

to a stage of (4, 6, 4, 5). Since the desirability factors, F.,
j

for each stage are now (0.02S7, 0.0270, 0.0382, 0.0599), and 0.0599 is

the largest, we add one redundancy to stage 4. The resulting system

reliability for (4, 6, 1, 4) is 0.9955 [Step 5]. This reliability then is

compared with 0.9929. (3, 5, 5, 3) and (4, 6, 4, 4) are still not giving

same system reliability and if move to a higher reliability point the

constraints are not violated [Step 4a]. We, therefore, add one component to

a stage of (5, 5, 5, 3). Following the iterative procedures, finally

the comnon allocation (5, 6, 5, 4) is obtained. The consumed cost resource

and weight resource are 54.3 and 117.0 respectively. Since a redundancy add

to any stage will exceed the available resources, (5, 6, 5, 4) is the

optimum allocation of the system which gives the system reliability 0.99~5

[Step 5aJ

.
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5. Heuristic Method - Ushakov'S Approach [8]

Formulation of the problem

Suppose that Che system consists of n distinct elements ana tnat, to

increase the reliability of each of them, we can use an arbitrary type of

stand-by. Let R.'(X.) denote the probability of failure-free operation of

element j when X. - 1 stand-by elements are used to ensure its operability,
J

let c. denote the cost of a single element of type j and let J. denote cne

subset of system elements that ensure execution of function i with given

probabiiitv ? (i = 1, . . . , k) . With this notation, we can formulate
sx,mm

the following problem:

n

Find miu c.X. under the condition II R' (X.) > R . (i 1, . . . , k)

,

j-1 11 jeJ. J J ~ Si 'mn

where X A
is a natural number (j = 1, ..., n)

.

The computational procedure can be stated as.

1. We solve k orobiems of finding min ) c.X. under the condition

J£J. ^
J

n R'(X ') > ? (i = 1, .... k). For oroblem i, we find the corres-
. . j j '

— si, min

ponding optimum values X- , ..., X .

x n

2. For element i, we find the greatest value, tnat is, X* = max X .

.

J j

3. For each subset of elements J., we find a smaller subset (which we

denote by J**) that is necessary only for executing function i. We denote

bv J* the remaining portion of the subset J.,
l

l l

4. For each subset J*, we find the value of 1 R!(X*) = R*. If J^

i

is empty, tnat is, if function i is executed with an independent group o:

elements, we cake R* = 1.
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5. For each set J
.

, we calculate R** = R . / R* , which is a
1 l si,mm l

requirement on the probability of : allure-: ree operation of the elements

belonging to subset J**.
l

6. in addition we solve k problems of finding min c.X. under

the condition R!(X.) > R** (i = 1, ..., k). We find " the values

l

Of X**

7. For the solution we take the values of m* for i E J* found Ln Item 2,
J -

and the values of X** for e J** found in item 6. items 3-6 are Lntrod ic

1 i

in order to lower, if possible, tne superfluously high reliability in con-

servation of the given requirements on the probability of execution of tne

individual functions.

A Numerical Example

Example 5

Following the computational procedure to obtain

CD xj = 2 x: = 3

9 °

X; =3 X
3

= 2

(2) X* = 3
1

X* = 3

2
x: = 2
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(3) J** - (1, 2} i** = {1, 3}

J* = J* = .

(4) R* - 1 - (1 - 0.85)
2

= 0.9775

R* = L - (1 - 0.75)
2

= 0.9 844

(5) R** = 0.94/0.9775 - 0.9616

R** = 0.96/0.9344 = 0.9752

(6) X** - 3

X** = 3

3

(7) Since both Che configuration (X**, X**, X**) = (3,3,2) and (X. , X„, Xj
i 2. J 1 L J

= (3, 3, 2) satisfy the reliability constraints and the former one costs

only 23 which is less than 26 spent by the second one. Therefore the

optimal solution is (3, 3, 2)
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6. ishiraa's Voot

6.1 Lai Lon oz the Problem

In the previous three approaches, it xS assumed that the component

unreliability at each stage, Q., j = 1,2, ..., n is small so that the objective

function can be approximated. However, no approximation on the objective

function shall be made in Nakagawa-Nakashima' s approach.

We state again the general nonlinear optimization problem (Problem A) for

an N-stage series system as

Problem A

Maximize

R =

X

H R! (x.)
j=l J 3

subject to

-,
8
i:

(V lb
i

3 = 1

i = r, X A , - , . . . , J.

1 < X. < X.- 3 -
J

i = N

where, x. is the maximum number of components used at stage j, and ail x. 's

are integers.

iasins on the definitions of

tfnR! (x.

J

-f
. u.) = -

ZnRl (x.) - it R '. (x.- 1)
J J n 3

v
3

, for x. = 1

. for x . > 1

3

(15)

and



f g,,CxJ^;

A
gij

(x.; =•
U J

gijCXj) - s..(y 1)

, for x .
= 1

J

for x. > 1

68

We transform p roblem A to Problem 3 as follows

N

InR = In [I R. (x.)

j-1 ] 3

(14)

= I
j=l

4nR. (x.)

Basing on the definition in eq . (15)

N
,

N

if x = 1 , I InR.(l) =
I Af.(x),

N

j-i 1J j-i 1J J

if 1 < x . < x
I tnR.Cx.l

J-1
J J

N

I i[inR (x.)

j-1
*nR. (x -l)] + [£nR. (x. -1)

inR. (x. -2)1 +
3 ' 3

[*nR*C2) - InRlci)] - Itir!(]
J ^ J J

N
,J

I A£.(x)
3=1 x.=I J J

JNijOy - MEg^CijD - «
±
j C5

3

- D] [ gij
(x. - D

g. .(x. - 2)] + +
[ gij

C2j -g (1)]

[g
±
M)]}

j-i.
I Ag..(x.)

X . = 1
J J
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'

N .3
PtjR -

)

j

subiect to

I I Ag (X) i b
i

j = 1 x .
= 1

J J

i = i r

1 < x .
< x

.

~ 3
""

3

, j = 1,2,

where, x. is the maximum number of components for stage j, and all x.'s -

J j

integers.

Since R.fx.l and g..(x.) are monotonic increasing functions in x.

for j = 1,2, ..., N, and i = 1,2, ..., r,

then

Af.fx.) > 0, for all i and x.,
3 3 ~ 3

and

£g..(x.) ^_0, for all i,j, and x.

The computational procedure for solving Problem B is stated as :

Steo 1. Set the first current solution as

C - c c
x = (x^ x

2
,

c.
x^) = (1,1, ..., 1)



70

Step 2. Calculate b. for all i, where
1

c

b
i

= b
i

" I I ASii Cx.). (13)

Step 3. Calculate Ax. for all i, where
)

c c
Ax. ^ mini b. /Ag. . (x . + 1) }

i ij 3

r^C
1

1

5teu 4. Let L .
= {j i Ax . > 1}

+ 1 J
—

If L is empty, stop. An optimal solution is obtained. Otherwise

go to step 5.

Step 5. Search over m such that S = max {S.}.
m

ieL J

where

S. r if . (x
C
+l) • [(1-a) • min {Ax } + ct Ax.]. (16)

2,cL
+1

-. c - c
Step 6. If x = x , then x is the optimal number used in stage m,r m m m & j

exclude this stage and go to steo 3. If x*" < x , then set66 - mm
c c

x = x +1 and go to step 3.mm r

The above procedure is for a given balancing coefficient "a". Optimal

solutions for a set of f '^" (probably a = 0, 0.1, ..., 0.9, 1.0,

1/a = 0.9, 0.6, 0.5) should be obtained. The best solution among the

solutions for the given set of "a '

s" is the optimal solution.

6 .
1' Mum e r i ca 1 Examp 1 e s

Example 1

The problem, after transformation, is formed as follows.

Maximize
x

.

5 J

InR = lf.(x.)
s .

-
. -•

. "I
"I

J=l x.=l J J

J

subject to
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j=l x.=l
ij J

5 J

I I Ag
2i C*J <C

j-1 x.=l V 3

5
x
j

I I *g
3i

Cx.) < w

j = l x. = i °J J

J

1 <_ x <_ x
, j = 1,2, ..., 5

where, x.'s are integers, Af . (x.) and Ag. . Cx are given in (15) and (--
J J ] 3.3 J

Set the first current solution as x
c

= £x x
'v

X Z, x^, x -) = (1,1,1,1,1)

C* d C
[Step lj. The current amounts of the resource available (b , b-, b_) are

calculated by eq (15) and are (98, 101.91, 151.21) [Step 2]. Then the

quantities obtained from the constraints at the current solution,

(Ax ,Ax_,Ax ,Ax ,AX ), are calculated to be (10.67, 9.59, 9.59, 8.17, 8.59)

[Step 5] . Since Ax., j = 1,2,5,4,5, are greater than 1, then L = {1,2,3,4,5}

which means the redundancy to any stage will not violate the constraints

[Step -i]. We can find the stage sensititivies, 1 S, ,S_,S,,S . ,S_) , to be
1 c o *» 5

- "17, 1.227, 0.857, 2.451, 1.847), if a = 0.50. Since stage 4 shews the

most sensitive effect, i.e., S = 2.451, we should add one redundancy to this

stage [Step 5]. Following the steps of the algorithm, we obtain the results

as presented in Table 12. The last system configuration in Table 12 is

(5,2,2,5,5} and all the Ax., j = 1,2,5,4,5, are less than 1. This means

that it is impossible to add any more redundancy to any stage, and

1.5,2,2,5,5) is the optimum solution. This is the same solution obtained by

Sharma - Venkateswaran ' s approach and by Aggarwal et al.'s approach

.
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Example I

This example is presented in Nakagawa-N'akashima' s paper. The results

are summarized in Table 11. The optimal solution is 'x, , x^, x_) = (3, 3, 5)

The resources consumed are 37. 88, 70.32, and 211.8 for g , g_, and g„

respectively

.
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5 Modification of Nakagu*a - Naka . approach for complex system

optimi zati on

ikagawa - Nakashima's approach can only solve series-syst roblems. For a

complex system, e.g., Example 2, the problem does not have the objective function

in the form of Problem A. Therefore, the problem cannot be transformed into

Problem B.

To solve the problem of a complex configuration, Af.(x.) will be redefined
J

is follows:

*f.(x.) = Q (QJ, ..., CQ! = Q,
J
), -.., Q') - QfQJ, .... CQ' =JJox J] kSl J

x.+l

Qj
J ),..., Q')

3Q x. x.+l

x. 3Q
3 (1"V V 3Q[

x. 3Q
= RjV w

J

As -lf.(x.) is defined, we can follow the same computational procedures

presented in Section 5.2 to obtain the optimal solution.

Example 2

To solve this example, we have to use eq. (A) to determine Af. x.

>0
,

En eo. (A) , —^—
, j - 1,2, ..., 5, for this example are given by
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3Q—-= Q' + Q'Q"- O'Q'Q'- Q*Q*Q'- Q'Q'Q'- Q'Q'Q : + 2 Q'Q'Q'Q'
3Q: ^3 MV

S 2^3V 4 v
3
v
4
y
5

v
2
y
3
y
5 ^2MV

5
y2\3Mv

5

gpf q; + qjqj- Q[q:Qs- q;q:q;- Q[q;q'- qjqjq^ 2 q^q.

3Q
sW = Q

l

+ Q
2
Q 5~ Q

i
Q
2
Q4~ Q

1
Q
4
Q5" Q

1
Q
2
Q
S~

Q
2
Q
4
Q
S
+ 2 Q

1
Q
2
Q
4
Q
5

3^ = q; Q'Q-- q'q-qj- q;q:q-- qjq;q:- q;q:q^ 2 qjq.q.q.

30
's—f = Q'Q'+ QiQ 1 - Q'O'Q"- Q'Q'Q'- Q'Q'Q'- Q'Q'Q'+ 2 Q'Q'O'Q'

301
x

l '4 *2H3 ^1 o4 y
l
y
2 j

yP2y
4

v
2
v
3
y
4

v
l
x
2 ^4

The proceeding to obtain the optimal result is presented in Table 12

The optimal result is fx, , x„, x,, x , , x_) = (3, 1, 2, 2, 1) .
The system

1 2 o -1 o

reliability is 0.9914. The resource , 20, is totally consumed.
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3.2 DYNAMIC PROGRAMMING APPLIED TO OPTIMAL SYSTEMS RELIABILITY

I. Introduction

Dynamic programming is based on the so-called Le r ptimality" [1-3J

and employs the techniques of invariant imbedding. The problem is

structured as an N'-stage sequential decision problem so as to apply a dynamic

programming approach for its solution. Bellman has shown that applying a

dynamic programming approach will readily yield an exact solution to a

system allocation problem. The basic characteristic of the approach is

that in the computational procedure an N-variable decision problem is

solved by a sequential solutions of N single-variable problems.

Various papers have presented the application of dynamic programming

to a variety of problems. Problems treated in these papers can be classified

into the following examples.

example 1

The basic approach is illustrated by an example [Rudd, 1962] which

is to locate the redundancy at each stage of a series system so that - ne

system profit will be maximized. [17]

Consider an X' stage mixed system shown in Fig. 1 having (x. - 1

parallel redundancies at each stage; the system reliability is

R
s

=
.fj (1 - (1 - Rj) j

) (i)

Let as assume that P is the profit obtained when the system operates

successfully. The system reliability, R , is the fraction of the trials

it are successful and hence the expected profit for the system is PR .

Suppose that the costs C. of the redundant components Df the jth stage

:onstructJ n :ost .suitably distributed over the Life of the

the operating cost. The total cost of a system with re-

dundancies is then
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1, C.x.
3=1 J J

The net profit N for the entire system is the profit less the total c l

P

that is

N = PR - 1, C.x. (2)
P s 3=1 j j

The optimal parallel redundancy configuration then is the one to find

x., j = 1, ..., N, which maximizes the net system profit.

In this example, no constraints are imposed to the problem.

Consider a three stage process. The profit associated rfith the fii

product is P = 10 unit. The cost of each of the redundant components, C.,

the reliability of each of the components, R., are given as

R. C.
J j

process 5 0.353 0.20

process 2 0.5C0 1.0

process 1 0.750 1.0

Example 2

en a svstem reliability requirement R , the problem is t

s, mm r

determine a least-cost allocation of an \; -stage series system that yields

R > R . The example is from Ketteile [19621. As an example. :onsidei
s — s ,mm -

L

the following four-stage system with a system reliability requirement

R . = 0.99 and total cost less than b. = 61 [10]:
s,mm 1

Stage 4 5

C. 1.2 2.3
J

R

.

0.8 0.7
J

The problem is

:.e

N

2 1

5.-1 4.S

0.
_
5 0.S5

tj =
id [1 - (i - R.) }

]
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subject to

= ?. C.x. < h
1 J

=1
J J

~ 1

ana

Example 3

R > R
s — s,min

Consider the problem originally presented by Tillman-Liittschwager [1967] ,

but the second constraint in the original problem is excluded. The five-stage

problem is stated as

Maximize

x

.

" R
c

= ,i [1 - Cl - RJ J
]

sub j e c t to

«i
=

j=i vv
2
- p

g 9
= X w.x.exp (x./4) < W

where x. >_ 1 , j = 1, 2, ..., H, are integers.

The constants associated with this problem are:

i R. p. P w. to'

3 3 3

1 0.30 1 7

2 0.85 2 S

5 0.90 3 110 3 200

4 0.65 4 6

5 0.75 5 9

Example 4

Let a. represent the design alternatives available for the ith stage
1 r ° JO

with a specified inherent component reliability, and R
1

: (x., a.) denote the
J 3 3

known reliability function of the ith stage when x. identical components
j j o

j
r

of design alternative a. are used. For an N-stage series system, the problem
J

rPv-F-fp i qari i ^ r?i



S3

Maximize

R n P.: (x. , a.)
x

j«i J J
]

sub jeer, to

N

i v^ij °V V 1
J

N

go = I go, Cx., a J < W
1

j=l -3 J J

where

x. >_ 1, a. >_ 1, j=l, _,..., N are all integers

Example S

Consider a five stage problem with three non- linear constraints [Till

Liittschwager , 1967]:

Maximize

3 x

.

= n [l - (l - r.) J
]

S

3 = 1
J

subject to

g, = c I < P

3=1 '
J

g
2

- ^ c. Cx. * exp Cx./
4
)) 1

g_ = 5 w.x. exp Cx. .',;

3 isl 3 ]

< w
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where *., i=l,2,...,N , are integers

The objective function R^ can be approximated by

X X X X X

R
s

- 1 - [(1 - R^ l
* (1 - R

2
)

2
+ CI - R

3
)

3
+ (1 - R

4
)

4
+ (1 - R

5
)

5
],

X X X X X

where (1 - R^ \ (1 - Rj 2
, (1 - R3)

3
, (1 - R

4
)

4
, and (1 - R

5
)

5

are stage unreliabilities and are represented by Q' Q' Q- > Q \ , and Q
'

,

X ~ *-^ —
r J

respectively.

The constants associated with the five-stage problem are given as

CONSTANTS ASSIGNED FOR FIVE-STAGE PROGRAM

] R. p. P c . C w.
J J 3 J

1 0.30 1 7 7

2 0.35 2 7 8

3 0.90 5 110 5 175 3 200

4 0.65 19 6

5 0.75 2 4 9

Since by dynamic programming approach the number of constraints will re-

sult in the so-called dimensionality difficulty., three different

approaches have been used for solving the problems. They are classified in

Table 1.

A basic plain dynamic programming approach is used for a problem with-

out constraints or with a single constraint. Whenever there are constraints

in a problem, the computation required for solving the problem increases

exponentially The second method in Table 1 was originally introduced by



Table 1 Classification of Approaches

Methods Application to Examples References

Basic dynamic programming
approach

Examples 1 and 2
1-4, o, 7

11, 12, 13,

14, 13, 17

Dynamic programming approach
using Lagrange Multipliers

Examples 5, 4, and 5 4 , 7, 8, l-i

Dynamic programming approach
using the concept of dom-

inating sequence

Examples 2, 5. 4, and 5 3> 10,

19
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Bellman [1958] where Lagrange multiplier was used when two or more constraints

were considered in a problem. By introducing the Lagrange multiplier; the

dimensionality of the problem coming from the constraint is reduced.

If three constraints are considered in a problem, then two Lagrange

multipliers have to be introduced, which gives us another problem for finding

out the two optimal Lagrange multipliers. Therefore, the third approach is

suggested which utilizes the concept of dominating sequence (see Table 1)

.

Kettelle [1962] may be the first one to introduce the concept of dominating-

sequence to solve a single linear constraint problem. The approach is ap-

plicable to a 3-nonlinear-constraints problem. To use this approach we have

to find both the upper bound and the lower bound of the number of components

used at each stage to reduce the length of the dominating sequence. The de-

tailed discussions with examples are shown in the following sections.



2. Basic Dynamic Programnu ten

Example i

The basic dynamic programming is used in solving Example 1 .is

described in the Introduction section.

For the one-stage process, the optimal design is determined for the

single decision variable, x , by the solution of

f (v
2
) = max {Pv

l

- C x } (3)

X
l

2

• a spectrum of v values, where v_ = [I R^ . is the probal I that

j=N+l
SJ

X
l

all upstream stages work, v = v
?
R = v [1 - L - R.) ']» and

R
s N+l

= V
N+]

= 1
"

R
si

is the reliability of th© jth stage with x.

parallel components, and R. is the reliability of each component.

For the two-stage process, the optimal design is obtained by

rV'v_) = max {^(vj - C x
?

}

and for the j -stage process, the recursive functional equation is

f.(v. .) = max {f. , fv.) - C.x.} (4)

x
J

NoWj If the optimal design for the subsystem including the stages,

N-l, N-2, .... and I, is known, then stage N can be designed optimally

solving the maximum problem for the single decision variable x^, i.e.,

v
N+1

) = max '"^
;

.-vv;
- C^} 5

*N

Substituting the constants into the equations, the recursive dynamic

programming algorithms are

f^vj = max (10v - l.Ox (6)

x
l

--.',-•-
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£„(vj = max (f„(vj - 0.20x,} (.8)

x.

where

= v
2
(l - (1 - R

x
)

L
} (9)v

I A i'

v = v,{l - (1 - R_)
2

} (10)

x

v_ = v.{l - (1 - RJ J
] (11)

3 4 o

v, = 1.0
4

The first maximum problem (Stage 1) is solved for the optimal x for

a spectrum of v values. Since v is the orobability that all unstream
2 2

stages work, v takes a value between and 1. Equations (6) and (9) are

employed in a systematic search for x which maximizes (10v - 1 . Ox }

for an assigned v., value. Any one-dimensional search technique can be used;

however., since x usually takes a small integer value, a simple exhaust

search is carried out and the results are presented in Table la. The

optimal returns, f (v
? ) , and the optimal parallel components, x, , for v„

= 1.0, 0.9, ..., 0.1 are presented in Table 2 and Fig. 2. Usually only-

Table 2 is presented as a dynamic programming table and detailed calcu-

lation presented in Table 1 is omitted.

Similarly equations (~) and (10) are employed in the systematic search

for x_ which .maximizes { f (v_) - C,x } for each value of v . The results are

presented in Table lb, and the optimal results in Table 2 and Fig. 2. In the

process of calculation, the value of f (v ) is obtained by interpolation.

For example, v^ is given as 0.88 from equation (10) for v = 1.0 and M_

= 5. The value of f (v) for v = 0.88, which is used in equation (7), is

determined by interpolation of f (0.9) and f (0.8) obtained in stage 1 optimization

Equations (8) and (11) are used in search of x, to maximize (f„(v ) - C x }

for S„ - 1.0, since v. , is always 1. The results are presented in Table 1c,
4 N+l '

r

Table 2 and Fig. 2.



Starting with the three-stage process, its optimal system profit is

= 1.32 units with the corresponding optimal values of x, = 7 and v, = 0.94.

Enterin ge 2 at v, = 0.94 gives X- = 5 and v = md entering

stage i and v =0.32 gives x = 2 and v =0.77. Thus the optimal parallel

design consists of seven parallel components for stage 3, three parallel

components tor stage 2, and two parallel components for stage 1. This gives

rise to the system reliability of 0.77 at a profit of 1.52 units. Without

1 1

parallel redundancy the system has P 7 R. - C x .
= 10(0.555 x 0.50 x 0.75

j=5 - j = 3
J J

(0.20 - i.O + 1.0) = -0.95 profit.
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Table la. Results of Stage 1

V
2

X
l

V
l

pWi
i.O 0.00 0.00

1.0 1 0.75 6.50
1.0 i. 0.94 7.38

1.0 3 0.98 6.84

1.0 4 1.00 5.96

0.9 0.U0 0.00
0.9 1 0.63 5.75
0.9 <j 0.84 b.44
0.9 3 0.39 5 . 36

0.9 4 0.90 4.96

0.8 0.00 0.00
0.3 1 0.60 5. CO

0.8 2 0.75 5.50
0.8 5 0.79 4.88

0.8 4 0.30 3.97

0.7 0.00 0.00
0.7 1 0.53 4.25

0.7 i 0.66 4.56
0.7 5 0.69 3 . 39

0.7 4 0.70 2.97

0.6 0.00 0.00
0.6 1 0.45 3.50

0.6 2 0.56 3.63

0.6 3 0.59 2.91

0.6 4 0.60 1.9S

0.5 0.00 0.00

0.5 1 0.38 2.75

0.5 2 0.47 2.69

0.5 j 0.49 1 .92

0.4 0.00 0.00
0.4 1 0.30 2.00
0.4 2 0.38 1.75

0.4 5 . 39 0.94

0.3 0.00 0.00
0.5 1 0.23 1.25

0.3 2 0.28 0.31
0.3 3 . 30 -0.05

0.2 0.00 0.00
0.2 1 0.15 0.50
0.2 2 0. 19 -0.13
0.2 3 0.20 -1.03

0.1 0.00 0.00
0.1 1 .07 -0.25

0.1 2 . 09 -1.06

w
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Tao le lb. Results of stage 2 [and sta^e 1)

V
5

X
2

V
2

f fv )1-2 C 2--<2 f
1
(v

2
)-C

2
:<

2
»

1.0 0.00 -0.00 0.00 0.00

1.0 1 0.50 2.75 1.00 1.75

1.0 2 0.75 5.03 2.00 5.03

1.0 3 0.83 o.20 3.00 3.20 *

1 .0 4 0.94 6.79 4.00 2. -J

1.0 5 0.97 7.08 5.00 2.03

0.9 0.00 - . 00 0.00 0.00
0.9 1 0.45 2.33 1.00 1.58

0.9 2 0.63 4.33 2.00 2.33
0.9 3 0.79 5.38 3.00 2. 38 *

0.9 4 0.S4 5.91 4.00 1.91

0.9 5 0.37 6.17 5.00 1.17

0.3 0.00 -0.00 0.00 0.00
0.8 1 0.40 2.00 1.00 i .00

0.3 2 O.bO 3.63 2.00 1.0 3
*

0.3 3 0.70 4. So 3.00 1.56

C.8 4 0.75 5.05 4.00 1.05

0.7 0.00 -0.00 . 00 0.00
0.7 1 0.35 1 . 03 1.00 0.63
0. 7 0.53 2.97 2.00 0.97 •

0.7 3 0.61 5.74 5.00 0.74
0.7 4

,
0.65 4.15 4.00 0.13

0.6 0.00 -0.00 0.00 0.00
0.6 1 0. 30 1.25 1.00 0.25
0.6

->

0.45 2 . 58 2.00 0.58 *

0.6 j 0. 53 2 . 97 5.00 -0.05

0.6 4 0.56 3.50 4.00 -0.70

0.5 0.00 -0.00 0.00 0.00 *

0.5 1 0.25 0.88 1.00 -0. 15

0.5 2 0.33 1.31 2.00 -0.19

0.4 0.00 -0.00 0.00 0.00 *

0.4 1

JL 0.20 0.50 1.00 -0.50
0.4

-\

0.30 1.25 2.00 -0.75

0.3 0.00 -0.00 0.00 0.00 *

. 3 1 0.15 0.25 1.00 -0.75

0.5 ? 0.23 0.c9 2.00 -1.51

0.2 0.00 -0.00 0.00 0.00 *

0.2 1 0.10 0.00 l.CO -1.00
0.2 2 0.J5 0.25 2.00 -1.75

0. 1 . 00 -0. 0.00 0.00 *

0.1 i 0.05 -0.00 1.00 -1.00

O.i 2 0.07 -0.00 2.00 -:.oo



92

Table 1c. Results of stage 3 (and stage 2 and stage 1)

1.0

1.0

1.0

1.0

1.0

1.0
1.0
1.0

1.0
1.0

0.00
0.33

0.56
0.70
0.30
0.S7
0.91

0.94

0.96
0.97

W
0.00
0.00

0.21

0.99
1.64

2.14
2.48

2.72

2.88

2.99

C Tx 7
3 3

f
2
OJ-C_x_ £

3
(v

4
)

0.00 0.00
0.20 -0.20

0.40 -0.19
0.60 0.39
0.80 0.84
1.00 1.14
1.20 1.28
1.40 1.32 *

1.60 1.28
1.80 1.19



Table 2. The Dynamic Programing Table

93

stage 3 (and stage 2 and stage 1)

4

1.0

f,(vj
j 4

X
3

V
5 W

1.32 7 0.94 2.72

stage 2 (and stage 1)

f
2
(v

5
) X

2
v
2 f

l
(v

2

1.0 3.20 3 0.88 6.20

0.9 2.33 3 0.79 5.38

O.S 1.63 2 0.60 3.63

0.7 0.97 2 0.53 2.97

0.6 0.38 2 0.-15 2.33

0.5 0. 0. 0.

0.4 0. 0. 0.

0.3 0. 0. 0.

0.2 0. 0. 0.

0.1 0. 0. 0.

stage 1

v
2

f
l

CV X
]

1.0 7.38 2

0.9 6.44 2

0.8 5.50 2

0.7 4.56 2

0.6 5.63 2

0.5 2.75 1

0.4 2.00 1

0.3 1.25 1

0.2 0.50 1

0.1 0.
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f,(vj/x- f fv 1 /x f,CvO/x.

4 O.S

SiGga sfnne 2 stage

Fig. 2 Results for Example *
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ExamDle 2

The problem with single constraint of Example 2 in the Introduction

to this chapter is considered.

The recursive formula of the problem in the basic dynamic programs,

algorithm then is formulated:

fjCb) =
4

max
u [RJCxp]

X < X < X
1 - 1 - 1

f
2
(b) =

^ max
u [RJ(x

2
) ryb - g (x »

]

x
2 - *2 - x

2

f
N
(b) = max

C
R
N
(X

N
} f

\<-l
(b

" SlN
(X
N))]

where

x

.

BjCxj) = l - Ci - Rj) J
, j = l, :, ..., N.

x . , j = 1, 2, ..., N, is the minimum integer number used at each stager. [t
J

I
is usually that x .

= 1 , j = 1 , 2 , . .
.

, N if no restriction on the minimum

system reliability is imposed to the problem. x., i = i, 2, ..., \ , is the
-
1

maximum integer number used at each sta^e such that g.
( x

l
) - r x ) < b

p=i
^p

' y s
ij • j - i

*

DFJ

This example has been solved by Kettelle [1962] by dynamic programming

algorithm using the concept of dominating sequence. Now, it is solved

the basic dynamic programming approach.

Since the goal of system reliability is 0.99, the minimum reliability

at each stage at least is also 0.99. It is required to determine the min-

imum number of components, x., used at each stage to attain the stage reliabilit
j

goal of 0.99. Since the component reliability is .85 t stage 1. twc

components in p Llel "one redundancy] give the staga re" Lt : ~~5,

2nd three components in parall twc redundancies) give the stage rel
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of 0.9966 which is greater than 0.99. Therefore, three components are the

minimum to be used at stage 1. Similarly, the minimum require-

ment for stages 2, 3 and 4 are determined to be (x
?

, x , x ) = (4, 4, 3),

respectively.

Since the maximum of R over the feasible region will depend upon

the number of stages, N, and the available resource, b, , we denote by

f (b ) the maximum of R . That is,
.J 1 N

1

f fbj = max [.IT R'.(xJ] (13)
N V x

N
, x

N_ 1
, ..., x

l

L i=N j^
j

where x., j = 1, 2, ..., N are positive integers satisfying the constraint:

N

.^vv i b
i (u)

For the one-stage process, the optimal design is determined for the

single decision variable, x , by the solution of

£ (I,} = ; .ax R'(x ) .

x
l ± x

i 5 x
i

where, x
1

= 3, and the upper bound used in stage 1, x , is restricted

by the cost constraint. The first maximum problem (Stage 1) is solved for

the optimal x for a spectrum of b values. The spectrum of b is determined

from the consumed resource 39.9, of basic allocation fx. , x_, x_, x,) =
4 j _ 1

(5, 4, 4, 3) to the total available resource, 61.0. Thus, for each

value of b between 39.9 and 61.0, we will find an optimal allocation

for x
1

when all the upstream stage allocation are fixed by (x , x_, x
? )

= (3, 4, 4). The optimal allocation for x is shown in Table 3a. All

possible b values should be searched exhaustively to find the optimal

x . Since (x . , x_, x_,) are fixed, optimal x is 3 for b in the region,

59.90 : b < 44.40, which gives f -. (b) = 0.9768. For b in the region of
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-14. _b < 4S.90, the optimal x. becomes 4 and f. (b) is 0.9796. Similarly,

X. = 3 for 43.90 <_ b < 53.40, and £, (b) }; x = 6 for 53.40 <_ b < 57.90

and f^b) is 0.9801; and x. = 7 for 57.90 <_ b <_ 61.00 and f (b) is 0.9302.

For all possible b we have searched the optimal x's when stages 4, 3,

III
and 2 are fixed at x , x_, x The next step is to search for the optimal

- J L

combinations of Stage 2 and Stage 1 when Stage 4 and Stage 3 are fixed at

the minimum required components, x
'

, and x.,. It is still necessarv to
+ j

consider all possible b between 39.90 and 61.0. For convenience, the maxi-

mazation will be carried out for b from 40.0 to 61.0 with a discrete spectrum.

The difference between every two near searching point is one. Table 3a

then is used to construct Table 3b.

In Table 3b, (x., x_) = (3, 4) is alwavs fixed. An optimal (x x,

)

is searched for the maximum system reliability for the corresponding value

of b given. For example, if b = 40, from Table 3a, x. could be 3;

with {x,, x,, x
1

) = (3, 4, 5), the optimal x~ is 4; then the system reliability

of (*
4

, x
3

, x
2

, x ) = (3, 4, 4, 3) is 0.9768. Similarly, when b = 41, 42,

and 43, the optimal allocation for (x~, x. ) are (4, 3). When b is increased

to 44, from Table 3a, x, is still 5, but X- can be 4 or 5, although x_ = 5 gives

the greater system reliability of 0.9797. Therefore, f
9 (44)

= 0.9~9~.

When b is increased to 45, then from Table 5a, x can be either 5 or 4

.

When x, =3, we search for the optimal x^ to be 5 and R = 0.9797; :< h.en.
j. s

x. = 4, we search for the optimal x- to be 4 and R = 0.9™96, the optimal
l _ s

allocation for b = 45 are (x, , x_, x_, x, ) = (5, 4, 5, 5). The computational

results presented in Table 3b are carried out similarly. For another

example, for b = 54, from Table 5a, x can be 5 , 4 , 5 , or 6 as (x
,

, x_) is

fixed as (3, 4). For x. = 5, the maximum system reliability is obtained

when x_ = 8. S *ly for x =4, the maximum system reliability Ls

given at x_ = 6; '

r x, = 5 at x, - 5; for x = 6 at x, = 4. The optimum r
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for b = 54, f
?
(54), is the maximum system reliability among (x , x J

= (8, 3), (6, 4), (5, 5), and (4, 6), which is R^ = 0.9852 and (x* :<*)

= (6, 4). Usually the computational results for stage 2 (and stage 1)

presented in Table 5b are not presented and only the dynamic programming

table of Table 4 is presented.

Similarly, we can construct Table 5c for all possible b values and

for fixed x. = 3. For each b value, a systematic search procedure is

carried out by looking back the optimal allocation of (x , x ) shown in

Table 4 for stage 2. For example, when b = 52 is of interest, from Table 4, the

ODtimai allocation of (x n , x. ), for b < 52 are:
c 1 —

optimum

b

40

41

42

45

44

45 5 5

46 5 5

47 6 5

48 5 4

49 . 5 4

50 5 4

51 5 4

52 6 4

Therefore, the optimal allocation for (x
?

, x ) can only be one of the following

(4 3 3), (5, 5), i'6, 5), (5, 4), (6, 4). Since x is fixed, for <\x n , x.

)

4 2. I

u
2 V

4 3

4 3

4 3

4 5

5 5
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;, : we find the optimal is x- = 9 with system reliability, R. = 0.9b43;

for (x-, x.) =
r
5, 3), the optimal is X- = 7 and R, = 0.9875; for (x

?
, x )

= i'6, 3) the optimal is X- = 6, and R = 0.9877; for (x x ) = ".
I , the

optimal is X- = 5 and R = 0.9881; and for (x- , .< ) = (6, 4) the optimal Is•Jo — X,

x, = 4 and R, = 0.9832. .Among these system reliabilities, 0.9881 is the

largest one, hence the allocation of (x , x_, \ , x ) = (3, 5, 5, 4) is

the optimal one for b = 52. The optimum results for Stage 3 (and Stage

2 ind Stage 1) are presented in Table 4.

Finally we can construct Table 3d for b = 61, wh - the total

allowable resource. For b = 61 , from Table 4 for Stage 5, all the optimal

allocation of (x,, x , x ) for b <_ 61 are: ('4, 4, 5), (5, 4, 3), (6, 4, 3),

(5, 5, 5), (6, 5, 5), (5, 5, 4), (6, 5, 4), (7, 5, 4), (6, 6, J . 7, 6, -

and (8, 6, 4). For each allocation, the optimum x, (the maximum allowable

x to give the maximum system reliability) is calculated. .Among all these

system reliabilities the optimal system reliability for this problem

shown in Table 3d is (x x_, x , x.) = (5, 7, 6, 4) which gives the largest

system reliability, R = 0.99871. The dynamic orogramming table for this
s

problem is given m Table 4.
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Tabls 3a The dynamic programming table of Example 2 for Stage 1

b
I

x
4

I
X- X

2
X

l
R
s

f
x

(b)

39 . 90 - 44.59 5 4 4 5 0.9768 *

44.40 - 48.89 5 4 4 4 0.9796 *

48.90 - 55.59 5 4 4 5 0.9800 *

55.40 - 57.89 5 4 4 6 0.9807 *

57.90 _ 61.00 5 4 4 7 0.9802 *
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Table 3b Computational results of Example 2 for Stage 2 [and Stage

b X
4 4 x

2
x

l
R
s

f
2
(b)

40 5 4 4 3 0.9768

41 3 4 4 3 0.9768

42 5 4 4 3 0.9768

43 3 4 4 3 0.9768

44 5 4 15 0.9768
3 4 5 5 0.9797 *

45 3 4 5 5 0.9797
5 4 4 4 0.9796

46 5 4 5 5 0.9797
5 4 4 4 0.9796

47 5 4 6 5 0.9804 *

5 4 4 4 0.9796

48 3 4 6 5 0.9804
3 4 5 4 0.9825 *

49 3 4 6 5 0.9804
3 4 5 4 0.9825
3 -1 4 5 0.9800

50 3 4 6 5 0.9804
3 4 5 4 0.9825 *

3 4 4 5 0.9800

51 5 4 7 5 0.9806
3 4 --5 4 0.9825 *

3 4 4 5 0.9800

32 3-1-3 0.9806
3 4 6 4 0.9852 *

3 - l 4 5 0.9800

53 3 4~5 0.9806
3 4 6 4 0.9852
3 4 5 5 0.9829

34 3 .1 8 5 0.9806
3 4 6 4 0.9852
3 4 5 5 0.9829
5 4 J 5 0.9801
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55

56

57

oy

60

61

4 4 x
2

x
x

R
s

f
2
(b)

3 4 3 5 0.9806
5 4 7 4 0.9834
3 4 5 5 0.9829
3 4 4 6 0.9801

5 4 8 3 0.9806
3 4

-7

1 4 0.9834
3 4 6 5 0.9836

3. 4 4 6 0.9801

5 4 9 3 0.9806
3 4 7 4 0.9834
3 4 6 5 0.9836
3 4 5 6 0.9830

3 4 9 3 0.9806
3 4 8 4 0.9835
5 4 6 5 0.9836

4 5 6 0.9830
5 4 4 7 0.9802

3 4 9 3 0.9806
5 4 8 4 0.9835
3 4 6 5 0.9836
3 4 5 6 0.9830
5 4 4 7 0.9802

3 4 9 5 0.9806
5 4 3 4 0.9835
3 4 7 5 0.9858
3 4 5 6 0.9830
3 4 4 7 0.9802

5 4 10 5 0.9806
3 4 s 4 0.9835
5 4 7 5 0.9858
5 4 6 6 0.9837
3 4 4 7 0.9802
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Le 3c Computation . Example 2 for Stage 5

nd Stage 2 and Stage I)

X
3

x
2

X
l

3 4 4 5

5 4 4 3

3 4 4 3

3 5 4 3

3 5 4 3

3 4 5 3

3 6 4 3

3 4 5 3

3 6 4 3
f

5 5 3

5 7 4 3

3 5 5 3

3 4 6 3

3 7 4 3

3 6 5 3

3 4 6 3

3 4 5 4

3 7 4 3

3 6 5 3

3 5 6 3

3 -i 5 4

3 8 4 3

3 -
3 3

3 3 6 3

3 4 5 4

3 8 4 3

3 7 5
—

3 5 6 3

5 5 5 4

3 9 4 3

3 7 5 3

5 6 6 3

3 5 5 4

R r-Cb)
s J

40 3 4 4 5 0.9768

4 1 3 4 4 3 0.9768

4: 3 4 4 3 0.9768

4 ^ 3 5 4 3 0.9824

i4 5 4 3 0.9824
0.9797

6 0.9841
0.9"9"

0.9841
0.9853

0.9846
0.9853
0.9804

0.9846
0.9870
0.9804
0.9825

0.9846
0.9870
0.9860
0.9825

0.9847
0.9870
0.9860
0.9825

0.9847
0.9875
0.9860
0.9881

0.9843
0.9S'5
0.9^

—
).9881

0.9832
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53

54

55

57

60

I
X
4

X
3

X
2

X
l

R
s

f-(b)

3 9 4 3 0.9848

3 3 5 3 0.9876

3 6 6 3 0.9877

3 6 5 4 0.9898 •

5 4 6 4 0.9832

3 10 4 3 0.9848

3 8 5 3 0.9876

3 7 6 3 0.9882

5 6 5 4 0.9398 *

3 5 6 4 0.9888

5 10 4 3 0.984S

3 9 5 3 0.9877

5 7 6
—

0.9882
3 7 5 4 0.9905 *

5 6 4 0.9888

56 3 1

1

0.9854

3 9 5 5 0.9877

3 8 6 5 0.9883
5 7 5 4 0.9905
5 6 6 4 0.9905
3 4 6 5 0.9836

5 11 4 5

5 9 5 5 0.9877

3 8 6 5 0.9883
5 8 5 4 0.99046
5 6 6 4 0.99055
3 4 6

-
0.9856

5 12 4 5

5 10 5 5 0.9877

3 3 6 5 0.9885
5 8 5 4 0.99046
5 6 6 4 0.99053
5 5 6 5 0.9893

5 12 •i
—

7 10 5 5 0.9377
5 9 6 5 0.9884
5 8 5 4 0.99046
5 7 6 4 0.9910
5 5 6 5 0.9895

5 15 4 3 0.9S49
3 11 5 3 0.987^
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60

61

*4 X
3

X
2

X
l s

5 9 6 5 0.9884
3 9 5 4 0.9905
3 7 6 4 0.9910
5 5 6 5 0.9895
5 4 7 5 0.9858

3 15 4 5 0.9849
3 11 5 3 0.9877
3 10 6 5 0.9884
3 9 5 4 0.9905
3 8 6 4 0.9912
3 6 6 5 0.9910
3 4 7 5 0.9858

f
3
(b)
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Table 3d Computational results of Example 2 for Stage 4

(and Stage 5
)
Stage 2 and Stage 1)

61

V b )X
4

X
3

X
2

X
l

R
s

20 4 4 3 0.9848
18 5 4 3 0.9904
16 6 4 5 0.9921
15 5 5 3 0.9933
14 7 4 3 0.9926
13 6 5 3 0.9951

11 5 5 4 0.99609
10 6 5 4 0.99779
8 7 5 4 0.99830
7 6 6 4 0.99851
5 7 6 4 0.99871
3 8 6 4 0.99119
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Table 4 The dynamic programming table of Example 2

Stage 4 (and Stage 3, Stage 2 and Stage 1)

*4
X
3

X
2

X
l

:, b)

0.99871

Stage 3 (and stage 2 and stage 1)

b
I

X
4

X- X
2

X
l

ff-00

-10 3 4 4 3 0.9"68

41 5 4 4 3 0.9768

42
7 4 4 3 0.9768

43 3 5 -I 3 0.9824

44
>7

5 4 3 0.9824

45 3 6 4 3 0.9841

46 3 5 5 3 0.9853

M 5 5 5 3 0.9855

48 5 6 5 3 0.98^0

49 5 6 5 3 0.9870

50
—

6 5 3 0.9870

51 3 5 5 4 0.9881

52 3 5 5 4 0.9881

53 5 6 5 4 0.9898

54 3 6 5 4 0.9898

55 5 7 5 4 0.9903

56 3 6 6 4 0.9905

57 3 6 6 4 0.9905

58 3 6 6 4 0.9905

59 3 7 6 4 0.9910

60 5 7 6 4 0.9910

61 5 8 6 4 0.9912
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Stage 2 (and stage 1)

b
I

X
4

I
X
5

X
2

X
l

f
2
(b)

40 5 4 4 5 0.9768

41 5 4 4 5 0.9768

42 5 4 4 5 0.9768

45
<9

4 4 5 0.9768

44 5 4 5 5 0.9797

45 5 4 5 5 0.9797

46 5 4 5 5 0.9797

47 5 4 6 5 0.9804

48 5 4 5 4 0.9825

49 5 4 5 4 0.9825

50 5 4 5 4 0.9825

51 5 4 5 4 0.9825

52 5 4 6 4 0.9852

55 5 4 6 4 0.9851

54 5 4 6 4 0.9851

55 5 4 / 4 0.9854

56 5 4 6 5 0.9856

57 5 4 6 5 0.9856

58 5 4 6 5 0.9856

59 5 4 6 5 0.9856

60 5 4 7 5 0.9858

61 5 4 7 5 0.9858
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?tage 1

b
I

*4
I

X
3

i

—
X
l

f
x
(b)

39.90 - 44.39 3 4 4 5 0.9768

44.4 - 48.39 5 4 4 4 0.9796

48.90 - 55 . 39 3 4 4 5 0.9800

S3. 4(j - 5". 39 3 4 4 6 0.9807

57.90 - 61.00 3 4 4 7 0.9802
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5. Dynamic Programming Approach Using Lagrange Multipliers

Formulation of the Problem

If multiple constraint functions are imposed to restrict the

objective function, then the Lagrange multipliers may be introduced t(

eliminate some constraints and hence reduce the dimension of the problem.

In section 2, we have formulated the single constraint problem solved

by the basic dynamic programming approach. Now, if the second constraint,

N

I go-jCx.) < b
2

(-16)

is also imposed to the problem, we have to consider the sequence of functions

defined by the relation

f (b b
7 )

~- max R* (x ) (17)
1

1 < x < x- 1 - 1

f
2
Cb

1
, bJ = max [R

? Cx
2
)'£

1
(b

1

- gp (x
2

) , b
2

- g90 (x,jjl

X- X
2 - X

2

f
N
(br b ) = max [RJ (x

N
)-f

N _ 1
(b - S1N(V' b ^ " g2N

(X
N))]

u u 1 u 2
where x. , j=l, 2, ..., N is the minimum integer between (x.) and (x.)

;

u 1

and(x.j
x

is the maximum integer satisfying

N

0=1

p^i

and (x.) is the maximum integer satisfying

N

I 87AD - g2
. Cx.D < b

p=l 4? - ] >

P*3
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The recursive formula I -constraints problem is basically

following the same approach as those for a one-constraint problem. Although

the formula ls simple and very straightforward, it involves sequences of

functions of two variables which will require a large memory capacity and

are quite time-consuming. Therefore, it is not very desirable from the

computational standpoint.

An alternative method to solve this problem is by introducing a Lagrange

multiplier, X, as a penalty term. The problem now is stated as

Maximize „

N -\£ hj (V (18)

II R'. (*•) [e J
]

3 = 1
J J

subject to

N

j=l J J

Th.e Lagrange multiplier, X, is to be chosen so that the constraint

in eq. (16) is as nearly as possible an equality. Mow the problem becomes

sequence of functions of one variable which has the following recursive

formula.

fjCb) =
, max

u
[R| ( Xl ) exp (- ; kJ]

X
l 1 x

l 1 X
l

:

2
(b) =

z
max

u
[R; (x

2
) f^bj - g 17

(xj) expi - g ,, ; O ) j

X < X < X
2 — 2 —

f
N
Cb) =

,
max

u
[R' (x^ f^ 0^ - S 1N

Cx
N
)) exp (-Xg^C^j ) ]

*m 1 *m 1 Si
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where

x

.

R' (x.) = 1 - (1 - R j \ j = l, 2, ..., N

I u
x., j=l, 2, . .., N,is the minimum integer used at each stage and x., j=l,

2, .... N, is the maximum integer used at each stage such that

) & fx 1 + a, fx 1 < b

N

\ is to be chosen so that £ So- ( x -) ^ s as c l°se to b
?

as possible. For

j=l ~ J ]

a fixed value of X, the maximum system reliability is obtained; that is,

N

: (bj expH [ |

N 1 L j=l
R
s

=W exPf
A

.i
g
2j

(X
i

}

a one-dimensional search for X should be carried out to find the optimal

solution for R .

s

A Numerical Example

Example 5

To solve this example, we first find the lower bound of components to be

used at each stage.

By an enumeration method as shown in Table 5, redundancies are allocated

stage by stage until one of the constraints is exceeded. The basic system

configuration for calculating the lower bound, is assumed to be the one

before exceeding one of the constraints, i.e., (3, 5, 3, 2, 2) for this numerical

example. The system reliability corresponding to this configuration, R fx)
5

is 0. 8125. This is not, however, an optimal solution. The optimal system

reliability should be equal to or greater than this value. Therefore,

we assume that the lower bound of stage reliability is . 3125 and

calculate the corresponding lower bound of stage components.



rable 5 The allocation of elements stage by stage until any one constra.

is violated.

c

stages12 3 4 5

1 1
*

1 1 1

2 1111
2
2lll

2 1 1

2 7 2 2 2 1

v

5 3

2 2 2

2 2 2

2 2 2

3 2 2

3 3 2

Resources used

5

y ° .

ji
g^

12 4S.79

15 62.88

21 78.99

30 95.10

42 107.19

48 125.30

53 146.67

63 171.11

78 195.35

98 213.86



That is, for j=l,

1 - (1 - 0.S0) > 0.S125

I
which gives x >_2.51, say, x = 2.Ill I
Similarly we obtain x = 2, x = 1, x = 3, and x- = 2.

1 o 4 j

The recursive equations modified by using the Lagrange multiplier are

x x

f
x
Cb) = max {(1 - Q

i

l
) exp [-ACw^e 1/4

)]} (19)

I u
X, < X, < X,
1 — 1 - 1

f
2
(b) = max (1 - Q

2
~) exp [-XCw^e 2/4

)] f
1
(b - p 2

x
2

) (20)

I u
X < X < X•S — 2 — 2

X X

f,('b) = max (1 - Q_ °) exp [-X(w,X,e
d/4

) ] f,(b - P-x,
2

) (21)
3 3 3 3 2

rjo

2. u
X- < X, < X,
J — o — J

X X

f
4
(b) = max (1 - Q4

4
) exp [-Xfw^e 4/4

) ] f
3
(b - P 4^

2
) (22)

2, u
X
4 1 X

4 1 X
4

f (b) = max (1 - Q
D

) exp [-XCw.x e
d/4

(] f (b - p x
2

) (23)

I u
x r < x_ < x_0—3—3

where Q = (1 - R. ), j=l,2,...,5.
J j

The quantity X is to be determined so that

N

So = I w.x. exp (x ) = W
2

j=l 3 3 J/4
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To solve this example, X should be assigned, say X = 0.001. Since the

objective over the feasible region depends upon the number of stages, N, the

available resource, b , and the Lagrange multiplier, \, we denote by r\.;'b )

the maximization of the objective. That is

1 n

f
N
(b ) = max [ n R ' (x ) exp(-A [ g (x )]

Vt*-1* '
A

i
-> J

where x., j = l , 2 , . . . ,.\
; are positive integers satisfying the constraint

^n3 (V- b
i

For the one-stage process, the optimal design is determined for the

single decision variable, x , by the solution of

f (b) = max R'(x ) exp(-Ag (x ))

x I <_ x < x"
L l " 3 "

where, x = 2, and the upper bound used in stage 1, x , is restricted

the constraint. The spectrum of b is determined from the consumed resource.

I I I I
59.0, for the basic allocation (x_ ,x. ,x_ ,x_ , x ) = (2,3,1,2,2) -

D the

total available resource, 110. 0. When b increases, stage redundancy, x. -1,

stage reliability, R (,x. ) , and stage cost, g (x ) , will increase, butLi _ 1

the penalty term, exp(-Xg
91

(x ) ) will decrease. Since f (b) is a maximization

of the product of R. (x ) and exp(-\g
?

. (x )) , f^^b) is not a

monotonic increasing function of b. In other words, the increasing in

allows us to add more components in stage 1 but the configuration from these

more redundancy may not give us a optimal return value. When the upstream

III
stages are fixed by i'x_',x ,x_ ,x_, )= (2,3,1,2), the optimal allocation tor

x is obtained as shown in Table 6a. All possible b values should be searched

exhaustivelv to find the optimal x,. Since >'_, x., x_, x,; are fixed,

x, is 2 :" n the region }f 59.0 < b < 6-1 . G which fives the fun Ci l1 value
1

= — s

). For b in the region of 64.0 b < 71.0, the optimal x be 5 3
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and c (b) is 0.67476. For b in the region of 71.0 <_ b < 80.0, we may allocate

4 components fox- x , but this gives the functional value of 0.65860 which is

smaller than the functional value of 0.67476 as x = 3. Therefore, x = 3

is the optimal one for 71.0 ' b < 80.0. Similarly, for b >_ 30.0, we may

allocate x = 3, 4, 5, 6, or 7; however, f (b) , the optimum is at x = 3.

Therefore, the optimal is x = 3 for 64.0 : b <_ 110.

The results for stage 1 are presented in the dynamic programming table

(Table 7 , stage 1)

.

The next step is to search for the optimal combinations of stage 2

2 I 2,and stage 1 since (Xj. ,x, ,x- ) = (2,3,1) is fixed. It is necessary

to consider all possible b between 59.0 and 110.0. For convenience, the

maximization will be carried out for b with a discrete spectrum. Since

the cost of adding one more component to the minimum required components

of any stage will consume at least 5 cost units, the difference between

two near searching point can be chosen as 5. Table 7 (stage 1) then is

used to construct Table 6b.

Ill
In Table 6b, (x ,x ,x ) = (2,3,1) is fixed. An optimal (x x )DO — j i.

is searched for the maximum function value f (b) , for the corresponding

value of b given. This procedeure is similar to one given in the basic

dynamic programming algorithm. For example, if b = 84, from Table

(stage 1) x can be 2 or 3. When x. = 2, we search for the optimal x n

to be 2, and the functional value is 0.66710: when x =3, we search

for the optimal x to be 2 and the functional value is 0.67476. Since

0.67476 is greater than 0.66710, the optimal allocation for b = 84 is

(x_ ,x' ,x_ ,x_ ,x
1 ) = (2,5,1,2,3). In Table 6b, when (x_ ,x, ,x, ) =

O 4 J ^ 1 340
(2,3,1) is fixed, only two possible allocations exist for x and x

,

namelv, (x ,x ) = (2,2) or (2,3), which are presented in the dynamic
2 i

programming table, Table ~ (stage 2). Similarly, we can construct
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•• stage 5 land stage J and stage 1) for all possible b values

and for fixed (x_ ,x' ) - [2,3). For each b value, a systematic search

procedure is carried out by using the previously determined optimal allocation

of (x_,x ) shown in Table 7 (stage 2). We can also construct Table 6d for

stage J (and stage3, stage 2, and stage 1) for all possible b values and

I
for fixed x =2.

Finally we can construct Table 5e for b = 110 which is the total

allowable resource. For b = 110, from Table 7 (stage 4), all the possible

optimal allocations of (x.,x ,x ,xJ for b <_ 110 are: r 5,l,2,2), (5,1,2,5,,

(5,2,2,2), and (5,2,2,5). For each allocation, the optimum x_ the maximum

allowable x to give the maximum functional value) is calculated, and from

all these possible function values we choose the largest one as the optimal

one. As shown in Table 6e , (x_ , x , x_ ,x ,x ) = (5,5,2,2,5) gives
b 4 j _ I

f„(b=110) = 0.74610. The dynamic programming table for • =

is given in Table 7.

Table 8 shows that when \ = 0.001, we have f_(b=110) = 0.74610. Then
N

the total consumed <z
= [ g (x.) * 192. o . The system reliability,

1=1 -1 -
1 s

3

is 0.9045, which is given by

n

f Cb)/exp(-X I g9
.(x )).

3
j=l

~ ] ]

For searching the proper value of the Lagrange multiplier, \ , whi

shall spend a cost as close to 200 (but always less than 200j as possible

(since g? <_ W, where W = 200), several values of X have been tried. For

each value of > , the procedures presented above are carried out ana an

optimum configuration is obtained. The results are summarized in Table B ,

As \ = 0.0001, the ODtimal allocations are (x_ ,x , . x_ , x, ,x, ;
=

3 4 O _ 1

-.5,2,5,5), which give the system reliability, R = 0.9551, and consume
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g =107, and g 9 =257.6, i.e., the second constraint is violated. For

\ = 0.01, the optimal allocations are (x ,x ,x ,x ,x ) = (2,5,1,2,2) which
j 4 5 2 1

give the system reliability, R, = 0.7578, and consume g = 59, and

g = 127.5. Mow 127.5 is smaller than 200 and the solution is a feasible

one. Howvever, we can increase the stage redundancies, and consume more

resource to increase the system reliability. The one-dimensional search

for \ can be applied between 0.0001 and 0.01. Table 3 gives the optimal

solution: 0.0008 < X £ 0.0015, Cxc ,X. ,x„x_,xj = (5,5,2,2,5), gl =35,
b 4 o & i 1

g = 192.5, and R
g

= 0.9045.



1 at < L t s of 1

• .--=0.0010

.

59- e .

64-70.9

71-79.9

S0-90.9

91-103.9

104-110

i. • jnctional value

1 0.66710

5 0.67476

3 0.67476

4 0.65860

3 0.6747(

4 0.65360

5 0.62915

5 . . f^~4 76

4 0.65S60

5 0.629.."

6 0.6032:

5 0.67476

4 0.65860

5 0.62915

6 C.ti05_:

7 0.5S209
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Table 6b Calculated Results of Example 3

for Stage 2 (and Stage 1) as

X = 0.0010

59

64

69

74

79

84

89

94

99-110

functional value

2 0.66710

2 0.66710
3 0.67476

2 0.66710
3 0.67476

2 0.66710
3 0.67476

2 0.66710
3 0.67476

2 0.66710
3 0.67476

2 0.66710
3 0.67476

2 0.66710
3 0.67476

2 0.66710
3 0.67476

f (b)
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Table be Calculated Results of Example 3

for Stage 3 (and Stage 2 and 5taj;e

1) as A = 0.0010

59

64

69

_
4

79

34

39

94

99-110

X
5

X
4

2 3

2 3

2 3

2 3

2 5

— 3

2 3

o
3

2 3

2 3

2 3

2 3

2 5

2 3

2 5

2 5

2 3

functional value

2 0.66710

2 0.66710
5 0.67476

2 0.72208
5 0.67476

2 0.72208
3 0.7505"

2 0.72208
3 0.73037

2 0.72208
3 0.7505"

2 0.72203
5 0.73037

2 0.72208
5 0.75'

2 0.72208
5 0.75057

f
3
(b)
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'able 6d Calculated Results cf Example 5 for Stage 4

(and Stage 3, Stage 2 and Stage 1) as

X = 0.0010

59

64

69

74

79-110

4
X
3

x
:

X
l

functional value f.(b)

5 1 2 2 0.66710 *

3

3

1

1

2

2

2

3

0.66710
0.67476 *

3

5

3

1

1

2

2

2

2

2

3

2

0.66710
0.67476
0.72208 *

5

5

3

3

1

1

2

2

2

2

2

2

2

3

2

3

0.66710
0.67476
0.72208
0.73037 *

3

5

3

5

1

1

2

2

2

2

2

2

2

3

2

3

0.66710
0.6"4"6

0.72208
0.^5037 *



Table 6e Calculated Results of Example 3 for Stage 5 (and

Stage -l, Stage 3, Stage 2 and Stage 1) as >. = 0.001

functional value f
5
(b)

110 0.681

^

_

0.68929
0.75"o4

'1610
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Table 7 The dynamic programming table for Example 3 as X = 0.0010,

Stage 5 (and Stage 4, Stage 3, Stage 2 and Stage 1)

b x
5

x
4

x_ x
2

x
l

f_(b)

110 3 5 2 2 3 0.74610

Stage 4 (and Stage 3, Stage 2 and Stage 1)

b
I

X
5

X
4

x_ X
2

X
l Vb >

59 2 3 1 2 2 0.66710

64 2 5 1 2 3 0.67476

69 2 3 2 2 2 0.72208

74-110 2 3 2 2
-*

0.73057

Stage 5 (and Stage 2 and Stage 1)

b
I

X
5

X
4

x_
3

x
2

X
l

f
3
(b)

59 2 3 1 2 2 0.66710

64 2 3 1 2 3 0.67476

69 2 5 2 2 2 0.72208

74-110 9 3 2 2 3 0.73057



Stage 2 (and Stage 1)

125

59

64-110

f
2
(b)

0.66710

0.67476

Stage 1

56-63.9

64-110

I
f. (b)

i

0.66710

U. 67476



Table 8 Optimum System Reliabilities for Various

Values of Lagrange Multiplier

126

Lagrange
Multiplier

X X
5

Optimum System
Configuration
x
4

X
3

X
2

X
l

Optimum Sy
Reliabil

R
s

stem
ity

g
l

g
2

0.0001 4 3 2 3 3 0.9331 107 257.6

0.0002 4 3 2 3 5 0.9331 107 257.6

0.0004 4 3 2 3 3 0.9331 107 257.6

0.0006 3 3 2 3 3 0.9222 93 216.9

0.0008 3 3 2 2 3 0.9045 83 192.5

0.0015 3 3 2 2 3 0.9045 83 192.5

0.0016 3 3 2 2 0.8753 78 171.1

0.0040 2 3 2 2 2 0.8336 68 143.6

0.0060 2 3 1 2 2 0.7578 59 127.5

0.0080 2 3 1 2 2 0.7578 59 127.5

0.0100 2 3 1 2 2 0.7578 59 127.5
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4 Dynamic Programming Approach Using the Concept of Dominating Sequence

Formulation of the Problem

The number of computations required for maximizing the system reliability

N x.

r = n [i - (i - r.) J
]

5
j-1 J

subject to

N

g. =
I g (x ) <_ b. ,1=1,2 r

1
1 = 1 1J J L

can be reduced by defining a condition of dominance for alternative system

configurations.

A system configuration x' is said to dominate another system configur-

ation x, if

R
s

(V) > R
s
(x),

and the inequality sign (<) holds in at least one of the following conditions

N N

I g,, CxH 1 I §•• Cx.) , i=l,2,...,r
j=l xJ J

j=l
1] J

This implies that the dominating system configuration has better system re-

liability and using less cost ^resources) . A sequence S of redundancy allo-

cations, satisfying the constraints in (5) and none of them being dom-

inated by the others, is said to form a dominating sequence.

In the dynamic programming formulation, combinations of two stages are

searched for a dominating sequence of configurations which is then combined

with a third stage to yield another dominating sequence. A sequence ends

whenever a constraint is violated. The final dominant configuration yielding

the optimal system configuration is the last entry In the oom-

Lnating sequence generated by the combination of the dominating sequence from
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stage 1, stage 2, ..., stage N- 1 , and stage N.

To reduce the length of the dominating sequence, the heuristic tech-

niques used to determine the upper and lower bounds of x., j = l ,2 , . .
.
,N

ma/ be suggested.

u
i) Upper bound of x., x. :

j yy
3 3

Each stage should have at least one component. If the

upper bound of the jth stage, x. , is to be determined, we let

x
k

= 1, k=l,2,...,N , k ? j

x. is the smallest integer number in the set (c, , c ..., c }, where
j

b
1 2, r

c
£

= max {x |x is integer, and g^ k
(1 , . . . ,1 ,x 1 . . . , 1) <_ b^}

for 1=1 , 2 , . .

.

,r

.

ii) Lower bound of x., x. :

3 3

Redundancies are allocated stage by stage until a constraint is met.

If the reliability of the configuration x, which is the last step of allo-

cation, while not violating any constraint, is R (x), then N equations of
X

i I
the form R (x) <1-(1-R.) J are solved for x., where x. is the mini-

5 ~
J 3 3

mum integer numbers satisfying the above equations for j=l,2,...,N. x.

is the lower bound of components used at stage j

.

Example 5

To use the concept of dominating sequence to solve this example, we

first find the ucuer and lower bounds of comoonents used at each stage.
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ij Upper bound, x. :

To find the upper bounds of components for the jth stage, all the

other stages are assumed to have one component. The upper bound of the first

u
stage, x , will be the largest integer number satisfying the following

three constraints:

gl
= rCx^) 2

+ 2-(l)
2

+ 3-(l)
2

+ 4-(l)
2

+ 2-(lj
2

< 110

g
2

= 7-(x
U

+ exp (x u/4)) + 7*(1 + exp (1/4)) + S-(l + exp (1/4))

+ 9- CI + exp (1/4)) + 4-(l - exp Cl/4)) L7S

u
, u

j
j

7-x exp (x /4) + 8-1-exp (1/4) * 3
•

1
• exp (1/4

+ 6-1-exp (1/4) + 9-1-exp (1/4) _ 200

By plugging the integer number, x. = 1, 2, ... into g , g ?
, g_, when

x =6, we have g. = 47, g ?
= 157.54, and g_ = 227.56, that is, g_ (x = 6)

is greater than 200. When x = 5, however, g = 56, g = 91.44, and g_ =

161.59. N'one of the constraints is violated. Therefore, x.
U

is 5.

3y similar procedures, the upper bounds of components for the other stages

are found to be all 5.

2,

ii) Lower bound, x. :

By an enumeration method as shown in Table 9, redundancies are allocated

stage by stage until one of the constraints is exceeded. The basic system

configuration for calculating the lower bound, then, is assumed to be the

one before the exceeding one of the constraints , i.e., (5, 5, 5, 2, 2) for

this numerical example.

The system reliability corresponding to this configuration of (5, 5,

5, 2, 2), R
s
Cx), is 0.8124.
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Table 9

1

The al

is vie

2

location
lated.

stages
3

of e]

4

.ements

5

stage by stage

5

) ° •

>=lj
1 = 1

until any one constraint

Resources used
5 5

^ g 2i X g 3i
j=l

J
j-1 '

1 1 1 1 1 12 73.09 48.79

2 1 1 1 1 15 82.64 62.88

3
2 1 1 1 21 92.19 7S.99

'J

o 2 2 2 1 1 30 99.01 95.10
—<

<
?

*->
2 2 2 1 42 111.29 107.18

2 2 2 2 48 116.73 125.50

5 2 2 2 2 53 127.03 146.67

5 3 2 2 2 65 158.51 171.11

3 5 5 2 2 78 144.65 195.53

3 5 5 5 2 98 157.87 213.86
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This is, however, not jn optimal solution. The optimal system reliability

should be equal to or greater than this value. Therefore, we assume that the

lower bound of stage reliability is 0.3124, and calculate the correspond:

lower bound of stage components.

That is, for .j.= l,

x

1 - (1 - 0.80)
l

__ 0.8124

gives x > 2.31, say x = 2, Similarly we obtain x„ = 2, x, = 1, k a
- 3,

1 l 2 o 4

I x,. = 2.

The optimum components at each stage will then lie between the lower and

upper bounds of that stage.

To solve this example, the first step in the computational procedures

is to set up a matrix for the combination of stage 1 and stage 2 (see

Table,9a). In Table 9a, the number of components, stage unreliability,

g , g , and g_ for stage 1 and stage 2 are presented as the rows above the

matrix and column left of the matrix, respectively. The starting number of

components used for each stage is the lower bound of the stage, ir.d the

ending point, the upper bound. It is easier to consider unreliabilities

than reliabilities, although it involves an approximation.

Each entry of the matrix in Table 9a is a vector, which shows the

system unreliabilities, g , g ?
, and g_ which are results of the combination

of stage 1 and stage 2. The system unreliability is approximated by the

addition of the unreliabilites of stage 1 and stage 2
}

if both R. and

near unity, namely, R and R_, >_ 0.5,

x x

q'= i - a - ri - r
x

i

l

) (i - (i - rj 2
)

x
l

x
^

- ci - ^) + a - r
2

)



.32

X
l

X
9

where (1 - R. ) and (1 - R )
' are the unreliabilities of stage 1 and

stage 2, respectively.

The dominating sequence for the system combining stage 1 with stage

2 is obtained by eliminating entries of the matrix which are dominated by

others. The eliminating procedures are:

(1) Any cost of the entries in the matrix exceeds the constrained available

resource, then the entry is eliminated. For example, the entries of

(x, , x ) = (5, 4), (4, 5), and (5, 5) are eliminated, because all g,'s

of the entries exceed 200.

(2) The dominating sequence will then be determined as follows:

a. Consider the entry having the highest reliability (i.e., the lowest

unreliability), which is always one term of the dominating sequence no matter

what costs the term has. In Table 10a, this entry is (x^ x n ) = (4, 4), which

has the highest reliability, 1 - 0.0021 = 0.9979. Compare costs of all the

other entries with costs of this entry. Eliminate all entries which have

lower reliability and higher cost. In table 9a, the highest entry is

(x , xj = (4, 4), which has reliability 0.9979, g = 48, g ?
= 94.04, and

g_ = 163.08. ConrDaring with (x. , x_) = (4, 4), the entry (x, , x_) = (3, 5),
j l _ 1 _

which has reliability 1 - 0.0081 = 0.9919, g = 59, g = 95.17, and g = 183.66,

is eliminated, because the latter one is less reliable and requires higher

costs for g , g , and g . That is, entry (4, 4) dominates entry (5, 5).

b. Choose the next higher reliability (lower unreliability), i. e.,

entry (5, 3). Compare the costs of all other entries which have lower

reliability than entry (5, 3). However, no entry is dominated by (5, 3).

c - Next, entries (3, 4) and (2,5) are eliminated by-

comparing with entry (4, 5); entry (2, 4) and (5, 2) are eliminated by

comparing with entry (3, 3); and entry (2, 5) is eliminated by comparing with

(5, 2). Finally the dominating sequence of (I), (2), (5), (4), (5), (6). and
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(7) is obtained which is the system composing of stage 1 and stage 2.

The dominating sequence for the combination of stage 1 and stage 2

from Table 9a will be the new row entry above the matrix in Table 10a. The

number of components, stage unreliabilities, g , g ? , and g„ of stage 3

will be the column left to the matrix of Table 9b. Similar procedures

are now carried out to eliminate the entries of this matrix whose costs

exceed the constraint, i.e., (4 - 4 , 4) ; (4 - 4, 3) ; (5 - 5, -
; 'S -3, 3,;

(4 - 5, 4). The dominating sequence is then determined. (5 -3, 2,

and (4 - 2, 4) are eliminated by comparing (5 - 3, 3); (4 - 4, 1) and 5 - 5,

1) by (4 - 3, 2); (4 - 2, 3), (3 - 2, 4) and (3 - 2, 3) by (5 - 3, 2);

(4 - 3, 1) by (4 -2, 2); (5 - 3, 1) and (2 - 2, 4) by (3 -2, 2;; and

(4 - 2 , 1) by (2 - 2 , 3) . The dominating sequence is (
7 - 2 , 1) , (5 - 2 , 1) ,

(2 - 2, 2), (2 - 2, 3j, (3 - 2, 2), (4 - 2, 2), (3 - 3, 2), (4 - 3, 2),

(3-3, 3) (4-4, 2), (3 - 3, 4), and (4 - 3, 3).

The dominating sequence obtained for system composed by stages 1, 2,

and 3 then forms the row entries above the matrix of Table ICc. Stage

4 is combined with stages 1 - 2 - 3 to form a system, and its dominating

sequence is obtained from Table 9c. This dominating sequence for the system

composing stages 1, 2, 3, and 4 is used to combine with stage 5 to get the

last dominating sequence as shown in Table 10a. In Table lOd, a dominati

sequence is obtained, and the optimal one has the system configuration

(3, 2, 2, 3, 3) which has the highest reliability,! - 0.0990 = 0.9010.



Table 10a Computational result? of Example 5 for Stage 1 and Stage 2
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c«.

Number of components used

Stage unrel iabilitv

g, used

g
2

used

g used

1 >
X
2

=

0.0225

8

25.54

26.38

_a_£e_X

X
l

= 2

0.04

4

25.54

25.08

0.008

9

55 . 81

44.45

4

0.0016

16

47.02

76.10

u
X = D

J.

0.0003

25

59.56

121.81

(1) (2) (3)

0.0625 0.0505 0.0241 0. 022

12 17 24 55

51.08 61 . 55 72.56 84. 90

49.46 70.85 102.48 148 19

CM

-

0.0054

18

5 5.81

50.81

4

0.0005

32

47.02

86.98

0.0001

50

59 . 56

139.21

0.0454

22

61 . 55

73.89

(4) (5)

0.0114 0.0050

27 54

71.62 82.85

95.26 126.91

C6J

0.0037

45

95.17

172.61

(7)

0.0405 0.0085 0.0021 0.0008

56 41 48 57

72.56 82.85 94.04 106.58

110.06 151.45 165.08 208.79

0.0401 0.0081 0.0017 0.0004

54 59 66 7 5

84.90 95.17 106.58 118.72

162.29 1S5.66 215.51 261.02
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3.5 THE DISCRETE MAXIMUM PRINCIPLE APPLIED TO OPTIMUM SYSTEM RELIABILITY

1. Introduction

A simple computational procedure based on the discrete maximum principle

has been developed for maximizing reliability of multistage parallel systems

subject to multiple nonlinear constraints [1]. It appears that the procedure

can be applied to a variety of optimization problems with separable and multiple

constaints functions.

2. Statement of the Problem and the Computational Procedure

The problem of maximizing the reliability of an N-stage series system

with redundant units in parallel (see Fig. 1) subject to multiple linear

and nonlinear separable constraints can be stated as follows:

Maximize

N n

r = n (l-U-R ) ) CD*
n-l

subject to

N

y g
n
(9
n

) i b , i = 1, 2, . . -. , S, (2)

n=l
X

where

The superscript n indicates the stage number. The exponents are written
•

i i
, n,2 r^n, m-1 „n. - 2

with oarenrheses or brackets such as (x j or IT (x ;9 J; .
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R = the system reliability,

H = the total number of stages

,

R = the reliability of one element at the nth stage,

9 = the number of elements at the nth stage, vhere (9 -l)

is the number of redundant units

,

g ( 9 ) = the function representing the amount of the ith resource

n
consumed at the ntn stage as a function of 9

,

s = the number of constraints

,

b. = the total amount of the ith resource available.
i

Let

x. = the ith resource corresnonding to the ith constraint, which is
i

"

consumed in the first n stages, i=l,2, . . . ,s.

Then, the performance equations for this N-stage system may be written

as

x
i

= x
i~

1
+ s

i

(8a)
>

n - 1, 2, .... ar, (3)

i = 1, 2, . . . , s,

xj = 0, (3a)

x?<b., ( 3b

)

3y defining

x
s+l

=
Vl"

+ ^(l-(l-R
n

)

8n

), n-1 I, (U)

x° , =0,
s+1
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the objective Function to be optimized can be written as

S = £n R
3

N
= Vi

=
I c.x», (5)

vhere

c
i

= 0, i - 1, 2, . . . , s, (6a)

c . , =1.
s+i

The Hamiltonian and the adjoint variables of the systec can be defined as

s+1
. rn r n n
n = ) z. x.

i-1
X X

n fl
D

1=1

r n f a-x n r ftno . n r n—l , r, /_ nn\o ^= _^z. fx. + g . ^ )] + z
s+i

[x
s+1

+ in(l-(l-R ) J,

n = 1, 2, . . . , :;,

n-i 3H
11

n
z. = r = 2.

.

i . n-1 i
3x.

l

a « 1, 2, ... , ::, (8)

i = 1, 2, . . . , s, s+1,

z , = c . , = 1. ^9 )

's+i s+1

equations (3) and (9) yield

Q — i2
3+i - - a « 1, 2, ... , N. (10)
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Assuming that the non-trivial and unique Hamiltonian and adjoint variables

of the system exist, the stational necessary condition for local opti-

mality can be obtained as (see Appendix k of Pef. 2J

n / „rM „ nn
3H

s 3g. 9 #. „n
N
8 . /. „n^

_= = 7 2
n _J: +

-(1-R ) *n (1-R )

( (n)
ae

n
i-1

i
3 e

n
. ,_

p
n,9

n

1-(1-R )

In employing this condition in determining the optimal condition of the

system, we assume its existence. In reality, 8 , n = 1, 2, . . . , N,

are positive integers. We, however, assume that 8* are continuous variables.

Now we assume that one of the constraints, say the .jth constraint

given by equation (2) or equivalently by equation (3)>is active and the

rest are free. This means the end condition corresponding to the jth con-

straint is fixed and the rest of them are free. Then, we have

\ = C. = 0, i = 1, 2, . . . , s, (12)

i * J-

From equations (3) and (12), we obtain

z° = 0, i = 1, 2, . . . , s,

i * J,

n = 1 , 2 , . . . , N

.

Therefore, equation (11) reduces to

.*!£li!^ u- RVn

in U.P/-) .
(13)

x-v,l-R )

The procedure for solving the problem may be described in the following steps

1 "1

Step 1. Assuming a value for 9"1

" in equation (13), we obtain z
x

.

Furthermore, equation (8) gives

n
n - d , . . . , .i

.



l-O

Step 2. We find 9", n=2, 3, ... , N, from equation (13) by using the

values of z ^ obtained.

N
Step 3. We compute x , i = 1, 2, . . . , s, from equation (3).

Step k. One of the following conditions will occur.

a) If x*. < b for all i = l,2, . . . ,s, then we assume a higher

1 NT
value for 9 and reutrn to sten 1. b) If x. > b and x* < b for

i # j, i = 1, 2, . . . ,s,ve assume a smaller value for 9' and

return to step 1. c) If x. > b , k # j and x*. < b. ,

i = 1, 2, , j , , s, i ? k, where j is the active constraint,

then we go to step 5- d) If x = b , and x". < b. , i = 1, 2, . . .Jj 1 l

i # j, that is, the jth constraint reaches its limit while r.cr.e

of the other constraints are violated, we have a candidate fcr the

optimal solution.

Step 5-
T
-'<
Te replace constraint j by constraint k. Accordingly we replace

j by k in equation (13) and steps 1 and 2 and repeat the procedure

given by step 1 through step k.

3. Example

Constraints of a system can be the total weight, the total cost, the

total volume and so on. In general, such constraints are in nonlinear forms,

As the number of units at each stage is increased, it requires the increased

number of connecting equipment , and thus, the cost and weight may increase

exponentially

.

let

n
c = cost per element at the nth stage

,

w = weight per element at the nth stage,

v* = volume per element at the nth stage,

9 = number of elements in parallel at the nth stage.
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Therefore the following nonlinear constraints on the combination of

weight and volume, cost, and weight are considered.

(1) The constraint which is imposed on the combination of weight and volume

is

N N

)_ g (e ) =
I P (9) <_?,

n=l n=l

where p = w v is the product of weight per unit and volume per unit

at the nth stage.

(2) The cost constraint is

I g>
n

) = f c
n

(6
n

+ exp(8
n
/U)) < C s

n=l n=l
n..

where c 9 is the cost of units at the nth stage and c
1

(e) 'is the

additional cost for interconnecting parallel units (U)

.

(3) The weight constraint is

N N

I g°(9
n

) =
I
v
n
9
n

exp(9
n
/U) < W,

n=l n=l

n n
wnere w 9 is the weight of the total units at the nth stage. 'This

is increased by a factor exp(9
4

/U) due to the weight of the inter-

connecting links [hj .

The problem is to maximize the system reliability subject to the above

constraints . State variables of the system are defined as follows

:

x* = x?
-1

+ D
n
(9

n
)

2
, n - 1, 2, ... , N, (1U)

x° = Q,

x? : P,
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x° = x""
1

=
3
(e
n

(e)
9^), .-1. 2 :,-, (15)

x
2

= 0,

N

n n-1 n,a, v6 /U , ,

x_ = x + v 9 (e) , n = 1, 2, . . . , N, (lb)

X3 = 0,

x
3 1

w »

x£ = x*'
1

+ *n{l - (i - R
n

)

9
} , n = 1, 2, . . . , N, (IT)

s° = 0.

The objective function to be maximized is

S = [ ta(l - (1 - R
n

)

e
)

n=l

= ) c.x..,11
1=1

N

where

.--

c. = 0, i = 1, 2, 3,' (19,

*k
m1 '

The Hamiltonian and adjoint variables of the system are

U

H
n

=

i=i
X X

at q-1 n/_n\2^ n
;

n-1 n t an / \8
n
/U\, nr n-1 n r 3

n
-

= z, lx_ + p (8 ) J + z {x + c 9 + le} 1} + z-lx + w 8

n_1 ,n

+ zJ(xJ""
L

+ la{l - (1 - SV };,

n = 1, 2, 3, . . . , ::.
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Z. =
n-1

= z , i = 1, 2, 3, U, (21)
3x.

l

zjj = c
u

= 1 . (22)

From equations (21) and (22), ve obtain

zj = 1, n = 1, 2, . . . , N.

Differentiating equation (20) with respect to 9 and equating to zero,

we obtain

39

_ n n„n n n r. 1 / \8 A>
= 2z.p 9 + z_c [1 + r (e)

J

.n
,n x 9 . ,„ _,n>

+ z w [(e) + - 9 (e)'^ + 1 9
n
(e)

er' /U
) +

- (1-R
'

ta(1-R
'

• <23)

l-(l-R
n

)

9

N
whenever the j-th constraint, represented by x., is active, this has the

effect of fixing its boundary value. Thus

z^
1

= c., i i j . (2k)

Now, if the first constraint is the only one in active, we obtain the fol-

lowing relations from equations (2^), (21), and (19).

z. = c. = 0, i = 2, 3,

and

zj =0, n = 1, 2, . . . , M;

i = 2, 3.

Consequently equation (23) can be written as



n run (U ) in J

22i
p 9 = ' —

, (25)

i-(uV

where

U
n

= 1-R
n

Rearranging the terms in equation (25), we have

n

n 1 (uV in f'
, ,.

Z
l ~ n n ~ ' {26)

i-(tr)

and

9
a

= CuVV + iaJy .

2z,P

-.etting

,n in U^
A =

n n n
2z

x
p

equation (27) becomes

8
n

= (uV'V + A
n
),

or

f(e
n

) = e
n

- (u
n

)

en
(e
n

A
n

) = o. (26)

This equation can be solved by Newton's method for 6 .

Similarly, if the second constraint is active and the rest of them

are free, we obtain the following relations.
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z
W

= c. = 0, i = 1, 3,
l l

z
n

= 0, n = 1, 2, . . . , N,
l

i = 1, 3,

''2 C„c [1 + ^(e)
J

= , (29,

i-(u
n

)

9

f
(U

n
)

6
in U

n
>

'2
' :

=
: [

KJ ]

^l) , (30)

n
c "'(I i(e) 6 /U

) 1 - (U°)

ana

(6n ) = (1 + ^(e)
9^) - (a*)

6'
((1 + he)

Qn
' k

) ^) = 0. (3D

This equation is well behaved and Newton's method can be employed to obtain

e
n

.

Similarly, if the third constraint is active and the rest of them are

free we obtain the following relations.

K
z . - c .

= , i=i,2,
l i

z
n

= 0, a > 1, 2, . . . , I,

i = 1, 2,

zy ((e/ce)
9^) -

(^*
n

* rja

,
(32)

i- (a*)
9
*
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(uV in J*)J :

* 5— (

VU
' ^

; , (33)
3

a// -3 /u 1 .a,
x
8* /a> , n 6

v [(e) + t- 9 (e)
J

1 - (IT)

f(6
n

) = (e)
en/U

(1 + £ 8
a

) - (U
11

)

9"
((e)

9^ (1 + I 9
G

) *^ . 0. ( 3U)

This is again a well behaved equation and can be solved by Newton's method.

4. Numerical Results

A five stage problem was solved with the constants given in Table _.

The optimum redundancy obtained is as follows.

9
1

= 2.6000,

9
2

= 2.2816,

9
3

= 2. 0075,

e
k

= 2.6382,

9
5

= 3-3981,

Since 9
n

, n = 1, 2, . . . , 5 , in reality, should be positive integers,

we approximately obtain

9
1

- 3,

e
2 = 2,

38^ = 2,

e
k

s 3,

9
5 _

3.

The number of redundant elements at each stage can be obtained by sub-

tracting one from each of the above figures.



Table 1. Constants assigned for 5 stage problem.
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?r w

1 .60 1

2 .o5 2

3 .90 3

k .6$ 1+

5 .75 2

110 175 200
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From the result we find that the total of the product of weight and

volume is 85 with a slack of 27 units, the cost of the system is 146.12

with a slack of 23.88 units and the weight of the system is 192.48 with

a slack of 7.52 units. This policy results in a system reliability of

0.9045. A numerical simulation indicated that the above result is not

significantly different from the true optimum.

5. Conclusion

A simple and practical computational procedure is presented £

maximizing the reliability of a system under multiple nonlinear con-

straints. An example with three nonlinear constraints is solved in

detail to illurtrate the method. Problems with multiple linear constraints

are special cases of the problems presented here.

The objective function given by equation (4), that is, the logarithm

of the system reliability given by equation (1) , and the functions repre-

senting the constraints given by equation (2) are separable functions.

Therefore, the present method may be applied, in general, to optimization

of problems with separable objective and constraint functions.

In applying the above technique it is assumed that the optimal sequence

of 9 is obtained by using the recurrence relation given by equation (15)

when only the jth constraint is active. In the computational procedure only

the necessary condition for local optimality is used to obtain the candidate

for the optimal solution. Therefore, simulation is involved to assure numeri-

cally the sufficiency of the optimal solution. In spite of this shortcoming the

present method appears to overcome some of the practical limitations of other

methods used to solve this class of problems.
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5.4 5: . UNCONSTRAINED MI.'. TION TECHNIQUE (SUMT) APPLIED TO
OPTIMAL SYSTEM RELIABILITY

1. Introduction

The problems considered in this section are optimization of system re-

liability of a complex system. The optimization method employed is the se-

quential unconstrained minimization technique (SUMT) . This method is con-

sidered as one of the simplest and the most efficient methods for solving the

constrained nonlinear programming problems.

The principle of the sequential unconstrained minimization technique

is a transformation of a constrained minimization problem into a sequence of

unconstrained minimization problems. This transformation enables us to use -.veil

developed unconstrained optimization techniques to solve the constrained prob-

lem without inventing a new technique for such a constrained optimization prob-

lem. The method was first proposed by Carroll in 1959 [1,2] and further developed

by Fiacco and McCormick [5,4,5,6,12]. In 1964, Fiacco and McCormick developed

a general algorithm based on SUMT, and in 1965, they proposed a method which is

called SUMT without parameters. By using this method, the difficulty of choosing

the penalty parameters can be avoided, although some difficulties still

exist. There is a general computer program provided by McCormick, My lander and

Fiacco called "RAC Computer Program Implementing the Sequential 'Jnconstrair.ee

Minimization Technique for Nonlinear Programming," (IBM SHARE number 5139" [12].

In this computer program, the unconstrained minimization technique used is the

second order gradient method.

Difficulties which arise from use of the second order gradient method as a

unconstrained minimization technique in SUMT become predominant in a large size

and/or very complex nonlinear problem. The difficulties arise particularly in

Caking correctly the first order and second order partial derivatives af very

complex nonlinear functions which most practical problems have. Therefore,

a new algorithm which uses a much simpler direct search technique is .
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desirable.

For the above reason, a new technique of implementing SUMT with Hooke

and Jeeves pattern search technique as its unconstrained minimization

process is developed [9,11]. The procedures are presented in [9] in details.

Hooke and Jeeves pattern search technique [7,8] is different from the grad-

ient method in the decision making process used to decide the direction of search

The direction of search in the gradient method is in the steepest decent

direction while that of the Hooke and Jeeves pattern search technique is de-

termined by direct comparison of the values of the objective function at two

points separated from each other for a finite step. For this reason, when the

pattern search is getting close to the boundary of some inequality constraints,

it will frequently go out of the feasible region bounded by inequality con-

straints, and the search might be terminated at some point near the boundary

which might not be the real constrained optimum. A heuristic programming

technique developed by Paviani and Himmelblau [15] is used, which enables one to

make turns at the pattern search near the boundary of constraints. The details

of the method are described and a general FORTRAN- IV program together with

detailed computer diagrams is presented in [9]

.

The optimization of the complex system reliability by using RAC SUMT compute?

program has been carried out in [11,4], and by using LAI SUMT computer program

in [9,11]. In this section, the same complex system problems but an improved

cost function [15] for each component have been solved by using LAI SUMT pro-

gram.

2. Formulation of the Problem

A system whose redundant units are not in a purely series configuration

is considerably more difficult to optimize. One such example is shown in

Fig. 1. In the system, unit 1 is backed up by a parallel unit 4. There
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m out

Fig. 1 A schamatic diagram of a complex system
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are two equal paths, each of which has unit 2 in series with the stage

formed by units 1 and 4. These two equal paths operate in parallel so that

if at least one of them is good the output is assured. However, because

unit 2 does not have a high degree of reliability, a third unit, unit 3,

is inserted into the circuit. Therefore, the following operations are

possible: 2-1, 2-4, 3-1, and 3-4, and each operation has two equal paths.

In attempting to optimize the reliability of a system with such a

configuration, a major difficulty is encountered in that the reliability

expression is not a separable function and thus cannot be analyzed as a

multistage process. Hence a different approach is used to solve this type

of the problem where the reliability is obtained by Bayes ' theorem, which

utilizes conditional probabilities [16] . With this in mind a formula

for the nonlinear system reliability, subject to some constraints is formu-

lated. A nonlinear programming problem of optimizing the system reliability

based on the model is then solved by the SUMT. This method appears to be

one of the more efficient methods of solving constrained nonlinear optimi-

zation problems.

SYSTEM RELIABILITY USING CONDITONAL PROBABILITIES

In a complex system where the redundant units are not in a purely

parallel or series configuration the reliability can be evaluated by using

Bayes' theorem of conditional probabilities.

In solving this problem, a simplified form of Bayes' probability

thereom is used. The theorem states that if A is an event that depends on

one or two mutually exclusive events B. and B. of which one must necessarily
l i

occur, then the probability of the occurrence of A is given by

PCA] =P(A, given B
j>

) P(B^ + P(A, given B )-P(B ) (1)
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Let Q represent the probability of system failure, R, the probability

that component K is good, and Q the probability that component K is bad.

Then we obtain the following expression for system unreliability,

Q = Q (given K is good)-R + Q (given K is bad) -Q (2)

The corresponding system reliability R is

R
s

= 1 - Q
s> C 3)

To obtain the reliability of the system presented in Fig. 1 we select

component 3 as the key component in (2), denoted by K. Thus we have the

expression for system unreliability

Q = Q (if 3 is good)-R„ + Q (if 3 is bad)-Q. (4)
3 S OS J

If component 3 is good, the system can fail if the stage formed by units 1

and 4 fails. Thus, the system's unreliability, given that unit 3 is good,

is

Q,(if 3 is good) = [(1 - R
x

) (1 - R
4
)]

2
(5)

'

If, on the other hand, unit 3 is bad the system's unreliabi lit;.' is

Q
s

(if 3 is bad) = {1 - R
2
[l - (1 - R

x
) (1 - R

4
)]}

2
( 6 )

From (4) the unreliability of the system is

Q
s

= [d - \) (1 - R
4
)]

2
-*

5

* 11 - R
2
[l - (1 - R

x
) (1 - R

4
)]}

2
-(1 - R

5
)

The assumption is made that the reliability of the components are indepen-

dent of each other. That is, for example, the reliability of component

4 would not be affected by the failure of component 1. The system reliabilit

is then given by (5)

.
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3. Computational Procedures of SUMT

The general nonlinear programming problem with nonlinear inequality

and/or equality constraints is to choose x to

minimize f(x) (8)

subject to

g. (x) > 0, i = 1, . . . , m;

h (x) = 0, j = 1, ..., I.

The SUMT technique for solving (3) is based on minimizing the function

m -- I

P(x, r ) = f(x) * r I [g (x)] + r "
£ h (x) (9)

u u .

=1
i u .

=1 J

over a strictly monotnic decreasing sequence {r }. P(x, r ) is minimized

with resuect to xfr ) for a given value of r . The sequence of values of
u u n

{P(x,r )} converges to the constrained optimum value of the original objective

function, f (x) , as {r } -* 0. The essential requirement is the convexity of

the P-function. Mathematical proof of the convergence of the method is given

m [6].

The new algorithm for implementing SUMT by the Hooke and Jeeves pattern

search and heuristic programming is summarized below [9,11].

Step 1 Select a starting point x , the initial value of the penalty co-

efficient r , the initial tolerance limit of the violation to constraints B
,

and the initial step-sizes d needed in the searches.

Step 2 Go to step (5) if x is feasible (viz., inside the region bounded

by the inequality constraints) . Otherwise select a feasible starting point

by minimizing the total weight of violation. The total weight of violation,

TGH, is defined by

2^2.0 r 9

(TGH^ =
I g (x ) + I hl(x )

teT seb
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where T (t|g (x ) < 0} , S i (s j h (x ) = 0} . TGH includes only the violated

constraints

.

Step 5 Minimize P in (9) by the Hooke and Jeeves pattern search technique.

Check after every move: if the move goes outside the feasible region, go to

step 4; otherwise, after x is reached for the current r , go the step 5.

Step 4 Move back to the near-feasible region and then return to step 5.

The near-feasible region is defined as the region where all points satisfy

the condition: TGH < B, where B is the tolerance limit of violation; B is

sequentially decreased after every violation to the inequality constraints.

Step 5 Check if the x* obtained in step 3 is feasible. If x T is feasible,

go the step 7; otherwise go to step 6.

Step 6 Move x* (in the infeasible region) hack into the feasible region

along the direction toward the last optimum point; then go to step 7.

Step 7 Check if a stopping criterion such as

f(x ) -1 < e (10)

G(x*,r )

is satisfied. The solution is the optimal one if the criterion is satisfied;

otherwise, go to step 8. G(x,r ) in (9) is defined as [1]

.

m -1/2 I -

G(x,r
u

) = f(x) - r
u J

[g.(x)]
_i

+ r
u £ h (x) (11)

i=

1

j = 1

Step (8) Set u - u + 1; r ,
•«- r /Z. where Z is a constant greater than 1:r u+1 u

and d «- d /(u + 1). Return to step 3.

The flow diagram of 5UMT with Hooke and Jeeves pattern search technique

is shown in Fig. 2. The detailed discussions about "procedure for selecting

a feasible starting point from the infeasible initial point", "Computational

procedure for minimizing P(x,r.) function by the Hooke and Jee 1

- Ttcrn

search", "procedure for moving an infeasible point into the feasi r -^.ear-

feasible region bounded by inequality constraints", and "Procedure for moving
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C START )

if a move is

out of fecsible

region
t
move bccK

into near-feasible

region

.

1

Select nitial

starting pant

Select a feasible

stcrtrng point

Minimize P(x , r )

dy Hocke a Jeeves

Pattern Search.

Fig. 2. Descriptive flow diagram for SUMT with Hcoke

and Jeeves Pattern Search.
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the near-feasible k-th sub-optimum into the feasible region" are all referenced

in Lai [11] .

4. Numerical Examples

Example 1

The problem of maximizing the reliability of the complex system given in

Fig. 1, and which is subject to a single constraint can be stated as follows

by using (3) and (7)

.

Maximize the system reliability

R = 1 - Q
s ^s

= 1 - R
3
[(l - R^Cl - R

4
)]

2

-(1 - R
3
){1 - R

2
[l - (1 - R

x
)(l - R

4
)]}

2
(12)

subject to

C = )" C. : C, (15)
S h l — ' ^ '

1

R. > R.
i — i,mm.

where
a.

C. = K.R.
1

l li (14)

The constraint given by (13) can be interpreted as follows. C. can represent

the weight, cost, or volume of each unit or component of the system, and the

total weight, cost, or volume of the system must be less than C. The weight,

cost, or volume of each unit or component of the system is a function of

reliability that can be expressed by (14) where K. is a proportionality con-

stant and a. the exponential factor that related C. and the reliability. That

is, K. is the weight, cost, or volume of the comuonent when R = 1 and K.R.' is
l

3 r li

the reduced cost, weight, or volume when R. < 1. Usual'.;-' .. Is less than one.
l l

The following values are assigned to the constant- K . K-, K_, and K , t
X — 3 —
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constraint C and the exponential constant a., 1 = 1,2,5,4.

K = 100, K
?

= 100, K
3

e 200, !<

4
= 150,

C = 800, a. = 0.6, i = 1,2,5,4.

The problem is formulated in SUMT format as follows.

Minimize

f(x) = -R
s

3-1 + R
3
.[a - R^a - r

4
)]

2
+ ci - r

3
)

f {1 - R
2
[l -.(1 - (1 - R

x
) (1 - R

4
)]}

2

subject to the constraints
,-y

CI. CL CL

§1
(x) 5 C - C2K

1
R
1

1
+ 2K

2
R
2

2
+ K_R,

J
* 2^/) >_

g.
+1

(x) = (1 - R.) >_ 0, i = 1,2,5,4

g. _(x) = R. - R. > i = 1,2,5,4.
°i+/ ;

l i,min —

The P function of (9) is

P(x,r
k

)
= -1 + R

3
[(l - R

x
)(l - R

4 )]
2

+ (1 - R
3
){1 - R,[l - (1 - R^ (1 - R

4
)]}

2

+ r.
1

4

+ T
1 1

+

1 2 5 4 i= 1 ^

C - (2K/ + 2K R ~ + K,R/ + 2K.R. )

1 11 jj 44
1 - R. R. - R.

i ,m;

The optimal solutions obtained from two sets of different starting com-

ponents reliabilities, namely, [R , R_ , R_ , R ] = [0.7, 0.7, 0.7, 0.7] and

[R, , R
7

, R
3

, R J
= [0.6, 0.6, 0.6, 0.6], are presented in Table 1 together

with the corresponding results obtained by RAC program [12]. The solutions

are almost identical, that is, the optimal system reliability, R , of 0.999998

with the cost of "99. "55 for the first set of starting components reliabilities,

and the ODtimal svstem reliability, R , of 0.9999

9

~ with the cost of 799.908
s

for the second set of starting components reliabilities are obtained. Recall
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that the constraint on the cost is 800. The optimal components reliabilities

are almost the same for the both starting sets of the starting points. The

stopping criterion for terminating the minimization of the P function at

each k iteration is that terminating when the number of cut-down step-size

operations in the Hooke and Jeeves pattern search is 3, and the final stopping

-4
criterion for terminating the problem is z = 10 . For the first set of

starting points, it takes 12 iterations for P functions, k = 12, with totally

1192 f- functional values evaluated. And for the second set, 12 iterations

for P functions, K = 12, with totally 1194 f-functional values evaluated.

Tables 2a and 2b present the iteration results converging to the optimal

solution. Results given in these tables show that the system reliability,

R,, is monotonically increasing as iteration k increases. The value of P

function approaches to that of f function ( = -R ) as the iteration proceeds.

Thus the minimization of P function will eventually lead us to the minimization

of f function.

The values of r used in Tables 2a and 2b are determined by

ffx ) = t y —\—1 J r
[

g.(x ) (15)

where x is the initial point. The basis for this selection procedure is to

render the value of the penalty of the constraints to be approximately the

same order of magnitude as the value of the f-function at the starting point

in the P- function formulation

P(x r
Q

) = f(x ) r I
-1

i °i

Examole 2

This example is to find the optimal component n

minimize the cost of the system, i.e., [15],

Minimize

C = ; K. [tan(— R.)
s .

-' i 2 l
i=l

II
x



167

oo
SO

CO M flO O*
ON f"* u-n ^
CM -J CM ON

<•> m »o c
co !/n r— on
•-O c

—

t

—

r

—

X)
o\

Os
in
cc

m
cm »-n

o
co
a

M CO
O

-o o O r> ON 0\
5> jn _*s -v Os > Os

r— m o CM (M
sO Os _r rn o

CM CO J cm -« OS
NO -J c -^ •o —
CO cm p- •_> r»» 0\
(13 On os ON ON us

On XI CO o\ Js
T) Os ON ON ON

ON ON ON os
On 7s o> Os 'j\
ON » Os Os C*\

3

a.

NO

o

3

o

3

I NO
NO

J
>

i

NO

o

CO
CO
CO

no

cm

CN
ON

NO
CO
o< ON

o

o
m;
ON
t—
ON
ON

o -< <a

ON
ON
ON

O
9S
ON
ON

CO
ON
ON
ON

ON
ON
On

'S l?s r— r~*

J\ On Q f»1

o o to -J 'I - •\
~

o o o CM ^ * »N

CM On ;-— — O _^ f«—

vO :
— a; X) On ON ON

o o o o o O o o

=0
os ON

o

CO
ON
ON
t>
ON

03
NO

o>
CO

.J ON o
O CM '—
ONI r-

sO

•ON

S>
o

CO r— CM <n ,_< o NO
tr> O l/N on ^3

yN o -r *— CM ."Nj l/> j-> —

<

rsi <o
r— sS\ CO o CM t— rn rc t— u^ rN CM
•—

'

t— O m C\l O _> CO CO CO Ti
1 NO NO NO t— t— t— c— NO NO NO -O -o NO

o o o o o Q O *~ O c o <o o

o n> =o _ CO r~ ~- o c
^N -j- -» (*\ ;>} j i Ci cs ex

v— ' J o CM ,"— t— .-n r^ 3 Q /> .-\

1.N o "
. -1 r- o uN O -» f»N 'Al Ol

CO NO _• e* >o •-> *-< .-i ~>
~ o o

-o J~> ~o c— r- r— t— '- r - S*- r— t— ."-

o o o o o O o o O o o o o

.-\ _J vTN J >- fl o "j r—
c o o CM f - •~* p- , 1 .

,- —

«

JN o 3 .
'

. o _) ;u C\l -N :
- U3

-H C\ c— H ,^ SO T3 cc Os Os ffi 7s
3 C— c*- X) ON 0> o. Os > OS ON Os 0\

3 O o o o o o o o C o o o

ON

o O o
. H

O
H

°
H - £ ^H H

o

X < • N X X X X < X ** .< X v;

.-I

'NJ

—I

CM »*s
X -N

•U •NJ
'-3 O

p «

fS i
\ ^

-_

7S

CM CM j^ H m CO ^J u> H m CO CM jn

3



,3
o
u

>.

to

o 4*-, o r > OJ OJ r— u~. cm ,»•( cO en
CO J-s r— -."7 >• "1 m o <\j SO mJ

u
o

SO "H !
~l UJ •' ' s£ >o >o (') >n u-\ ir\ r-

so u-> 1*1 O f - >Xl Cs 7s Os Os as Os asu Oj Cs u> Os PS (*! OS '.-s os cs -^ c*s 'JS
r— so t— t— t— C*" r— c*- t— t— t— t—

a.
i

U-S co CO Os t— r- as r~* U"S sG -» CO
rH r— t— o CM r* as «-H so rO as as

3 O SO SO _-s Os CM so as as as a\ as
r so CM cm s^ SO t£> o as a» c\ as Oss m as OS Os Os as as as as as as as
rs as On Os '-' Os o\ Os Cs On u\ 0\ OS

o
o
o
>o

o

o J- -3- -— as J\ m m en
u*\ cv vSJ n ;-- ro M? \o SO
^V r— q SO OD Cs) f— CSJ

vo <r» rH ^-» j

.

i' > o en SO
>— to r— o JO as as ON

CO U} O 3- On Os as as as

o O o o O o o o o

r— OS o on m Os u-s _i _j CO m m
o o !— Qi ./\ CO as m Os u-s CO as

h m r-4 r— ro r— _j CSJ p» CO OS Os Os
3 SO SO :— CO _" r— Os as as as Os as
H CM o SO o as Os Cs Cs Os Os as R1— ON Os as as Os as Os Os as Os

f» SO (— vs Os OS o CO
CM O u~> so SO -=r u-s

ao CM o CO u"\ O so asO SO u-s CM CO j— vs —7
j^i m —

i

O Cs as OS as
t— r— r— ;

—

SO SO M3 so

SO
W I

so
;

£ i

as
,

ou

o
c
EH

o

ej

>

3 C
rH +» O
S3 IS —
> *J

Jl H O
U cj a)-

1

O V
Eh

J m m -? u-s u-s SO SO !^ CO CO Os

o o o O O O o o o o
1—1

o
—<

o

X X X X X X X X X X X X

CO
CO J

CO
Cs

S-O

X3
Os

J-
so
SO

a
Os
o

Os
CM
C—

CM
CM
CO

SO
O
1—

J
SO
CM

s

so i~t

o -J Os CO so CM \S\ _ff CO Os Os
o SO-

rH
fs. CM CO rH

rH
Os sO sj so



169

subject to the constraints

^.min.^ 1 " V (1 " V (1
'

R4^
2

" CI - V (1
" M 1 "d " V fl " R4^

R. < R. < 1.0
i,min.— 1

—

The numerical values of parameters are

K, = 25. ,K- = 25. ,K, = 50. ,K, = 57.5
1 i. J 4

R. =0.50, a. = 1.0, for i =1,2,5,4.
i,mm. l

R =0.99
s ,min.

The cost function suggested in (16) satisfies the following basic require-

ments, especially when the reliability of each component, R. , is greater than
i

0.50.

1. Cost of a low reliability component is very low.

2. Cost of a high reliability component is very high

5. Cost is a monotone increasing function of reliability.

4. Derivative of cost (with respect to reliability) is a monotone

increasing function of reliability.

The problem is formulated in SUMT format as follows:

Minimize

f(x) = C

4 a.

= y K [tanCjR )]
x

i = l

subject to

§1
(x) = l - R

3
[(l - R^Cl - R

4 )]
2

- (l - R
3
){1 - R

2
[l -Cl - R^Cl - R

4 ) J}

-R >
x,mm. —

g. . = R. - R. , min. > ,i=l ,2,3,43
i + l 11 -

g. . = 1 .0 - R. > ,i=l,2,3,4&i+5 i
- '



1 /u

The P function for this problem is

P(x,r
k

) - f(x) + r
k I l/g

i
(x)

1

-
= £ K.[tanCf R.)]

l
* r. —

i = l
l

1 R
3
[(l - R )(1 - R

4
)]- -(1 - R

3
J

{1 - R
2
[l -(1 - RlKl- R

4
)]}

2
- R

1 = 1 ^ ^min

4

IL
- 1

1.0 - R
i = i i

where x is the row vector of (R
1 , R_, R~, R.).
i 1 J 4

For this problem, the R,\C program fails to satisfy the special require-

ment that the violable non-negativity constraints should never be violated

during the search. The results obtained by applying the new developed pro-

gram are presented in Tables 5, 4a and 4b.

The optimal solutions obtained from two sets of different starting

components reliabilities, namely, [R , R n , R-, R ] = [0.6, 0.6, 0.6, 0.6]

and [R , R 9 , R„, R.l = [0.5, 0.5, 0.5, 0.5] are presented in Table 5. The

solutions are almost identical, that is, the optimal minimum cost, C, of

594.306 with the system reliability, R , of 0.990511 for the first set of
s

starting components reliabilities, and the optimal minimum cost, C, of

597.879 with the system reliability, R , of 0.990406 for the second set of

starting components reliabilities are obtained. Recall that the constraint

on the system reliability is 0.99. The optimal components reliabilities are

almost the same for both starting sets. The stopping criterion for ter-

minating minimization of the P function at each iteration is that terminating

when the number of cut-down step-size operations is 4. And the final stopping

_ -,

criterion for terminating the problem is e - 10 For the first set of

starting points, it takes 10 iterations for P functions, k = 10, with total.
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1155 f- functional values calculated, and for the second set, 11 iterations

for P functions, k = 11, with totally 2124 f- functional values calculated.

Results given in Tables 4a and 4b show that the cost of the system, C,

is monotonically decreasing as iteration k increases. The value of the

p function approaches to that of the f function (=C) as the iteration

proceeds. Thus the minimization of the P function will eventually lead

us to the minimization of f function.

Again, the values of r
n

are determined from eg. (15) as explained in

Example 1.

It is worth noting that the starting points R = [R
n , R.,, R~ , R,l =a = I
1 2 J 4

[0.6, 0.6, 0.6, 0.6] and R = [R , R , R,, R
4

]
= [0.5, 0.5, 0.5, 0.5] in

Table 4a and Table 4b are in infeasible region. The system reliability

given by R = [0.6, 0.6, 0.6, 0.6] is 0.8862 and by R = [0.5, 0.5, 0.5, 0.5]

is 0.7997, both of which are less than R , of 0.99. Therefore, before
s ,mm.

the P-function minimization routine is started, a new feasible point is

searched first. Trie point [0.88, 0.88, 0.S8, 0.88] in the second row of

Table 4a is thus selected and is used as the feasible starting point to start

the minimization procedure. Also, the point [0.82, 0.82, 0.80, 0.80] is selected

and used as feasible starting point for Table 4b.



Example 3

To demonstrate the technique, the five-stage reliability problem is

solved. The problem is

Maximize

5 x.

j-i

r„ = n [i - (i - r.) J
]

subject to

9

P

g 9
= n c (x + exp (x /4)) : C

j=l J J J

5

g, = y w.x. exo (x./4) < W

where x. 1, j=l, 2, ..., 5, are integers.

The constants associated with the five-stage problem are

i R. d. P c. C w.

1 0.S0 1 7 7

2 0.85 2 7 8

3 0.90 3 110 5 175 3 200

X 0.65 4 9 6

3 0.75 2 4 9

The problem is formulated in SUMT format as follows:

Minimize

: = f(x) = -r
s

5 x.

= - n [l - (i - r.) J
]

j=l



1 /b

subject to

g;
= p - I Pi cxj i o

j=i j j

g' = C - y c. (x. + exp (x./4)) >
2

j=l J J 3 "

5

a' = W - ) w.x. exp (x./4) >
3

j=l J J J ~

,.

+3
= x. -1>0 , j=l,2,

g9

fhe P function for this problem is

P(x, Y
k

) = f(x) + y, I
- (x)

i=l °i

5 x
3n [i - (i - R) '] + yk [ g

J
=1 "

D _ Y

1

I P-(xJ .

1 = 1 3 3

5 5

C - } c. Cx. + exp (x./4)) W - / w.x. exp fx /4)

j=l ^
-

J " J >! J J 3

5

x. - 1 3 + 1
J

]= l 3

where x is the row vector of fx, , x_, x_, x,, x_) , each of the components
1 I j 4 D

are assumed continuous variables.

The optimal solutions obtained from the starting components used at

each stage, namely, (x, , x x , x x.) = (2, 2, 2, 2, 3), are presented

in Table 5. The stopping criterion for terminating the minimization of the

P function at each k iteration is when the number of cut-
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down step-size operations in the Hooke and Jeeves pattern search is 4, and

the final stopping criterion for terminating the problem is e = 10

As shown in Table 5 it takes 8 iterations for P functions, k = 8, with

totally 1600 f-functional values evaluated. The table also shows

that the svstem reliability, R , monotonically increases after
s

iteration 2 as iteration k increases. The value of P function approaches

to that of f function (-R ) as the iteration proceeds. Thus the minimization

of P function will eventually lead us to the minimization of f function.

Again, the values of r are determined from eq . (15) as explained

in Example 1.

The five-stage reliability problem solved by Lai's SUMT gives the optimal

system configuration, (x , X , x , x,, x_) = (2.691, 2.523, 2.047, 3.521,

2.809). The system reliability with this configuration is 0.9229. However,

all x., j=l, 2, ..., 5, should be positive integers, therefore the rounding

off procedure to the nearest integers is required. Two possible rounding

off results may exist, namely,

(A) (x
x

, x n , x,, x
4

, x
5

) - (5, 2, 2, 4, 5), and

(B) (x 1?
x
?

, x,, x
4

, x_) = (5, 2, 2, 5, 5).

Configuration (A) gives higher system reliability than (3) (because

of one more redundancy used at stage 4) ; but configuration (A) consumes ill

of g . which is greater than the available resource, 110. Therefore (A) is

not desirable. Under the configuration (B) , we calculate R = 0.9045,

gj = 35, g„ = 146.1 and g = 194.5. Configuration (B) is the optimal

components used at each stage.
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3.3 GENERALIZED REDUCED GRADIENT METHOD (GRG) APPLIED TO OPTIMUM SYSTEM RELIABILITY

1. Introduction

The Generalized Reduced Gradient Method (GRG) was proposed by Abadie and

Carpentier [1,2]. The method is a generalization of the Kolfe reduced gradient

method [8,9], which solves problems having a nonlinear objective function and

linear equality constraints. It classifies the variables as dependent and

independent ones, and substitutes into the objective function the expressions

obtained from the linear equality constraints for the dependent variables, in

terms of the independent variables. Thus the original problem reduces to an

unconstrained one with reduced dimension. A variety of optimization techniques

may now be used. Applying the same concept to a problem with a set of non-

linear constraints, complications may be added, but it is possible by using

numerical methods to obtain the solution.

The GRG has been studied extensively and coded in FORTRAN by Abadie [3],

Abadie and Guigou [4], and Guigou [5,6]. Three generations of programs, namely,

GRG 66, GRG 69, and GREG, have been developed. The improved code, GREG, is

the outgrowth of the first two codes and promises to remain among the highly re-

garded nonlinear programming procedures.

The algorithm of the generalized reduced gradient method is presented in

Appendix.

2. Numerical Examples

Example 1

The problem of maximizing the reliability of the complex system, given in

Fig. 1 and which is subject to a single constraint, can be stated as follows

(see Example 1 in the SUMT section) : [7]

Maximize
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mo oui

Fig. 1 A schamatic diagram of a complex system
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R =1-0
s

x
s

=• 1 - R
3
[(l - R

:
) (1 - R

4
)]

2
- (1 - R,) {1 - R

2
[l - (1 - R

x
) (1 - R

4
)]}

2

subject to

4

c = y c. < c
3

tii
1_

R. < R. < 1.0
l ,min — i

—

where
a.

c. =» K. [tan (y R.)]
X

, 1=1,2,3,4 [10]

The numerical values of parameters are

k
1
=2S, k

2
=25, k

3
=50

> k
4
=37.5,

R. = 0.50, a. = 1.0, for i=l,2,3,4i,mm i ' '
'

C = 800.

We now apply the GREG computer code to solve this example. This problem

will be reformulated to

Maximize

f
Q
(x) - 1 - R

3
[Cl-iy (l - R

4 )]
2

- (i - R
3] (1 - R

2
[i - (i - R

x
3 (1 - R

4)]>
2

subject to

4 a.

t\W = I M tan fi RJ] " 300 <.0
1

i=l
c L

R. m - < R. < 1.0 , i=l,2,3,4i,mm — i
—

Then, four external, user-supplied subroutines will be used in which PH1X defines

the objective function, CPHI defines the constraint functions, JACOB defines the

gradient of the constraint functions, and GRADF1 defines the gradient of the ob-

jective function.

By starting with the initial point of [R R R , R ] = [0.52, 0.52, 0.52, 0.52],
1 2 3 4
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the solutions are determined to be

[R , R , R
3

, R
4
]* = [0.902968, 0.948525, 0.813532, 0.351429]

with the maximum system reliability, R , of 0.9990396 and total consumed cost of

799.949076. By starting with the initial point of [R , R , R^, R ] = [0.60, 0.60,

»

0.60, 0.60], the solutions are determined to be [R , R-, R-, R ] = [0.896629,

0.949567, 0.830751, 0.842901] with the maximum system reliability, R of 0.9990471

and total consumed cost of 799.999023.

Example 2

The numerical example of Example 1 is restated below. The objective

is to find the optimal R.'s which minimize the system cost [10]

4
x

a!

C = T K. [tan (~ R.)]
x

subject to the constraints

i.min ^ J " R
3

t(1 " V (1 " R
4

J 1 " C1 " R
33

{1 ' R
2
[1 ' C1 " V C1 v>

}i

R. . < R. < 1.0 , i=l,2,3,4
i,min — i — * ' ' '

The numerical values of parameters are

k = 25, 1^2= 25, k
3
= 50, k

4
= 37.5

R. . = 0.50, a. = 1.0, for i=l,2,3,4
l.min i

' » » »

R = 0.99
s, min

The problem should also be reformulated as

Maximize

4 a.

f w = " I k
i

I tan (j R
i
) l

i=l * z x

subject to
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fj(x) = -0.01 R
3
[(l - Rj) (1 - R

4
)]

2
(1 - R

3
){1 - R

2
[l - (1 - Rj)

(i - R
4
)]>

2

R. . < R. < 1.0 , i=l,2,3,4
l.min. — i

— ' '

Also, four external user-supplied subroutines, namely, PHIX, CPHI, JACOB, and

GRADFI, will be used. By starting with the initial point of [R , R , R... R.]

* _

[0.52, 0.52, 0.52, 0.52], the solutions are determined to be [R , R , R,, R.]

[0.827672, 0.8917S7, 0.634234, 0.732349] with the minimum total cost of 596.85345 and

the system reliability of 0.9904930. By starting with the initial point of [R , R R
,

*

R ] = [0.60, 0.60, 0.60, 0.60], the solutions are determined to be [R , R-, R , R ] *

[0.829047, 0.892711, 0.63S432, 0.754509] with the minimum total cost of 400.79110

and the system reliability of 0.9907858.

Example 3

To demonstrate the technique of GRG, the five-stage reliability problem is

solved. The problem is

Maximize
5 x.

R = n [1 - (1 - R.J 3
)

5
j-1 J

subject to

5

j
= l 3 J

g =
I c (x expCx /4)) <_C

* j=l J J J

5

g^ - y w.x. exp (x./4) < W
j=l J J J "
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where x. >_ 1, j=l,2,...,5, are integers.

The constants associated with the five stage prohlem are

j R.
J

P
J

1 0.80 1

2 0.85 2

3 0.90 3

4 0.65 4

5 0.75 2

P c. C w. W
J J

7 7

7 8

110 5 175 8 200

9 6

4 9

It is noted that, in optimizing the system reliability, the decision variables,

namely, the number of components used at each stage, are considered as continuous

variables. The nearest integer numbers are assigned to them eventually.

We now apply the GREG computer code to solve this problem. The example will

be reformulated as

Maximize
5 x.

f (x) = I in [1 - (1 - R )
J

]

j=l '

subject to

- P 2
fiM = I p. • x. - 110 <

j-1 J J

5

f,(x) = I c.Cx. + exp (x./4)) - 175 <

j
=1 J J J

5

f T (x) = J w. • x. exp (x./4) - 200 <

Then, four external, user-supplied subroutines will be used in which PHIX defines

the objective function, CPHI defines the constraint functions, JACOB defines the

gradient of the constraint functions, and GRADFI defines the gradient of the

objective function.
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The five-stage reliability problem solved by GREG program gives the optimal

system configuration, (x , x~ , x_, x., x^) = (2.678, 2.353, 2.070, 3.531, 2.792).

The system reliability with this configuration is 0.9235. Since all x., j=l,2,...,5,

should be positive integers, the above results should be rounded off to the

nearest integer as

(A). (x^ x
2

, x,, x
4

, x
5

) = (3, 2, 2, 4, 3), or

(B). (x^ x
2

, x , x
4

, x
5

) = (3, 2, 2, 3, 3)

Configuration (A), although will result in a higher system reliability,

consumes 111 of g which is greater than the available resource, 110. Configuration

(B) gives system reliability, R , 0.9045 and consumes g = 83, g2
= 146.1, and g =

194.5. Therefore, configuration (B) shows the optimal results.
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5.6 METHOD OF LAGRANGE MULTIPLIERS AND THE KUHN-TUCKER CONDITIONS IN

OPTIMAL SYSTEM RELIABILITY

1. Introduction

The general nonlinear programming problem can be solved by the method

of Lagrange multipliers when the problem has characteristics that (1) no

inequalities appear in the constraints, (2) no non-negativity or

discreteness restrictions are imposed on the variables, (3) the number of

equality constraints is less than the number of variables, and (4) the

objective and constraint functions are continuous and posses partial

derivatives at least through second order. The necessary and sufficient

conditions are developed from Taylor's series expansion.

The method of Lagrange multipliers can be generalized to handle

problems involving inequality constraints and non-negative variables.

The necessary conditions for optimizing the problems are the so called

Kuhn-Tucker conditions. These necessary conditions are also sufficient

for a global minimum, if the objective function is a convex function

and the constraints form a convex set of a feasible region, and for a

global maximum if the objective function is a concave function and

the constraints form a convex set of a feasible region.

Wolfe (1959) introduced, based on the Kuhn-Tucker conditions , the

modified simplex method for quadratic programming problems which is widely

used and is simple to apply. Many authors have derived the necessary

and sufficient conditions for different cases of nonlinear programming

problem form the Kuhn-Tucker conditions. For details, see [6].

Several papers have presented the application of method of Lagrange

multipliers and the Kuhn-Tucker conditions to the following system

reliability optimization problems:
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Example 1 Single Constraint Problem

Given a system reliability requirement R , the problem is tos,mm r

determine a least-cost allocation of an N'-stage series system that yields

R > R . . The example is from Kettelle [19621. As an example, consider
s — s,mm r L J

the following four-stage system with a system reliability requirement of

R =0.99 and total cost less than b, = 61:s,mm 1

Stage, j 4 3 2 1

C. 1.2 2.5 5.4 4.5
J

R. 0.8 0.7 0.75 0.85
J

The problem is

Maximize
N x.

r = n [i - (i - r.) ]
]

s
j= i J

subject to

N

g, = J c.x. < b
1

jii 3 J - !

and

R > R
s — s ,min

Example 2 Two Linear Constraints Problem

Consider an example of a series system of four stages. The component

reliability, cost, and weight data are:

Stage, j

Component reliability, R. 0.30
J

Cost, c.
J

Weight, w.
J

The system cost and weight are 56 and 120. respectively.

1 2 5 4

0.30 0.70 0.75 0.35

1.2
-* -
- . o 5.4 4.5

5 4 3 7
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The problem is

Maximize

4 x.

r = n [l - (i - r.) J
]

S J
1 = 1

J

subject to

4

g, = y c.x. < 56
1 .-. j j

-
j = i

g = ) w.x. < 120

3 = 1

where x. > 1, j = 1, 2, 3, 4, are integers.

A simple Lagrange multiplier method may be used to solve a single

constraint problem, e.g., Example 1. In this approach, the attempts

employ a trial and error approach until all resouces are consumed, and

assume that the degree of redundancy is continuous even though it must

be discrete. However, it is very difficult to use Lagrange multipliers

with multiple constraints, e.g., Example 2. To solve Example 2, the

Kuhn-Tucker condition will be used to generate a set of simultaneous

equations which can be solved by Newton's method. The solution obtains

unique value of the Lagrange multipliers. Theoretically, a nonlinear

constraint problem can also be solved by the Lagrange multiplier method

and the Kuhn-Tucker conditions.

2. Lagrange Multiplier Method for Single Constraint Problem

Example 1

Example 1 in the Introduction section is considered. For this

single constraint problem, one Lagrange multiplier, A, should be intro-

duced to form an unconstrained maximum of the new function
N

L(x) = R - X I c.x. (1)



193

This solution is a solution to that constrained maximization problem where

constraints are, in fact, the amount of the resource expended in achieving

the unconstrained solution. In general, different choices of the '

s

lead to different resource levels, and it may be necessary to adjust them

by trial and error to achieve the maximum allowable resource, b . Therefore,

the adjustment of the X's is required [4].

Since that maximization of the logarithm of the system reliability

maximizes the objective function, we take our payoff to be the log of

the reliability

H = in R
s

N x

I In [1 - (I - RJ J]
C2)

3=1

For a given \, the Lagrange multiplier function will be formed as

N x . N

L(x) =
I tn[l - (1 - R )

J
]

- X I ex 3

j=i ] j=i 3 ]

over the integers x. 1. j = i,2,...,N.

Eq. (3) can be maximized by differentiation with respect to x. and

equating to zero to obtain the optimal x. , then rounding off the values

to the nearest integers. Namely,

dL(x)
-ciir-

= ° C4)

or
x

.

-(1 - R.) J in(l - R.)
l j7~—'— " vC .

= (C^i

[1 - (1 - s.)'
x
-'] '

.

C5)

leads to the solution (real) for x.:
J

ln{l/[l - ,cn(l - R.)/\c.] } (6)

x. = ~: '

—

J Infl - R.")
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which is applied to each stage. The rounding off procedures to x
.

,

j = 1 , 2 , 5 , 4 , to upper and lower nearest integers are tested to determine

which maximizes the R , and the pavoffs and costs summed to Droduce an
s

optimum solution.

Referring to Example 1, application of the Lagrange multiplier method

as previously developed for a series of values of \ produces the solutions

shown in Table 1. Inspection of the results shows that in all but one

case the changes in allocation from one solution to the next consists of

at most one additional component in at most one stage. Therefore

the reliability and cost are monotonic increasing with the number of

components used and there is no a which could produce new solutions between these

solutions. However, the transition from \ = 0.0003 to 0.0002 produced

a change in three stages, and we can expect further solutions in this

interval for intermediate \ values. Additional exploration of this

region yields two more solutions, as given in Table 2.

Since there are no longer any changes by more than one component

between successive solutions, the optimal allocation is [x ,x_,x»,x.,]* =

[5,7,6,4] with system reliability, R = 1 - 0.001288 = 0.998712, and

4

cost '• c.x. = 60.5, which is the same result obtained bv the dynamic
1=1 - -

programming approach.



Table 1

Cost System unreliability Allocation

Stage 1 Stage 2 Stage 5 Stage 4

0.0009 -14.6 0.009997 5 4 5

0.0008 48.0 0.007086 5 5 5 5

0.0007 50.5 0.005592
—

6 5 5

0.0C06 54.3 0.002550 5 6 5 4

0.0005 54.3 0.002550 5 6 5 4

0.0004 54.3 0.002550 5 6 5 4

0.0005 54.3 0.002550 5 6 5 4

0.0002 61.7 0.001055 6 7 6
<

Table 2

Cost System unreliaiblity Allocation

Stage 1 ! Stage 2 Stage 5 S:a;e

0.000225 o4 .3 0.002550 5 6 5 4

0.000220 57.1 0.002020 5 7 5 4

0.000215 60.5 0.001288 5 7 6 4

I. )00210 61.7 0.001055 6 -j 6 4
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3. Kuhn-Tucker Conditions

The Kuhn-Tucker conditions can be stated as follows [6]

:

A point (x , X
9 , . .., x ) which optimizes a function

S = f(x-, x«, . .., x ]

subject to the inequality constraints

(7)

•j
(V V . V<-°' j = 1,2,. . .,r (8)

exists if there is a set of A a.,,..., A^, that satisfies the following

set of conditions.

or

3L 3f

3x.
i

3x

r

J
dX.

2-1 i

i o,

Aj^j =
3

a <
°3 " '

X >_ 0,

A. <_ 0,

i = 1,2, . . ., n

j = 1,2,

J = 1 , r

(9)

(10)

(11)

j = 1,2, ..., r (for maximization)
(12a)

j = 1,2, ..., r (for maximization)
(12b)

These conditions are also sufficient for a global minimum if f and g.,

global maximum if f is concave and g., j = 1, 2,

j - 1, 2, . .
.

, r, are all convex and differentiable functions and for a

. , r, are all convex
J

and differentiable functions.

Similarly, the necessary conditions for optimization of the function

equation (7), subject to the inequality constraints, equation (S) and the

constraint of non-negative x are
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SL 3f r
3g

i
-— =

i x .

—J- <_ , i = 1,2, . .
. , n (for maximization) (15a)

or

3L_ }£_
I X. —— • 0, i = 1,2,..., n'"(for minimization) (13b)

or

x. g- = 0, i = 1,2,..., n (14)

i

X g =0, j = 1,2,..., r (15)

g. ±0, j = 1,2,..., r (16)

x. > 0, i = 1,2,..., n (17)

X. >_0, j = 1,2,..., r (for maximization) (18a)

A. : 0, j
= 1,2, .., r (for minimization) (13b}

Equations (12a), (12b), (ISa) and (18b) are based on the fact that

if X > 0, the stationary point cannot be a minimum, and if \ < 0, it can

not be a maximum [kuhn-Tucker (1951)]. Note that the sign of \ will be

affected by factors such as the nature of the optimization problem

(whether maximization or minimization) , the type of inequality constraints

[whether g.(x) : or g.(x)
_^_ 0], and the form of the Lagranian function

[whether L(x,\) = f(x) -
J

,\.g.(x) or L(x,X) = f(x) + £ \.g.(x)]. Recall

that equations (12a), (12b), (ISa) and (18b) are based on the inequality

constraints given by equation (8) [g.(x) ; 0], and the Lagrangian function

of the form, L(x,X) = f(x) - £ \.g.(x).
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4. Method of Lagrange multipliers and the Kuhn-Tucker Conditions for

Two Linear Constraints Problem

Example 2

When more than one constraint is imposed to the problem, the trial

and error procedure for searching X's associated with each constraint is

not practical. In this example, the Kuhn-Tucker conditions are applied

to simplify the problem [9,10].

For an N-stage series system, the problem can be restated as

Maximize
N x.

R = H [1 - (1 - R.) J

] (19)
3

j=i ]

subject to

N

I ax < b i = i,2,..., r (20)

j=i j j

If we denote (1 - R.) by Q., (1 - r.) J by Q!, then eq. (19) becomes
V 1 J J

N

R = n ri - o )

1=1 J

Since maximization of the logarithm of the system reliability maximizes

the objective function [1], we can denote the objective function by

Zn(l - Q') (21)InR
s

j=i

Also, by

Q.'X
j

J
-%,

We obtain

x. =

J

cnQ

!

J

.::
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Substituting x. into eq. (20),

N fcnQ!—-J— < bA lj inQ. - V
1 = 1

x
j

= r

or

where

N

II a. ZnO '.
< b .

,

aij 2,nQ

.

3

i = 1,2,..., r (23)

24

Since the objective (eq. (21)) and constraints (eq. (25) ) functions are

all separable concave and convex of Q! respectively, this guarantees the

global maximum [5].

The Lagrange function, whose stationary point is to be found, is

N r N

L(R*, X) e
'

jinR. - I X. [ I (a. Zn(l - R.*)) - b.

j=i J i=l 3=1 J J

(25)

The Kuhn-Tucker condition can be written as

3L

jR

.

R

.

J j
1=1

N

A.a../(1 - Rj) = 0, i = 1,2, ...,N

\. [ I fei(l - R!)) - b.l =
i

L
.

u
. lj i i

J

]=i

N

Ija. Zn(l - R!) - b. <0

(26)

27

(2S)

A. > 0,
l — i = 1,2, ... ,r (29)

Eqs . (26) - (29) form the basis of a solution for optimization.

A set of N + r equations represented by eq . (26) and eq . (27) can be

solved by Newton's method. Actually, eq. (29; will form t - Lng

criterion for the iteration process.
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After the solution is obtained from the simultaneous equations formed

from the Kuhn-Tucker conditions, we combine the solution with eqs. (21) and

(22) to get the optimal system reliability and optimal redundant numbers for

each stage in which the rounding off procedure to the nearest integer number

is required.

Referring to Example 2, the problem can be stated as

Maximize
4

2nR = J" lnR\
s

jii ]

subject to

jj^T) «0 - V -c<o

l.TSiftrj
in(1 "V -"^

j J

The Lagrange function is

4 4c.
lcr'.a) = Jw r] - MJj^hc-i wci - r]) - c]

3 = 1 3

The Kuhn-Tucker conditions are

9L 1 X,c + a 9
w.

^ "
*j

+
(i - r!) t ; ( l - r.) = °> 1 = l >

2
> 3 >* C30)

X
1

[

j

XiI55tigT
^Cl - r!) -C] - (31)

:
[ :

lri( llR) mil - Rj] -W] =0 (32)

3 = 1
3

-

4 c
i

I , nfl
J

R , in CI - R.) - C < (33)

j=l
^Cl-RjJ 3
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4 w

.

J
2

j = l - j

I THi^l " V " W -° (34)

\v X
2

< (35]

This problem solved by the Lagrange multipliers method and the Kuhn-

Tucker conditions following eqs. (30) - (35) gives the results, [R , R
? ,

R_, R ]* = [0.999735, 0.999494, 0.999294, 0.999388], [X , a
? ]

= [0.00019994,

-0.00003730], and the system reliability R , 0.997914. If use eq [22), we

find the optimal allocation [x , x , x , x ] = [5.11, 6.50, 5.23, 3.90]

which have to be rounded off to the nearest integers as [5, 6, 5, 4].

The system reliability under the allocation of [5, 6, 5, 4] is 0.997471,

the consumed g is o4.8 and g 9
is 117.

5. Conclusion

The Kuhn-Tucker conditions do provide valuable clues about the

characteristics of the optimal solution, and they also permit the deter-

mination of the optimal solution. However, it is usually difficult, If not

impossible to derive the optimal solution for a large scale nonlinear

programming problem directly from the conditions. Also, it is not

necessarily true that every point which is a solution to the Kuhn-

Tucker conditions will be a point at which the objective function takes

on a relative maximum or minimum for all x which satisfy the con-

straints. But every point at which the objective function assumes

a relative maximum or minimum for x satisfying the constraints must

be a solution to the Kuhn-Tucker conditions. There are many valuable

indirect applications of the Kuhn-Tucker conditions. An example is

quadratic programming.
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3.7 THE GENERALIZED LAGRANGIAN FUNCTION METHOD APPLIED TO OPTIMAL SYSTEMS

RELIABILITY

1. Introduction

A general mathematical programming problem can be stated as

Problem (A): minimize f(x) (1)

subject to

g^x) 10, i = 1, ..., m, (2)

xefi (3)

where xeE , and fi is a subset of n-Euclidean space E . It is assumed that

f(xj, and g (x)
, g 9

(x), . . . ,gm (xj are real valued functions on SI and

twice continuously differentiable.

Problem (A) can be solved by methods which are based on transformation

of a given constrained problem into a sequence of unconstrained problems.

There are two classes of such methods, namely, the penalty and Lagrangian

methods. The penalty methods (e.g., sequential unconstrained minimization

technique) have been studied extensively and applied to many practical

problems [3] , [5] . However, they suffer from numerical instabilities. The

Lagrange multipliers method has been used mostly for the analysis of economic

systems [2] . Recently, augmented Lagrangian functions have been proposed

to solve the problems with equality [6, 7 ,10] and inequality constraints

[1,11,12,13].

In this section a new type of the generalized or augmented Lagrangian

function proposed by Sayama et al . [12,13] for finding the solution of a non-

linear programming problem with inequality constraints is applied to optimal

systems reliability problems. The function is twice continuously differentiable

and closely related to the generalized penalty function which includes the

interior and exterior penalty functions as special cases.



205

The theoretical properties of the function and the computational algorithm

are presented in [13]. The method has been proved to be locally convergent to

the saddle points of the generalized Lagrangian. By using the method, we can

find the Lagrange multipliers associated with the solution of problem (A),

which play an important part for design and synthesis in the fields of

engineering and economics.

2. The generalized Lagrangian function and the computational procedures

The classical Lagrangian function associated with Problem (A) is defined

as

m

L(x,\) = f(x) -
I

X g (x)

i=l
(4)

where \. , i = 1,2, ..., m are the Lagrange multipliers. The literature on

the penalty method and the method of Lagrange multipliers is well reviewed in

Fiacco and McCormick [5], Lootsma [8], and Rockafellar [11].

Although several examples have been suggested to satisfy the properties

of the generalized Lagrangian, a proper choice of the function is of utmost

importance in obtaining efficient methods of solution. A class of the

generalized or augmented Lagrangian proposed by Sayama et al. [12,13] is

i -

L(x,X;t) = f(x) -
)

i=l

\
i
g
i
(x) - tg~(x) , g

i
(x) <

-> (5)

I K + tg, (x)
i -^1

or in a similar form to the classical Lagrangian

g±
M > o

L('x,A;t) = f(x) -

m m

I Mi* +
I

i=l i=l

tg, Cx),

' + tg. (x) *

1
3
1

g
i
(x] ^

gi
Cx) >

(6)
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where A., i = J, 2, ..., m are multipliers and t>0, a penalty parameter.

L(x,A;t) is termed the multiplier function, and the computational algorithm

using the function is called the multiplier method. L(x,A;t) is constructed

in a such a way that it is twice continuously differentiable if f (x) , and

g.(x), i = 1,2, ... m are twice continuously differentiable. This property

is very important to the computational procedure for finding the unconstrained

minimum of the generalized Lagrangian.

It is worth noting that by letting t = in L(x,A;t), equation (5) is

reduced to the classical Lagrangian equation (4). The multiplier function

can also be interpreted as an exterior penalty function if X . = 0,

i = 1,2, . .
.

, m in L(x, A; t)

.

A computational algorithm which makes use of the multiplier function

associated with Problem (A) is considered. The penalty parameter, t, if

choosen sufficiently large (say 10 ) , is kept constant. Let XI be an initial

- k - k
estimation of A, and let x denotes a point minimizing L(x,X ;t) ; i.e.,

k -k *r-k.
m

LfxM K
;tO = Vf(x

K
) -

Ix
i=l

[\\ - 2tg.(x
k
)]7g.(x

k
)

„ k.3
(V -k

> =

1 [X? * tg.(x
x

)]

(7)

This suggests that we take

A. - 2tg. 1.x )
i °r J

1 Cx.)

g^x ) 1 0,

-k.

k 7k—2 ' g-Cx ) • 0,
L [A

k
* ts.ixSr &l

i = 1, . .
. , m, (8)

—k -k+1
so that (x , X ) satisfies the following equation

L (x ,A ) = Vf (x ) 1 A. 7g Cx ) =
X

i=l
1 X

C91
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-

1

-k
If >. , then >s is kept non-negative according to the correction of (8).

Eq. (Sj may be represented as follows:

k+1

k -k
A
K

- 2€.tg.(x )

tX*g (x
k

)
[2A

k
+ tg

T
(x

k
)]

A - £ —=-= = =

i i

[A* + tg. (x
k
)]

2

, g
L
(x

K
. <

i
(x ) > 0,

i = l,...,m,

where 1 ^_ C. > 0. If C- = 1, (10) is equivalent to (8). By using the

multiplier function (10) can be written as follows:

(10)

x
k+l . k

A. = A. + cL
,-k rk .

x
Cx ,A ;t),

i

i = 1, . .
.
,m,

where c is a scalar,

(11)

-C =

25. t
i

— S . L
i - k

A
k

+ 0.5tg. (x
k

)

A. + 2tg. (x )
i

5
: ^

The computational procedure by the multiplier method may be summarized

as follows:

1) Choose a penalty parameter t >0 and initial values of multiplier

Xl >_ 0.

k k
2) Find x that minimizes L(x,X ;t) . Any multidimensional search

technique, e.g., the sequential simplex pattern search may be used
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3) Stop the iterations when one of the following criteria is satisfied

l

A
i
S
i

( x ) I 1 £ > i = 1, . .
. ,

m

or

jf(R
k

)
- L(x

k
,A

k
;t)| < e

where e is a sufficiently small positive number.

~k+l
4) Select X by (8) or (10) , and return to step 2)

.

3. Numerical Examples

Example 1

To demonstrate the generalized Lagrangian function method, the five-stage

reliability problem is solved. The problem is

Maximi ze

5 x.

r = n [i - OR.) J

]
3

j=i J

subject to

i
o p, (x,)~ < P

1 ,£i'J-J

j c (x. + exp(x./4)) < C

3=1 J 3 3

g_ = ) w. x. expfx. /4) < W

3=1 J J J

where x. > 1, j = 1, 2, ...,5, are integers.

The constants associated with the five-stage problem are
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j R.
J

P

1 0.80 1

2 0.35 Cm

3 0.90 5

4 0.65 4

5 0.75 2

P c. C w.
J J

7 7

8

110 5 175 8 200

9 6

4 9

It is noted that in optimizing the system reliability, the decision variables,

namely, the number of components used at each stage, are considered as

continuous variables. The nearest integer numbers are assigned to them

eventually.

To solve this problem, we first of all nave to reformulate it as

Minimize

f (x) = - R = - 7 [1 - C1-R-) j

]
s

j=l .J

sub j ect to

g-,00 = p - I p.Cx.r > o

j = i
J ]

5

g 7
(x) = C -

I c. (x. + exp(x /4)) >

j = l
-J J J

g (x) = W - w.x. exp(_x./4) >_

3 -
l

J J J

g_.(x.)=x.-1.0>0 , j = 1, 2, ..., 5B
3+3 j j

gg
(x) = 1.0 + f

Q
(x) >

The constant penalty parameter, t = 1.0 x 10 , and initial estimate

of multiplier X
1

= (1.0, 1.0, 1.0, 1.0, 1.0, 1.0, 1.0, 1.0, 1.0) are

chosen [Step 1] . The generalized Lagrangian function is given by
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1 • g. (x) - 1.0 x 10
5

• g,
2
(x), g, (x) <

L(x,A;t) = f (x) -
I

i=l
(1) g- Cx)

°i

1 + 1.0 x 10 • g. (x)
g
±
l*) >

(12)

T
which is a function of x = (x. ,x_,x_,x.,x_j only. The sequential simplex

pattern search method starting from x = (1.0, 1.0, 1.0, 1.0, 1.0) is

applied to find the minimum L(x,A;t) of eq. (7) [Step 2] • x

(x* x^x* x* X*) is found to be (2.0594, 2.5178, 2.7202, 3,4299, 2.6118)
T

which gives

L' U X
,X;t) = -0.9014323

y; 1

r
-i

g
2
(x

X

*3 Cx

.-1
g 4
U

r
-l

g
5
U

,-1

g 7 Cx

,-1
v (X

a ~ ( X

= -0.9013423

= 13.39341

= 26.07391

= 15.60743

= 1.0594

= 1.S178

= 1.7202

= 1.4299

= 1.6113

= 0.0986577

The stopping criteria are e. = 1.0 x 10 and e = 1.0 x 10
-4

Since
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.' g.(x') |
= |l • g.(x')

| i 1.0 x 10" 3
, for i = 1, 2, . .., 9,

and

LCx'.X
1
;^ - L(x°,A°;t)

LCx^xSt)

0.9015426 - 0.9

0.9015426

= 0.0015 £ 1 x 10~ 4 [Step 5] .

_?
We should go to Step 4 by choosing new \ 's using eq. (.8). Then go to

Step 2.

The iterative procedures are carried out until the stopping criteria

are satisfied [Step 5]. The results are presented in Table 1.

The
N 1

optimal results are X = (x. ,x
?
,x„ ,x ,x_) = (2.408, 2.576, 2.919,

5.652, 2.898), f (x) = -0.9195794, g = 12.85525, g = 25.7-517, g_ = 0.13545.

Since the number of components used at each stage should be positive

integers, the optimal results of X shall be rounded off to the nearest integers,

and check the constraints. The possible system configurations are:

(A) (x.,x ,x_,x ,,xj = (2,2,2,4,5)

(B) (x
1
,x

?
,x_,x

4
,x

5
) = (5,2,2,4,5)

(C) (x
1
,x

?
,x_,x

4
,x_) = (5,2,2,5,5)

Configuration (A) results in system reliability, R = 0. 900T""59,° s

g (x) = 4.0, g?
(x) = 24.74132, g,(x) = 1.7710. Configuration (B) results

in system reliability, R = 0.9508028, g (£) = -1.0, g (x) = 1-1.46",

g (x) = -19.6159 in which constraint 1, and 5 are violated. Configuration

(C) results in svstem reliability, R = 0.9044667, g (x) = 27, g n (x) - 23.S79,
s i

g„(x) = 7.519. Configuration (B) consumes the costs exceeding the total

available resources. Configuration (A) gives the system reliability less

than that from configuration (C) , therefore configuration (C) is the optimal

so 1 ut i on .



LO

i—
i cm

cm to
o to

cn aT O
^ M —

<

OO LO

o
CM

—

<

I-« 00 r^ \0 O tO
O o o CM (O o 00

^4 CM
ao — o lo CN to tO CM

o CM CM CM CM CM CM

212

CL, CM

cn to
fO 00

lo
en LO

to
to

=4 oo
cn

.2
o

to CM CTl LO o •s?

CM to vO CM r-« cn
o LO T o 'tf ^H C7> r»

4H to to vO CM CM C-J to
i 00 i—

I

vO 00 OO CTl cn
II cn a — —

(

r—

1

—

<

i—

i

yi CM Cn cn Cn cn o\ cn
iV

o o

4-> II

a:
SI O -H

•r-l X
e=

•r-l

X
C3 ^

E o
X —

,

M

-2 .-<

LO

1 2
VI IIX
t/J 4->

LO

CTl

vO —

*

CO Tf o ^
CM to ^D CM r-~ CTi

<* o ^f —

I

Cn r^
to vO CM CM CM to
i—

i

o 00 00 CTi CTi

o 1—

1

^^ r—

I

—i —

i

1 CTl Cl cn CTl CTl CT

2 O c o O O O

CO vO OO o o to—

<

CM LO to en 00 •

—

'

O <* r- o en 'J

O o o r- » en 00 "J

S)

—

H

CM to CM CM CM CM o
to

LO
en o ^O "T <3" O
en .—1 o to c I—

1

II

CM 'g- to —

<

en to
o 3- to t^- o LO o V

1—

1

tO to to to to to H

o <tf

t/T CC2

4-> —

3 II

/i

CO c

u (J

r—

1

3

•H to
+-> 1

C3 o

—

,

u u

c
~" o

•H
co M
__ C3

l-i

~
CO

to o

r^ CM "3" Q o r^
cz; O to i—

H

to 00
CM ^" r-^ 30 en —i

: r~- CM en o O o
t CM CM —

<

CM CM CM

00 cn cn O vO r~-

r- en o cc O LO
—

H

o LO ^r o r*»

2 LO ~ ^ to to to

H CM C^l CM CM Cnj CM

•^r LO CM 00 CO cn
cn Tf f- a CM r^.

LO CO O 00 en QO ° CM to iO to ''T

—I C4

^ O

CM CM

LO

CM

o



213

Example 2

The objective of this example is to find the optimal R.'s which minimize

C = 2K.R. + 2K_R.
2

+ ICR-
J

+ 2K.R,
4

11 2 1 jj 44

subj ect to the constraints

Vmin^ 1 " >V C1 - R
1
K1 - R

4
J J

2
- Cl-R

3
){l-R

2
[l - (l-RjDCl-^)]}

2

R. > R.
i — i,min

The numerical values of parameters are

K
n

= 100, K = 100, K_ = 200, K, = 1501/34
a. =0.6, i = 1,2,5,4.

R . =0.9, R. =0.5, i = 1,2,5,4.s,mm i,mm

The problem is formulated in the generalized Lagrangian function

format as follows:

Minimize

f (R) = C
o

a a
?

a_ a

= 2K.R. + 2K^R ~ + K_R„ + 2K,R,11 22 5 o 44

subject to the constraints

g]
_(R) = 1 - R

3
[(l-R

1
)(l-R

4)]
2

- C1-R
3
){1 - R

2
[l - C1-R

1
)U-R

4
)]}

2
- R

Sjrnin l°

«i+l*
= R

i
" Ri,min^ '

i " l ' 2 '*'*'

g.
+
.(R) = 1 - R. > 0, i = 1,2,5,4

g 1Q
(R) = R_ [(1-R^Cl-R^]

2
- a-R

3
)a-R

2
[l-(l-R

1
)(l-R

4 )]}
2

>
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where 1-g
n
(R) is the system reliability of the complex configuration shown

T
in Fig. 1 , and R = [R R ,R„,R ] . R ,R n ,R_, and R are the reliabilities

of blocks 1,2,3, and 4 respectively.

For this example, the SUMT-RAC program fails to satisfy the special require-

ment that the violable non-negativity constraints should never be violated

during the search. The results by applying the formulation of generalized

Lagrangian function method are presented in Table 2.

The optimal solutions obtained from the starting point of (R ,R^,R,,R )

= (0,7,0. 7 ,0.7,0.7) are (R . ,R ,R ,R )* = (0.50001, 0.84062, 0.5, 0.5),
1 — ^3 -i

optimal minimum cost, C = 642.0446, and the system reliability, R = 0.9005.

5 -3 -4
The penalty parameter, t = 1.0 x 10 , e = 1.0 x 10 , and e_ = 1.0 x 10

are used.

It is noted that the penality parameter, say t = 1.0 x 10 , is large

enough, we will finally reach the optimal solution in the feasible region.

Comparing with the results obtained by SUMT-Lai, the cost is almost the same

(C = 642,0446 by this method, and 642.428 by SUMT-Lai), but the system reliability,

R , is slightly higher by this method (R = 0.9005) than that by SUMT-Lai

(R = 0.900021). The multiplier method also exhibits much faster convergence

(11.53 sec- for this problem) than SUMT-Lai (about 45 sec. for the same problem)

using an IBM 570/158 computer.
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m out

Fig. 1 A schamatic diagram of a complex system
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3.8 GEOMETRIC PROGRAMMING APPLIED TO OPTIMAL SYSTEM RELIABILITY

1. Introduction

By employing the well-known inequality which states that the arithmetic mean

is at least as great as the geometric mean, dual problems for a variety of optimal

design problems, i.e., primary problems, may be formulated. Geometric programming

exploits this inequality and the relationships between the primal and dual prob-

lems to facilitate solution of optimization problems. The primal problems must

be expressed in terms of a class of functions which are called positive polynomials

or posynomials for short.

In a primal problem, posynomial S is minimized subject to constraints of the

posynomial type. Because of the inequality relating the arithmetic and geometric

means, there exists a related problem which requires maximization of the so-called

dual function v subject to certain linear constraints [1,2,6].

Geometric programming differs from other optimization techniques in that it

gives the minimum values S(x) of posynomial S (primary function) without first

locating the point x where Sis minimum. It solves the dual problem first, then

the optimal solution of the primal problem can be obtained by the corresponding

relation (see the following sections).

2. Formulation of the Problem

A more- general primal minimization problem involving posynomials subject to

r inequality constraints and the corresponding dual problem of maximizing the

dual function subject to its constraints can be stated as follows:

Primal Froblem

Minimize
n
o

s = y u. (i)

subject to
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«!«! , i=l,2,...,r (2)

where
n.

1

g. = y u -

1 -« 3
i -m.

J
J

l

(3)

Here

m. » n. , + 1
i l-l

, i=l,2,...,r (4)

and th e u are numbered consecutively from 1 to n = n. The u. are defined:
3

r J

m a.

.

u. = c . n, x.
3-1

J 3 .1-1 l
j=l,2,. ..,n (5)

where

x , x , ..., x >12 III

(6)

The components a., are arbitrary real numbers, but the coefficients c. assumed
jk 3

to be positive.

The posynomial S which is to be minimized is a function of m independent

variables x. , x_ , ..., x . The inequality constraints, eq. (2), are called

forced constraints, where the inequality constraints given in eq. (6) are con-

sidered to be natural constraints. The matrix (a ) is called the exponent mat-
3*

rix. It has n rows and m columns.

The dual problem that corresponds to the primal problem is as follows:

Dual Problem

Maximize
n c. 6.

n (-J-) ] .n. x.
1=1 i

(7)

where
n.
l

- I *
1

• 3i=m. J

, i=l,2, ..., r (8)
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Here

m = n + 1, m = n + 1, ..., m = n , * 110 2 1 r r-1

n
o

.1 «. = 1

j=l J

n

I

j = l

a., 6. : o,

The constants c. are assumed to be positive and the weights *, , $ , ..., 6

J i 2 n

are subject to the linear constraints:

\ 10' £
2 - °» •••' 6

n
-° (9)

(10)

k = 1,2, . .., m ill)

where the coefficients, a.. , are all real numbers.

The dual function, v, is a function cf the variables, ^
, ^ , ..., ^

, and

the linear constraints of positivity condition (eq. (9)), the normality condition

(eq. (10)), and the orthogonality condition (eq. (11)) are imposed on these

variables.

Note the manner in which the dual problem is generated from its corresponding

primal problem. The positive constants, c., appearing in the dual function, v,

are the coefficients of the posynomials whose terms are given by eq. (5). Each <5.

is associated with the j-th term, u., of the primal problem, and hence, each u. of

the posynomials is associated with one and only one of the dual variables, 5 ,
6

..., 6 . Each X. in the dual problem comes from a forced constraint, g. f_ 1

,

of the primal problem. Because the normality condition forces the weights of the

objective function to sum to unity, the \ corresponding to the objective function

itself is unity, and thus it does not appear in eq. (7). This normality condition

is the only part of the dual problem that distinguishes between the objective

function, S, and a set of the inequality constraints, g. < 1. The coefficient

matrix (a ) that appears in the orthogonality condition, eq. (11), is the exponent
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matrix of the primal problem.

Since the optimal redundancy allocation problems under consideration have

positive coefficients with the variables in the objective function, if the ob-

jective function can be transformed to a polynomial form, and all the resources

requirement associated with each component of the ith constraint and the jth

resource have positive values, then the geometric programming with the type of

"minimization of posynomial subject to inequality constraints" will be considered

here [3,4].

Referring to an N-stage parallel redundant system which has linear and

separable constraints, the system reliability can be stated as

Maximize
N x.

R = n (1 - Q.
J
) (12)

subject to

N

I p..x <_ b. , i = 1, 2, . .., r (13)

j=l 1J J x

when Q. <_0.5, which is a reasonable assumption for the component unreliability,

then eq. (12) can be approximated as

maximize
N x.

j=i J

or, equivalently,

minimize

N x.

s = I Q.
J

(14)

j=l J

Since the stage unreliability is defined as

x.

q: =
Qj

3 (is)

hence eq. (14) can be expressed as
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N

S - I QJ
(16)

Also, from the definition of eq. (15),

inQ! = x.fcnQ.,

or

x. = 1
j *"Q:

, j = 1, 2, .... N (17)

Substituting x. into eq. (13), we obtain

N fcnQ!

I P- • J— < b. , i = 1, 2, ..., r
i U inQ. — i

...

Divided both side by b. > 0,
l

N P.
2J_

* Q! c i»

3=1
b
i"
nQ

j

n j
~

or

I ( - b3nQT) C-l) *»Qj <1 (13)

If we define

k "jl
ij b.£nQ.
J i 3

(19)

then

T (-k. .) £nQ*. < 1

j=l ^ J
"

or
N -k. .

j = l
J

(20)
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or

N

Hn n Q!
1J

<_ 1 (21)

3=1 ]

Taking exponential on both side, then

N -K. .

J

n Q.
1J < e

3 = 1

or

N -K. .

e" n Q» 1J
< 1, i = 1, 2, ..., r (22)

3 = 1
]

The primal geometric programming problem is therefore formulated as minimize

eq. (16) subject to eq. (22).

Assuming x. to be continuous variables, the dual geometric programming

formulation is

Maximize

N 5 . N+r -1 o . r a.

v = II b±P II [f—]

L
n (X.)

1
(23)

j=l j i=N+l i i=l
x

subject to

and

N

J 5. = 1 (24)

3=1 J

N+r
5. - J K. .6. = 0, j = 1, 2, ..., N (25)

J i-N+1 1J X

n.
l

X
±

= I 6
,

,i = 1, 2, . .. , r (26)
j-m. -^

i

5. >_0, i = l, 2 , ..., r
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where 6., i = 1, 2, ..., r, are the dual variables corresponding to eq.

., j =1, 2, ..., N , are the dual variables corresponding to eq.

Eq 24) and 1.25) can be simultaneously solved to get 5*, j = 1, 2, ..

N + r. Substitution of these results into eq. (25) gives rise to v(5) . It

has been proved that [2]

S(Q*) = V(5*),
( 28)

and

where

UjCQ) = 5 S(Q'), j - 1, 2, ..., N+r (29)

m a

u = C n Q»
lk

, k = 1, 2, ..., m (30)
J J i=l

K

From eqs . (23) and (29), Q,' , k = 1, 2, ..., m can be optimally obtained.

Finally, we will apply eq. (15) to find the optimal allocations, x.,

1=1.2 N

3. A Numerical Example

Consider the problem in which N stages are connected in series and

redundant components, x. - 1, are added in parallel at each stage. The

objective is to determine x. at each stage, such that the system reliability

is maximized and the cost and the weight constraints are not exceeded. The

problem is

Maximize

N x.

r = n [i - a - R.) J
]

( 3:

1 = 1

subject to

g, = l c.x, < C
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N

g 9
= I w x. <_ W

" j=l J
J

The constants associated with this problem are given as

Stage Cost Weight Prob ability of

J c .

J

w .

J

'

R.

1 1.2 1.0 0.80

2 2.3 1.0 0.70

3 3.4 1.0 0.75

4 4.5 1.0 0.85

C = 56. 0, w = 30.

The ob;iective function can also be stated as

Minimize

Z =

4

j=l J

subject 1;o

where

The dual function is

(33)

4 -K

e n 0! 1J < 1, i =1, 2 T54)

i = l
]

x. x

.

0! = Q ] = (1 - R )
J

(35)
j J J

c .

V - 1

lj C2nQ. , j = 1, 2, 3, 4 (36)

w

.

K
2j

= "
WJlnQ.

,1 = 1,2,3,4 ^

i ° i i ° -> i - -
i

3
1 - 1 j - - 1 5

,1.. 1,1,. 2,1.0,1.. 4, e . 5 , e .6
5
1 °2

J

3
-4 °5

5
6

X
2

(38)

(V *
(X

2
)
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where

'1
= V "2

= 5
6

The normality condition becomes

1 2 j 4

and the orthogonality conditions becomes

(39)

1
' ^VS *W = °

5
2

" [K
12

5
5

+ K
22

5
6

]
=

°

o 13 5 _o 6

5
4 " [

K
14*S * K

24
6
6

]
=

°

Various methods can be applied to get the optimal 5 , 5 ,

4

* * *

i
•

s
: '

;

3

* *

5 _ , 5, , and v .

o o

c rom egs. (39) - (40), we can express 5,, 5_, 5,, 5,, and 5_ in terms

of S ,

:

o

j

5 r

-4 *
CK

2j " -) S
6

j = 1, 2, 3, 4

(41)

4

1 j = l
J

:

6

(42)
4 4

.

L
- 1 j ' , 1

J

3=1 " 3
=1
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Substituting egs (.41) and (42) into eg. (38), the objective function is a

one-dimensional function (in term of 5.) to be maximized. The Golden Section
6

method can be applied to find

V* = 0.00207

5 * = 0.0046
o

Also, we can obtain, by substituting into egs (41) and (42),

5 * = 0.09969

6 * = 0.2555'

5,* = 0.32786

5

4
* = 0.31707

5 * = 7.48310
5

Therefore,

X
l

Q ' = 0.2 5 V* = 0.0002064

Q ' = 0.3 " = 5 V* = 0.0005286

x

Q ' = 0.25
J

= 5_V* = 0.0006787
"3 j

X
4

Q.' = 0.15 = 5,V* = 0.0006565

From these equations, the optimal x., j = 1, 2, 3, 4, are found to be

x = 5.2 T 248

x
7

= 6.26699

x, = 5.26243
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which "ives the system reliability, R , 0.99795. After rounding off to the
B ' S

nearest integers, we get the optimal allocation:

x
i

= 5

X, =6

x. = 5

x
4
=4

The system reliability is 0.99747 with a cost slack of 1.4 and a weight

slack of 10.



2 30

REFERENCES

1. Duffin, R. J.. E. L. Peterson, and C. Zener, Geometric Programming
,

N.Y. : Wiley (1967) .

2. Fan, L. T. , L. E. Erickson, and C. L. Hwang, Geometric Programming
,

Institute for System Desing and Optimization, Vol. 5, K.S.U., Manhattan,

Kansas 66502.

3. Federowicz, A. J., and M. Mazumdar, "Use of geometric programming to maximize

reliability achieved by redundancy", Operations Research Vol. 16, No. 5,

pp. 943-954 (Sept. - Oct. 1968).

4. Misra, K. B. , and J. Sharma, "A new geometric programming formulation for

a reliability problem", International Journal of Quality Control , Vol. 13,

No. 3, pp. 497 - 503 (1973)

.

5

.

N i i kamp , P
.

, Planning of Industrial Complexes by Means of Geometric

Programming, Rotterdam Universtiy Press, Rotterdam, Netherlands, (1972)

.

6. Zener, C, Engineering Design by Geometric Programming , N.Y. : Wiley-

Interscience, (1971).



25!

3.9 INTEGER PROGRAMMING APPLIED TO OPTIMAL SYSTEM RELIABILITY

1. Introduction

In many problems the decision variables make sense only if they

have integer values. Redundancy allocation in a system reliability optimization

problem is a good example. If all the variables are integer, we have an

integer programming problem which can be solved by an integer programming

algorithm. A problem in which some, of the variables are required to be

integers is a mixed integer programming problem. For example, if both of the

redundancy allocations and element reliability at each stage are regarded as

decision variables in a series system, we have a mixed integer programming

problem.

In some situations, the decision variables are (^assumed to be) con-

tinuous, even though they must be integers. The solution is obtained by

rounding the fractional values of the optimal solution to integer values.

This approach has, however, its risks. Although this is one approach there

are pitfalls

.

Various papers have presented the application of integer programming

to a variety of problems. Problems treated in these papers can be classified

into the following examples:

Example 1 Linear Objective Function

The problem is to minimize a linear cost function

N
f = > cm.

i = l
J J

of an N'-stage series system, where m.+l components are used in the jth stage,

subject to the constraints:
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R > R
s — s, nun

w . m .
< W

where

N m . + ]

R = H [1 - (1 - R.) J
]

5
j=l 3

The constants associated with the problem are given as

N = 2, R = 0.9905, W = 40s,mm

R = 0.91 , R
2

= 0.96,

c
1

= 5. c = 8,

w = 9 , w .,
= 6

Example 2 Nonlinear Objective Function and Linear Constraint Functions-

Consider the problem in which N stages are connected in series and re-

dundant components, m., are added in parallel at each stage. The objective
3

is to determine m. at each sta^e, such that the system reliability is maximized
3

and the weight and cost constraints are not exceeded. The problem is stated

as

Maximize

N m . +

1

r = n \i - (i - r.) -1

]
s . , 1

J' 1

subiect to

N

gl
- le^iC

N

g„ = ' w.m. < W
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Probabili ty of Su:
'

R.

0,.90

0,,75

0,.65

0,

,85

are widely associi ted with tl -
. weig I

ibility of survival for the redundancies at each stage. The :•

e listed below.

A. Consider the set of known data origin ented in [25, 26]

Stage Cost Weight

j c

.

w

.

J 3

1 5 8

2 4 9

5 9 6

4 7

5 7 8

C = 10C, W = 104

The problem is also restricted that

<_ m < 4, i = 1, 2, ..., 5

B. Consider the set of known data used in [4, 15, 16, 29]

Stage Cost Weight Probability of Survival

0.20

0.50

5.4 1.0 0.25

4 4.5 1.0 0.15

C = 47.0,

Em ample 5 Nonlinear Objective Function and Nonlinear Constraint Functions

In this example [17, 25, 26], the system has N stages operating in series.

We want to achieve a svstem reliability being at least R while minimizing& s,mm b

the cost. To attain this reliability, redundant components, m., are added in

• .11 el un tc a maximum of allowed number, m. , at each stage. The problem
j ,max

is :

est w eight
c

.

1

w .

1

I . 1 1.0

2 . 5 1,0

5.4 1.0

4.5 1.0

W = : 20,,0
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Minimize

N

Z = v.m. exp(-m./2)

subiect to

p.,m. + p . _fn . + p . _ < P
11 W -11

N

e_ = > c.[m. + exp(-m.) - a.] > C
2

i
;

]

i .1

F
J r ~

N

e_ = ) w.m. exp (-m./A) > W
3

jii j 3 j
-

N m.+l

R = n [1 - (1 - R.) J
] > R

s . .

L

i — s,mm
1 = 1

< m . < m . ,j=1.2, ...,N— i -
3, max

["he constants assigned to this problem are:

N = 2, R = 0.85, m. =4, P=37, C=81,W=58
s,min i ,max

v
j pji P

J2 • ]3
c .

.1

a . w

.

1 3 5 1 30 50

2 2 5 1 1 50 4 50

Example 4

The ''object" is to maximize nonlinear system reliability subject to 5 non-

linear constraints with redundant components in each stage that are subject to

type 1 failures [24] .

Maximize .

h •
. s . ,

o i m.+l i m.+l

Um) = n [1 - I [1 - (1 - q ]

-1
] - T Cqiu)

*
3

i=l u=l u= h.+l
i

subiect to
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G (m) = 20(m + ex] - 2 - - exp(-D

- 20 (m_ * exp(-rr,„))
_ 120,

Lim) = 20(m exp(-m
]
/4) ) + 20(m

?
exp(-m

2
/4

- 20(m- exp(-m„/4)) > 63,
j —

m -- (m , m , m ), m. positive integer for i = 1, 5. 3,

The subsystems are subject to four failure models (s. = 4) with one

.lure (h. = 1) and three A failures, for i = 1, 2, 5. For each

subsystem the failure probability of an element is shown in Table 1.

Table 1

The type of failue and its failure probability for each element

type of failure

subsystem failure probability

u cn iu

0.01

A . £

0.

A 0.1S

0.08

A 0.02

A 0.15

A

0.04

A 0.05

A

A 0.10
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There are then at least fiv< methods of solving these bind? of
]

in integer programming: Partial enumeration - Lawer § Bell, Implicit

enumeration - Lemke § Spielberg, cutting plane method - Gomory, Branch and

bound, and Implicit enumeration - Geoffrion. The}- are classified in Table 2
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nxan Methods applied I the examples r-.c: erences

[Example 1

Ln. Linear cost

function

.t.

> R , .

s - s m i n

1 Lnear wei ght

nstraint

Partial enumeration - Lawler & Bell

Implicit enumeration - Lemke •.-. Spielberg

17

9

unple 1

' Max. R
s

s.t.

2 linear
cost constraints

Cutting plane method - Gomory

! Branch and bound

Partial enumeration - Lawler & Bell

Partial enumeration
I

; Enumeration - Balas or Glover

25,26

4, 15, 16, -

-~

14

Example 5

Min . Nonlinear
cost
function

s.t.

R > P.

s — s ,mm
3 nonlinear
constraints

Cutting plane method - Gomory

Partial enumeration - Lawier & 3ell

lExamnle 4

Max. R with
5

2 classes
of failure
modes

s.t.

3 nonlinear
constraints

i rCutting plane method

Implicit enumeration

bomory

Geoffrion
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2 . Partial Enumeration Method

Example 1

The integer programming problem of 0-1 type variables due to Lawler

and Bell [11] is used to find the solution of the example. Lawler and

Bell describe a programmed algorithm for solving discrete optimization

problems with a monotonic objective function and arbitrary constraints.

A brief review of the Lawler-Bell method is provided in the section.

The type of problems that can be solved by this method may be put in the

following form. Minimize gp,(x) subject to r constraints of the form
'0

gn (x) - gi2
Cx ) I °> i = 1, ,r

CI)

where

x i uv x
2
,....x

n
;

x . = or 1 , j = 1 , . . . , n

Each of the functions in (1) must be monotone nondecreasing in each

of its arguments. With some ingenuity, many problems can be put in this

form.

Vector x is "binary" in the sense that each x. is either or 1

;

x <_ y if and only if x. <_ y for j = l,...,n. This is the vector partial

ordering. There is also the lexicographic or numerical ordering of

these vectors obtained by identifying with each x, the integer value

n-1 n-2
N 00 = x_2 + x_2 + ... + x 2°- Numerical ordering is a refine-

ment of the vector partial ordering, i.e., x <_ y implies N (x) : N (y) ;

however, N (x) : N (y) does not imply x < y.

The method is basically a search method, which starts with

x = (0, 0,...0) and examines the 2' solution vectors in the numerical

ordering described above. Further, the labor of examination is



239

subject to

2 m

s ,nm
(m) =

I An[l - (1 - R.) J *] - fcn

j-1 J

i + l

,

R . >

g (m) = W -
I w.m. > (2)

j=l j ^

Before m and m , both _> 0, can be transformed to the variable of

0-1 type, it is necessary to estimate their upper bounds. This is

done by substituting zero for all variables in the constraints, except

the one for which the maximum value is to be found. Denote these by

m* . , then m. = mm (m*

.

) , i = 1, 2,...r. is the upper bound for m .

It is easv to show that both m. and m_ are 5. We therefore can make
i 2

the following substitution

m = x + 2x
1 11 12

X + 2 X
21 22

where, x. ., i = 1, 2, j = 1, 2, is either or I

Now the problem is reformulated as

f(x) = 5xn + 10x
l2

+ 8x^
1

+ 16x
22

(3)

x +2x +1 x +2x -»+l

g (x) = ln[l - 0.09
1_

] + ln[l - 0.04
21

] - ^n 0.9903

s 12
Cx) = g21

Cx) =

g 22
(x) = 9xu + lSx

l2
+ 6x

21
- 12x

22
- 25 (4)
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consideralby cut down by following certain rules. As the examination

proceeds one can retain the least costly up-to-date solution. If x

is the solution having "cost" g n
(x) and x is the vector being examined,

then the following steps indicate the conditions under which certain

vectors may be skipped.

1) Test if g (x) <_ g (x) . If YES, skip to x* and repeat the

operation; otherwise proceed to step 2).

2) Examine whether g . (x* - 1) - g._(x) : for i = l,...,r. If YES,

proceed to step 5) ; otherwise skip to x* and go to step 1)

.

5) Further, if g (x) - g (x) ^ 0, (i = 1 , . .
.
,r) , replace x by x

and skip to x* ; otherwise change x to x + 1 . In either case further

execution is transferred to step 1). Lawler and Bell [11] call

the above steps of the algorithm skipping rules 1, 5, 2, respectively.

Following the above rules, all the vectors are examined and scanning

continues until a vector having maximum numerical order, viz.,

(1, l,...l,), is found. In case one has skipped to a vector

having numerical order higher the (1,..,1), designate this state

by "overflow" and terminate the procedure. The least "costly"

vector recorded provides the optimum solution.

One should not be overwhelmed by the number of trials. In practice

the number of vectors to be examined may be quite small. For example,

in an 11-variable problem with a total of 2 -solution vectors, only

42 vectors were examined.

This example should first of all be formulated as

Minimize

2

f =

J
i=1 J 3
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Now the problem conforms to the Lawler-Bell algorithm. The solution is

irrived it after examining only six vectors out of the 16 generated by

the four binary variables of (3). The sequence of examination and the

different rules applied are indicated in Table 3. The vector ordering

used is also shown, viz., x = {x , x , x , x }. There are no definite

rules about the ordering of these variables. However, it has been

observed for all the problems studied that the variables carrying least

"numerical weights" are assigned the "rightmost" position in the

ordering. This is done so that the numerical values of m and m increase

as the examination of solution vectors x proceeds.

To begin with Table 3, we set x = (0, 0,...,0) and g r
(x) = » and

at the end of the table, the solution is x and the minimum cost is

g (x) . The true optimum is shown by the arrow in Table 3. Therefore,

m. = m_ = 1 from (3)

.

Actually in a large problem there is an appreciable reduction in

the number of solution vectors being inspected. For example in a

5-stage problem of Bellman [27] requiring 11 binary variables, Che

solution was obtained by examining 42 of the 2 solutions.

Table 3

X X X X
i^ ""22 11 21

g (x* - 1) - g^Cx) < skip to x* through step 2)

1 g (x* - 1) - g,
2
(x) < skip to x* through step 2)

10 g, (x) - g.^t.'x) < change x + x + 1 through step 3]

11 feasible, g n ( x ) = 13 skip to x* through step 3)

10 Sn^ < =0^ skip to x T
:.. rough step

10 g-. (x* - 1) - ) < skip to x* through step I

x* = 1(0, 0. 0, 0} ; therefore overflow takes place and we stco.
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The Gomory Cutting Plane Method

Example 2

This problem is to be solved by Gomory's cutting plane method [5, 6].

It is noted that the reliability optimization problems solved by this

method should have the objective and constraint functions in the separable

types and need not satisfy any convexity and concavity conditions. A

separable function, of several variables is one that can be written as a

sum of functions each with only one of the variables as argument.

The reliability optimization problem can be formally stated as:

Optimize

N

: = V f.(m.)a 3 3
l
= i

J J

subject to

g. . (m.) < b.

R, > M
j=l

where m. = . 1 , . . .
,m.

3 3

i = 1, 2,...r

i = 12 N

(5)

and all the terms are known except I and m. and where,
3

Z = the objective to be maximized

N = the number of subsystems or stages

f.Cm.) = the objective function at stage j as a function of m.
3 3

*
l

g. .
(m.) = the amount of the ith resource consumed at stage i as a function

13 j
- -

of m.
J

b. = the amount cf the ith resource available

r = the number of constraints
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:n . +

1

r! = 1 - (1 - R.) , the reliability of the ith subsystem with in. + 1

J J

'

units, where R. is the reliability of each component

M = the minimum acceptable reliability of the system

m'. - maximum number of redundant units allowed at stage
J

'

There exists the fact that after some transformations the above problem

given by eq. (5) can be solved as the following integer programming problem

expressed by eq. (6)

:

max/min
N

j = l k=

m.

A f.,m
... J k J k

subject to

'"J

I I * §iik
m
ik l b

i
j=l k=0

1]k jk L

N
m

j

T y 4 inR.,m.. > InM

j=l K=0 J J

and

m .. =1

m., - m :

jk ],k-l -

m., >
jk -

i = 1, 2,...r

for k =

for k=i , . . . m

j=l, ...N

for ail i and k

.
(6)

where in addition to the same notations used in problem (5)

,

k = index used to denote a particular redundant unit at stage i

m., = the variable representing the kth redundancy at stage j, where
ik r '

m., =1 for k< m. and m., =0 for m. < k < m.
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Af = if., for k =
jk jk

= f .,
- t\ for k = 1,. . . ,m.

jk 3,k-l j

is the change in f.(m.) by adding the kth redundancy at stage i, where f.,

is the objective function of stage j when exactly k redundant units are used

Ag. .. = g. ., for k =5 ijk °ijk
i

= g . ., - g. . i ,
for k = 1, . . . ,m.

°ijk °ij,k-l j

i = 1, . . . ,r

is the change in g. .

(m.) by adding the kth redundancy at stage j and where

g ., is the function of the ith resource consumed when k redundant units
ijk

are used at stage j

,

A2nR., a M., for k =
jk jk

= ZnR., - nR. , . for k = l,...,m.
ik j,k-l j

is the change in inR. by adding the kth redundancy at stage j, and where

R.
n

is the reliability at stage j when k redundant units are used,
jk

The equivalence of (5) and (6) is easily illustrated using the

quantities and terms which are defined above and assuming that m. units

are used at stage j. By substituting these quantities into the objective

function I of (5) ,
yields

N N
m

j

j=l
X J j=l k=0 JK

Likewise the restriction equation of (5) becomes

N N
m

j

3 = 1
1J 3 j=l k=0

1]K

Now by taking logarithms of the reliability restriction of (5) and with

the appropriate substituting, the follwoing equivalent restriction is

obtained.
N N

m
j

2,1*1 < J SnR. = y ) A tn R.,

~3=1 3 3=1 k=0
Jk
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Now the new variable m., is introduced which represents the kth
J*

redundancy at stage j and is defined as foil

m ., =1

with the obvious result that

for < k < :n

.

- ~
J

m. < k < m

.

J
- J

(7)

m. = ) m.,

^ k=l -

lk (8)

In the above it is understood that the A in R., are numerically

evaluated coefficients. To complete the integer programming formulation

it is necessary to formulate the relationships of (7) as restrictions.

Equation (7) includes the requirement that each subsystem shall contain

at least one component. This is accomplished by including the

following restrictions

(3)
m.. =1 for k =
jk

j = 1,...,N.

The remaining part of (7) insures that at each stage i, the kth redundant

unit m.. equals one if it is in the solution and that it is in the solution
jk

only if the (k-l)th redundant unit is included. This is incorporated

into the problem by including the restraints

m : m
jk - ],k-l k = 1, ,m

(10)

Thus including (9) and (10) completes the formulation of the problem (5)

as an integer programming problem as stated by (6)

.
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After applying the set A data of Example 2 shown in the Introduction section,

the problem can be illustrated in Fig. 1 in the required integer programming

formulation. The equations in Group I insure that one basic unit is in

each stage. The Group II equations allow the kth redundant unit to be in

the solution only if the(k-l)th redundant unit is included and require the

m., variables to be either zero or one. The system restrictions on cost

and weight are in "Group III. The c. equation, representing the A in R.,

values, is the objective function to be maximized. This problem was solved

by an integer programming algorithm and the solution is as follows

m
10

= 1 m
20

= l m
30

= l m
40

= l m
50

= l

m
il

= l m
21

= l m
51

= l m
41 - l m

51
= l

m
i2

= l m
22

= l m
52

= l m
42

= l m
5 2

= l

m_„ = 1 m__ = 1 m,_ = 1

2o o^> 4j>
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Stage I Stage II Stage III Stage IV Stage V
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Fig. 1



248

and all other m.. =0. To summarize, there are

m, = 2 redundant units at staee 1

1
B

m_ = 3 redundant units at stage 2

m_ = 4 redundant units at stage 5

m = 3 redundant units at stage 4

m = 2 redundant units at stage 5

This configuration has a cost of 93 units where the limit is 100 units

and weighs 104 units which is equal to the limit. The system reliability

R = 0.985 or In R = -0.015175.
s s

4. The Branch and Bound Method

Example 2

Example 2 can also be solved by the branch and bound method [4, 28],

which is briefly introduced as follows.

Problem A: Maximize total system reliaibility

i=m n.

R = n (1 - d.
1
),

s
±

i
i=l

subject to the constraints:

i=m
V

i=l

) a. . n. d
.

,

j = 1 , . . . , s , n. > 1 ; n. integer
i] l — i i — l

If we make the following transformations:

C
ik

=
l ~ Pj_ ) - in U - P

t
)

,

i=m
b. = d. - V a .

] j i=l ^

then Problem A can be identically formulated as

Probi?m B: Maximize

i=m k-"
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subject, to constraints:

[
l x.. lb, j = l,...,s;

i=l k=l 1J Un j

x., = or 1 ; and x., =0 implies x
.

, = if 1 > k
lk lk r ll

The one-to-one correspondance of Problem A and Problem B can be easily

proved

:

Let X = (x., ) be a feasible solution to uroblem B and let k. be
lk l

i

the largest index such that x., = 1.3 lk

Since X is a feasible solution for problem

i=m k=°°

iii k=i
l
3

lk - >

i=m i=m
V a . . k . < d .

- ) a . . ,

i = l
^ i " J >! U

i=m

a. . fk. + 1).< d
i ij 1

i = l
J

Hence N = fn. n. = k. +1) is a feasible solution for oroblem a. Theiii
other constraints are satisfied since k. is a nonnegative integer.

i

The objective function for the feasible solution X in problem 3 is

given by

i=m k=^°

3 =

\ A c
ik*lk

1=1 k=l

i=m k=k. , . ,

= I I
1
{*n(l - p'

K + i

) - ,n(l - p }

i=l k=l

i=m k. 4-!

flu;l - p.
1

) - m(l - p.)}
i = l

"

i=m
I n f 1 - p .

)

.

• i
] = i
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\s a conclusion, R is maximized when Z is maximum, namely, the optimal
s

solution to Problem B corresponds to the optimal solution to Problem A.

Bounding Procedure

In order to develop a bounding procedure for a multi-dimensional

knapsack problem (MDK) , consider a single-dimensional knapsack problem:

Maximize
i=m k=°°

.'- J,
c
ik

x
ik-

i=l k=l

Subject to a single constraint

m =°

y 7 a..x., < b. for a given i.

Define the ratios r., = c.,/a... Then, for a feasible solution,
lk lk i]

i=m k=°° i=m k =c°

Z= I c
.

, x = y r . . a . . x

.

. - ,

L lk ik .,1 i ik ij lk
i=l k=l i=l k=l

i=m k =co

< max .
, [ r

.

, 1
5"

J a . . x
.

, < max .
, [ r . . ] b .

i,k L ik
J

i
r

1 k ^ x
ij ik - i,k l

ik J
j.

Also, since

exp(c.
k

) = (1 - p^
+ 1

)/(l - ?>) = 1 + Pi
k
/(1 p. *...+ ?

\

+l
)

and

r •> m K,n k+1, . k+l/(l + p. +...+ p
k " 1

+ D.
k

)exp(c
i k+1

3 = (1 - p. )/(l - p
i

) = 1 + p. "l *i *i

it can be seen that c, > c.
, ,

, which implies r.. > r. , ., or max.
,
{r. } =

ik i,k+l ik i,k+l i,k ik

max.{r.,}. Hence Z < max.fr.,} • b..ill — l ll j

In the MDK there are s constraints, one for each resource j. Therefore,

for any feasible solution for the MDK,

Z < max.{r.,} • b. for anv j < mm . [max. r r. , } b.l.
l il j - j i ll j

J

Consequently, the optimal feasible solution Z* is bounded by the quantity

min . [max . fr . . ) • b.l. This quantity is the upper bound for the MDK.
j

L
i il j

J H
-

Fi
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Let X = (x.,J be an intermediate solution in which none of the resources Ls
1

K

fully utilized. This intermediate solution can be augmented by including

x. if i and I satisfy the conditions (1) x. . . = 1, (2) x. = 0, and f3) no
1 '. - 1 lx,

exclude decision has previously been made for x.„. .

• ^n^ suc" qualiriea
in-

variable can form the basis of a decision either to include or to exclude.
i

This decision would partition the set of all feasible solutions based on the

intermediate solution X into two mutually exclusive and exhaustive subsets,

and it would be a basis for branching. The subset described by the

decision to include x. fi.e., x. = 1) would be termed an inclusive branch,H 1(.

and the subset described by the decision to exclude (i.e. x = 0) would be

termed an exclusive branch.

Let k. be defined, as before, as the largest index such that x., =1
l lk

before the branching decision. It can be seen that i = k. + 1. Also, Let&
i

I be the set of all indices i for which an exclude decision is made before

the branching decision. Then the bounds for the inclusive and exclusive

branches (subsets) can be computed as follows.

Inclusive branch:

i* i

i=m k=k. i=m

Unallocated resource b.' = b. - ) a. .x. = b. - k.-a...

i=m k=k.

Obiective function (after branching) = ) c,
i=l k=l

lk -

Hence the upper bound on the inclusive branch equals

i=m k=k.

I I
1

c + mm (max^ (r )-b •). II)

i=l k=l
J

' i
J
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Exclusive branch.;

r = iur

i=m

Unallocated resource b.' = b. -
I

k.-a..

Objective function (after branching) = I I
" c .

.

i=ra k=k.

I I

:

i=l k=l

Hence the upper bound on the exclusive branch equals

i=m k=k.

I J
1

c.
k

* mm Cmax.^, Cr )-b •]. {l2 )

i=l k=l

The first forward solution is obtained by selecting the component

for a branching decision that yields the highest upper bound on the inclusive

branch and always branches into the inclusive branch. During the forward

procedure, the bounds for the exclusive branch are stored as temporary

bounds. The bounds for the inclusive branch are not stored explicitly.

After a complete solution is reached (i.e. at least one of the resources

is depleted completely giving a solution X ) , all the temporary bounds on

the exclusive branches are revised. For this revision the index k. is

changed to the largest index such that X., = 1 in the solution X , for

all i = i*. These revised upper bounds are then compared with the

objective function Z(X ). Only those branches need be explored further

for which the upper bound exceeds I (X ) . The method of branch and

bound is used to solve this example where the set B data of Example 2 shown

in the Introduction are assigned. By eq. (6), b.=(55.6, 16).

The forward procedure, during which the initial upper bounds are conputed,

is shown in Table 4. When compared with the upper bounds, Z = 1.02167

is shown to be optimal, yielding the results shown in Table 5. the
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e result as obtained by Proschan and Bray. [29]

Table 4

Illustration of the Forward Procedure

Level Stage selected Upper bounc

1 2 0.6"5~3

2 1 0.80508

3 3 0.^-149

4 4 0.87040

5 2 0.93615

6 1 0.98437

7 3 0.96546

8 2 1.00108

9 4 1.00627

10 1 1.01451

11 5 1.01061

12 2 1.01855

15 1 1.02059

14 2 1.02043

Initial solution I = 1.02167
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Tabel 5

The Optimal Configuration

Stage i Mo. of parallel components n.

1 5

2 6

5 4

4 3

Total svstem reliability = 0.99169

5. The Gormory's Cutting Plane Method

Example 5

To solve this problem by Gomery's cutting plane method [5,6], we have

to transfer the constraint,

R > R
s — s,min

into

•InR > 2nR = -0.1625
s — s,min

This can be written as

•0.1625 1 I I A In R m

j=l k=0
]K JK

2 4

0. 1625 >_ - )"
) A In R.,m

i=i k=o
Jk Jk

In this example, the units have the same reliability as the units in

exmaple 2, thus the A In R.. values are the same as the obi active function
jk

c. values of examole 2.
3
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The objective is to determine the m , the number of redundant units at

stage j, that minimizes the following cost function

- = [3m e 1 ] + [2m e 2 ]

while not violating the system restraints. Problems with few linear

constraints iuch as example 1 can be readily solved by methods presev.ed

in [20, 27], but it seems that these methods are inadequate for solving

this second example which includes multiple nonlinear restraints. The

integer programming formulation of this problem is illustrated in Fig. I.

The Group I equations represent the greater- than-restrictions, and the

Group IV equations represent the less than restrictions on the system.

The Gr^up II equations insure that one basic unit is in each stage. The

Group III equations allow the kth redundant unit to be in the solution

only if the (k-l)th redundant unit is included and requires the m

variables to be either zero or one. A minimization problem is converted

to a maximization problem by multiplying the objective function (-1).

This problem was converted, therefore the c. equation is the objective

function to be maximized. The integer programming solution is as follows

10
- 1 m,

c
=1 ra

22
- 1 n,^ . 1

m
21

=1 m
2
. = 1

and all other m.. =0. To summarize, there are

m = redundant units at stage 1

ieu = 4 redundant units at stage 2

.

The minimum cost I = 1.0827 and the svstem reliability R = 0.899 where
s

In ? . = -0. 1065.
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Example 5

To solve this problem by the integer programming due to the Lawler-

Bell algorithm, we reformulate the problem as:

Minimize the cost function

g
Q
(m) = [5m

1
expC-n^/2)] + [2m

9
exp(-m

7/2)]

subject to the constraints

7 2
g^m) _ 37 - [3m - m. J

- [3m + m^ + 1] >_

g
2
(m) e [30m + exp(-m ))] + [30(m

?
+ exp(-m

? ))
- 4] - 81 >

g,(m) = [50m exp(-m ,/4)] + [50m,, exp(-m
?/4)]

- 38 _>

m +1 m +1

g 4
(rrj i [Infl - 0.1 )] + [ln(l - 0.25 "

)] + 0.1625 > .

g (m) refers to the reliability constraint.
4

The problem can be traasformed to the type (1) by substituting

m, = x, , + 2x, „ + 4x, _ and m., h x_ n
+ 2x_„ + 4x_„. The maximum value

1 11 12 lo 2 21 22 2j

either m or m does not exceed 5 from the scrutiny of the constraints of

The different functions in (I) are defined as follows

s ll
=, 22 3 32 342

-g
12

(x) = 36 - 3(xn * 2x
12

+ 4x
13 )

" ^ X
ll

+ 2X
12

+ 4X
13

)2
"

3(X
21

+ :X
22

+ 4X
25

}

- (xn + 2x
22

t 4x
23)

x
(x) = 30[(x

11
2x

12
+ 4

13
)

+ exp(-(xu - 2x
12

- 4x
13))]

+ 30[(x + 2x
22

- 4x )

o

- exp(- x - 2x
22

- - x
,
5
))] " s;
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g 31
M - 30[(xu 2xn * 4x

13
)

x + 2x + 4x

exp (- t ; j ) ]

* 30[(x
21

2x
22

+ 4x
23

)

x + 2x 7? + 4x

(-(— F —))] ~ 33

x +2x +4x + 1

r > in « , 11 12 13.
g 41

(x) = In (1 - 0.1 )

X
21

+2X
22

+4X
23

+1

+ ln(l - 0.25 ) + 0.1625. iU)

The solution with variable ordering indicated in Table 5 is obtained

in nine steps only, whereas the complete set consists of 64 vectors. The

minimum g n ( x ) recorded is 1.082680 (shown by the arrow in Table 6) for which

allocation is m, = 0,m_ = 4, In R = -0.106563, and R = 0.S9892.lis s

Table 6

X X X X X
25 12 22 11 21

goi (x* - 1) - g~~(x) <0 skip to x* through step 3)
el I. J.

1 g (x* - 1) - g09 (x) < skip to x* through step 5)

g (x* - 1) - g 07 (x) <0 skip to x* through step 3)10
2 §31

( x ) ~ §-2^ x) °' X ^ X + }

10 1 feasible, gQ
(x) = 1.358780 skip to x* through step 5)

110 g (xjKg (x) skip to x* through step 1)

10 g (x)Kg (x) skip to x* through step 1)

10 feasible, gQ
(x) = 1.082680 skip to x* through step 5)

10 g (x)Kg (x) skip to x* through steo 1)

x* = 1(000000), i.e., overflow.



259
The Geoffrio [mplicit Enumeration Method

E xample 4

Geoffrion's implicit enumeration method is to solve the problem with

two classes of failure modes. A formulation by 0-1 linear programming Tj j?'

is introduced. We state the original system reliability problem as

Problem A

Maximize
N

R = a [1 - Q. (m.)]
s ,

L
1 1

J

i = l

CIS)

subject to

N

G„ (m) = n g„.(m.) < b
t . =ti i — t

i=l

t a l 2 T C16)

where

Q. Cm.) = cfr^ ) + Q
A
fm.)

o . A
Q (m.) and Q (in.) are the unreliabilities of subsystem i obtained for

class failure modes and for class A failure modes, respectively. [24]

To formulate Problem A into a 0-1 linear programming problem, we

define the following 0-1 variable:

1; allocate j elements to subsvstem i,

:

ii
=

J
J

0; otherwise .

;:::

When we introduce this 0-1 variable the nonlinear system reliability

(Example 4) of the NIP - m problem, we get the following linearized

objective function:

N
V

i

f(X) =
I I

i=l i=r.

c . . x . .
,

(13)
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where, for all i and j,

c . . = In 1 - I Q?„U) +
I Q?„(j)

u=l
V1U

u=h.+l
i

Q? (j) 5 1 - (1 - q. )

J
, Q

S
(j) E (q. )

J

1U n iu 1U n iu
(19)

When we introduce the 0-1 variable into the T nonlinear constraints (16),

we get

N i

g (X) = I a„ .x. . < b ,3
t .*•. .

L tij 13 - t'
i=l i=r.

J J

1

t = 1.2 T
(20)

a .. = g .(j), for all t, i, and j
tij ti J (21)

By definition of 0-1 variable (17), we add the following N linear constraints

to the constraints (20):

v,

gT+i
(X) 5 1-1 X - 0,

3=r.

1 = 1,2, :::

By introducing the 0-1 variable, we have thereby reformulated problem A

into a ZOLP problem which maximizes the linear objective function QS)-(19)

subject to the T + N linear constraints (20)-(22). This is the ZOLP-m problem.

It is proved in the next page that there is a one-to-one correspondence

between the N'IP-m and the ZOLP-m problem proposed here.
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v.
l

£ r X ) I in [1 -(Q°(j) - \ ;^x...
i=l j=r.

= y

L=l
I +

m[i -

-

(Q°(J) C^(j)}]x

+ I + ln[l - CQ?(j) + Q?CJ)}3x.t

where Q. (j)

jeZ

L. S .

ij
, r-y>

I Q?
u
Cj). Q

±
CJ) » I Q?u (j). andZ.

u=l u=h-+l
l

{ j; r r +l,...,vii i

is set of subsystem i and a direct sum of the Z. and Z. (which are a
l i

partitioning of I.)- Let X* be a feasible solution to the ZOLP-m problem.

Then, (23) is as follows:

f(X*) = I I . ln[l - (Q°Cj) + <£(j)}]
1=1

j £Z

X. .

N

- V ,o,.*.
^

I ln[l - f QTCjV) - Q?(jp}] = In R(j ),

i = l

--

where j* = (j^ J
2
,...,J N

).

Now we prove that (20) and (21) are correct. It is obvious that (21)

is necessarv. In order to prove that it is sufficient, substitute 21

into (20).

it
CX) - I I g

cl
(j)x - I \J gti

U)x
1 = 1 i=r .

J
i = l , leZ.

l

+ y , g . (j)x.

.

>=- °ti j
ij

jeZ.

t = 1
~>

T :2s
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(26)

Let X* be a feasible solution to the ZOLP-m problem, then (25) is

N N

•t
L J A >-t 8ti u; ij .\°tr J

i
J

3=1 j e Z i
i=l

= G
t
(j*) < b

t
, t = 1,2,. ...T.

The Zolp-m problem is to maximize the linear objective function

(18) -(19) subject to the linear constraints (20) -(22) for N = 5 and

T = 3, where the coefficients a . . of (11) for j = 1, 2, 3, 4 are:

a
uj

= 13 + j)
2

, a
12j

= (j)
2

, a
13]

= (2 j)
2

,

a = -20(j + exp(-j)), a = 20j exp(-j/4), for i = 1, 2, 3,

b, = 51, b n
= -120, b, = -65

The ZOLP-m problem is illustrated in Table 7 in the required ZOLP-m

formulations which 1000 times the coeffcient c. . for all i and j of the
ij

linear objective function (13) . The variables are (for j = 1, 2, 5, 4):

X. = X. , X_ .
= X . , X = X .

i] ] 2] 4 + j jj 8 + j

The feasible and optimal solutions of the ZOLP-m example are shown in

Table 6; the optimal solutions are x
?

= 1, x,_ = 1, and x = 1.
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ij
Objective Function, x

i j : _1__ _J_ _2_

1 24.7 23.5 38.7 50.2

2 123.3 243.4 332.7 417.0

3 26.3 112.1 161.3 204.6

Constraints

1 J
'• 1 j 4

1 -16 -25 -56 -49

2 -1 -4 -9 -16

5 -9 -16 -25 -56

2

n, G
1
<_ 51.0

15.6 24.5 23. 5 29.4

same-

same-

i.'
G„ <_ -65

1 -1 -1 -1

I' _< 1

27.4 42.7 61.0 30.4

sane-

same-

i!L>
G
9 i_

- 12 0-0

-1 -i -l -1

!!• G
4 J 1

D

<a:r.e

1 -1 -1 -1

r 6, G^ < 1— 6 —
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Feasible Solutions

i j: 1

1

step 5'

1

1

1

step 61

1

1

1

step 41

1

1

step 91

1 1

2 1 Optimal
Solution

3 1

m,* = 2 , in
* = 1 , m * = 3.

1 2 j>
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3,10 OTHER METHODS APPLIED TO THE SYSTEM RELIABILITY OPTIMIZATION PROBLEMS

i. Introduction

In addition to the methods presented in the previous sections, there

are several other methods that have been used for the system reliability

optimization problems. A classical approach [1, 7, 11, 15, 15, 16] is to

maximize the system reliability without considering the "cost". Minimum

effort to increase the system reliability is of primal interest. Parametric

method involving a transformation of the objective function into a simplified

form so that either the method of Lagrange multiplier and the Kuhn-Tucker

conditions [4] or modified Box's method [ 5] can be applied to solve the

transformed problem.

Linear programming has sometimes been included in reliability op-

timization techniques for solving (a) an optimization problem with a linear

form of non-negative variables subject to a system of linear inequalities

[9, 17], or (b) an original nonlinear optimization problem having been

transformed to a standard linear form which can be solved by linear

programming. Separable programming [21, 25] is a typical technique to

handle this formulation.

Stochastic method has also been used in reliability problems to

maximize system reliability subject to cost restraints [10]. The method

is based on a stochastic approach in which probability distributions are

attached to families of allocations. Random search technique [5] and

other miscellaneous optimization techiniques [6, S, 12, 14, 19, 201

are sometimes applied to system reliability optimization problems.

Illustrations ire given in the following by the classical approach,

Lrametric method, linear programming, and separable programming.
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2. A Classical Approach

Gordon [11], and Moskowitz and McLean [13] may be the first two groups

using the graphical techniques in optimum component redundancy for maximum

system reliability . Their objective was also to develop a general mathematical

solution for the optimum number of redundant elements in a system, while the

reliabilities of the individual components are known, but without considering

"cost" constraints. The figures which show the overall reliability as a

function of complexity, reliability of components, and redundancy are

presented so that the optimal solution can be pointed out from the figures.

Basing on a theorem of Albert [1], Lloyd and Lipow [11] introduced an

effort function, which is required to accomplish the system reliability of a

series configuration from the oresent reliability, R , to a desired higherO i ' s

level, R . Let R. , R_,...,R denote the subsystem reliabilities, the
s 1 2 n

system reliability can be given by

n
R = DR. (1)
S

i=l
l

Since R > R , it is required to increase at least one of the R.'s to the
s s 1

point that the required reliability, R , will be met, in accordance with

eq. (1). To accomplish such an increase takes a certain effort, which

is to be alloted in some way among the subsystems. The desired system

reliability achieved with minimum effort is given as follows.

(A) Order the known reliabilities R. , R_,...,R in nondecreasing
1 2 n &

order (we assume now that such an ordering is implicit in the notation)

so that

P., < R
2

< . . . < R
n
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(B) Increase each of the reliabilities R ,R_,...,R, to the same value
1 Z K

Q

R • but do not attempt to increase the reliabilities R„ .,..., R .

K
n

r'

The number K
n

is determined as

K = maximum value of j such that

R. <

J

l/j

n+1
.1 R

i-j+1

= r. (sav)
J

(3)

where R , = 1 by definition.
n+1

The number R is determined as

R
o

=

n+1
n R.

i=K +1 J

1/K,

I

(C) It is evident that the system reliability will then be R since

K„ K n+1

new reliaiblity = R\ Rv . ...R = R ° - R. fS)V 1 n ° J=K + 1
3

and by using eq. (4) we immediately obtain

new reliability = R

A Numerical Example

Let (R, ,R^,R_,R
(
,R_,RJ = (0.^5,0.30, 0.S7, 0.90, 0.95,0.99), then

1 - .5 4 D 6
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r = n R. = 0.4418
s

j-i '

The required value of system reliability is R = 0.53. Suppose that we

did not consider the selection of K by eq. (3) but arbitrarily decided to

set K = 1 and use eq. (4). We would then obtain
o

0.53

3=2 J

1/1

n r. x l

0.3996

and we would have

R = 0.53 = 0.8996 x 0.80 x 0.87 x 0.90 x 0.95 x 0.99
s

as desired. However, the theorem tells us that the effect to increase

reliability has not been allotted in an optimum manner; i.e., more effort

has been used than is necessary. Rather, we should determine K by eq

(3). To do this we calculate the quantities:

1
,.0.33.'''/

6

0.8996

which is smaller than R = 0.99. Therefore the 6th component is good

enough. Similarly

r
3 c<r§§!r>

1/3
- °- 3825

which is smaller than R_ = 0.95;
5

4 '0.99 x 0.95 x 1

.55 1/4 = 0.8664
QC v "[J

which is smaller than R, = 0.90; and
4

0.1.

'0.99 x 0.95 x 0.90 x 1
r) = 0.3551

which is also smaller than R_ = 0.87; therefore, components of stages 5,
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:^es 5, 4, and 3 are good enough. However,

r = f
^--

) = 0.8484r
2

l 0.99 x 0.95 x 0.90 x 0.87 x V

which is greater than R = 0.80. Therefore the 2nd component is not good.

Since 2 is the largest subscript i such that R. < r., then K = 2, which

means to achieve the system reliability, R =0.53, the minimum effort

to be allotted is to increase the 1st and 2nd component from 0.70 and 0.80

to the same level. R = 0.8484; whereas the rest components are left at

their original level. The resulting reliability of the entire system is,

as required,

R = 0.55 = (0.8484)" x 0.87 x 0.90 x 0.95 x 0.99.
s

Effort Function Minimization

Effort function G(x, y) , of a system is defined as the amount of effort re-

quired to increase the system reliability, x, to a higher level, y. Any cost,

weight, volume, or power demand can be regarded as special kind of effort

function, whether they are mathematically well described or not. Therefore,

the cost minimization problem is an effort function minimization problem.

The effort function always satisfies the following requirements:
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1. G(x, y) ^_0, which means the increasing of reliability from lower level, x,

to higher level, y, will always need at least zero effort.

2. G(x, y) is nondecreasing in y for fixed x and nonincreasing in x for fixed y; eg.

G(0.7, 0.8) < G(0.7, 0.85)

G(0.6, 0.8) > G(0.7, 0.8)

5. If x < y < z, G(x, y) + Gfy, z) = G(x, z) , which states that the amount of effort

to increase the reliability from x to z is equal to the sum of efforts to

increase the reliability from x to y, then from y to z. Namely, G(x, y) is

additive

.

4. G.(0j y) has a derivative h (y) such that yh(y) is strictly increasing in y,

< y < 1

.

For an N-stage series system, we denote R. and R^ the reliabilities of the

ith stage and the system respectively. If R is the minimum requirement of the

system reliability and R. the optimal ith stage reliability, then we can readily

define the effort function minimization problem as

Minimize
N

I GCR., R.)

i=l
l

subject to
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N

R. > R
1 " s

To solve this optimization problem, R. , i = 1, 2, . .., N , R , and the

rt function G(R. , R.) should be given, then various optimization, eg.

dynamic programming, the method of Lagrange multiplier and the Kuhn-Tucker

conditions, GRG, etc. can be applied to reach the optimal solution.

5. Parametric Method

Principle and Historical Background

Parametric approach was originally used in evaluating system reliability,

especially when the number of components in a system was large or the system

configuration complex. Probability was treated as a point in a Cartesian

frame and formulas were derived to evaluate the system reliability by

assigning a parametric value to it [2].

If the probability of success of any event is x, hence the probability

of failure is y = 1 - x, then the parametric ? and 3 associated with x and

y are defined by

- *. Q y y l-x ,,.
<j> = tan8 = — = -p— = . (6)

x 1 - y x

By this transformation, the complex system, whether in the form of bridges,

delta-star, or star-delta, can be expressed by the combinations of these

parameters assigned in each subsystem. Then the system reliability can be

automatically obtained by transforming back from eq. (6)

.
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Parametric method are just an intermediate step to transfer the

objective function in terms of component reliability to the one in terms of

the parameters, p , subject to "cost" constraints, therefore, the objective

function having been formulated in parametric forms can be solved by

any applicable nonlinear programming technique. The method of Lagrange

multipliers and the Kuhn-Tucker conditions [4] and the modified Box

method [5] are two applicable ones.

Formulation of the Problem

The problem formulation by the parametric approach is mainly on the

transformation of the objective function by eq. (6).

For an N-stage series configuration, the system reliability is known as

N
,

R = H R. (7)
5

3=1 J

where

R! =[!-(!- R.)
X
j] (8)

If the parameters <b and d> . are defined as
s j

1-R

* - -5-^ (or R = 1 (9)
s R s 1 + 4>

s s

and

, _
i - r!

(or r'.

J

1

j r; 1 + 4>.'»j
=— J (or R

]

- r—-) (10)

J J

respectively, then eq. (7) can be represented as

N

* + l = n (i + p.) (li)

In nest reliability studies, we are dealing with components having a

relatively high value of R. . Using this fact, eq. (11) can be expressed as
]



_::

M

*s
" - J

j-1

From definition in eq. (6), we have

*> " "n 9
j

=
T^q'. (13)

and

= tan 9
3 j 1 - Q. (14)

Then from eqs. (13) and (14), it is easy to find that -

<j> = - CIS")
j l + cot e:

j

and

1
5

j 1 + cot 9. (16)

Since R. = 1 - Q.. and R. = 1 - Q .
, then eq. (8) becomes

x

Substituting eqs (15) and (16) into eq. (17), we obtain

= (1 + cot 9.) J
(18)

1 + cot
9-i J

i

By eqs (12) and (15), eq (17) can be expressed in terms of ~. and <fr.

as

or equivalently

|>
* + 1 + 1 x

?
*

:

i
^
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If both t>\ and <d. are much smaller than 1, then
J 3

x .

P' - P.
]

3 J

Substituting into eq. (12), then we reformulate the objective function as

N x.

> =
I <fr

J
(19)

*
j = l

J

to be minimized subject to linear constraints

N

V ex. < C

(20)

N

y w.x. < w

3-1
] J "

To solve eqs . (19) and (20), the Lagrange function is introduced as

N x. N N

j = l

L = a.
J + Af 7 ex. - C] + \_[ I w.x. - W] (21)

The Kuhn-Tucker conditions are

2L
=

—

= $ •

J ^no . + \,c. + X n w. = (22)
2x. j j 1 j 2 j ^

;

N

I ex. = C (23)

j=l ] J

N

I w.x. = W (24)
-

1

J j

From eq. (22) .

1
[2n(a..\. + b.X.j]

,
j=l,2, . . . ,N (25)

-n?. L
'

J 1 j

3
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.-here

c

.

J
a .

J
in 'v

.

w.

b. 5

J

l

-n;

.

Substituting (25) into (23) and (24),

a. [Zn(a.A_ + b.XJ]
j2 :

J J 1 J -
= C (26)

So

N

I b [Zn(a X - b X )] = W
( 27)

j = l
J J

lving the simultaneous eqs (26) and (27) to get \. and X . Once

and X are obtained, x., j=l,2,...,N, can be found from eq. (25)
J

A Numerical Example

Consider the five stage problem [18]:

Maximize
5 x.

R_ =
I [1 - (1 - R.) :

]

S
j=l J

subiect to

g, =
I ex. < C

j = l

,
- ^ . A .

g = ) w.x. < W

The constraints Lssociated with the problem are
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Stage Cost

J
c

.

J

1 5

2 4

5 9

4 7

5 7

C = 100, W := 104

Weight
w

.

J

8

9

6

7

8

Reliability
R.

J

0.90

0.75

0.65

0.80

0.85

The objective function is transformed by eq. (19) as

Minimize
N x.

4>,

where 1 - R

J

j = 1,2,5,4,5

By using the method of Lagrange multipliers and the Kuhn-Tucker

conditions, we introduce multipliers a and \~ to obtain the solution

shown in Table 1. The result is identical to that in [S]

.

Table 1 Numerical result of the example

N'umoer of components
at each stage
X X X X
1 2 3 4

Used Used
cost weight
a
°1

a
°2

77 91

95 104

95 104

100 112

R

5 4

5 2

o J

0.87529 0.005

0.95080 0.004

0.95080 0.005

0.94901 0.002

wher:

•- •

w ib the ootimal solution
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4. Linear Programming

\ linear programming problem arises whenever two or more candidates

or activities are competing for limited resources and when it can be

assumed that all relationships within the problem are linear.

Since the reliability optimization problem usually has nonlinear

objective function and/or nonlinear constraint functions, unless we

linearized the objective and/or constraint functions or we do encounter

specific case, linear programming is not applicable. In the next section

we are to introduce separable programming, which is a special class of

nonlinear programming and is usually fit for the system optimization

problems adaptable to linear programming.

A special case of reliability allocation problem solved by linear

programming is presented here.

Problem statement and formulation

The problem is about reliability least cost apportionment which

says: [17]

A company has a system to build which is composed of two subsystems

in series. The reliability requiremnt for the system is 0.90. Initial

evaluation of the two subsystems yields a reliability of 0.35 for subsystem

1 and 0.8" for subsystem 2. The product of these two subsystem reliabilities

is approximately 0.74. It is clear that both subsystems' reliabilities

must be improved to meet the 0.90 reliability requirement. The relative

additional program cost for incremental reliability improvements is

determined to be in a ratio of 0.5 zo 0.7 (normalized) for subsystems 1

and 2 respectively. The reliability improvement tradeoff factor between

subsystems 1 and 2 is 0.9 and 0.1 respectively, i.e., subsystem 1 approaches
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the constraint at a rate of 0.9 per incremental increase in rel iaibility.

The problem is to minimize the costs to meet the 0.90 reliability requirement

Not at ion Definition

R The initial svstem reliability (predicted')
o ' r

R The design goal (the required reliability)

R. The initial assessed reliability of subsystem j

fl :•.V
The reliaiblity improvement increment of subsystem j

ct. The exponent corresponding to the reliability R., a. < 1 if subsystem

j is part of a redundant system whose reliability is written as R. i

3

N The total number of serially connected subsystems

ln(x) The natural logarithm of x

K. The reliability improvement difficulty factor for subsystem j

£ K.
1

< 1

N

I K. =
1

i

j- 1

M. Number of structural variables in the ith equation

C.
. The reliability improvement tradeoff factor for the ith tradeoff

between a subset of M, : N subsystems

M.
i

•: C. . < 1; C. =1- U " >! U

3. The minimal tradeoff requirement (in terms of the total reliability

improvement increment) for the ith tradeoff

The methodology for pointing out areas for design improvement to meet

design goals using a linear programming is as follows:
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If initially
N

R < R ; R = .1 R. J

o r o j

maximize the function,

N

K.Act.

subiect to the constraints

N

7 Act. InR. < InR - InR

M.
l

C . . Act . < 3 .

(some C. . may be 0)

(For simplification it is assumed in the example a = a^ =

We seek to maximize

.5 Act + .7 Act
J. —

Which therefore minimizes (since Act . are negative) additional reliability

program costs subject to the constraints

Tvue of Constraints

(1) .1625 Act + .1393 Act., <_ -.1964 Reliability Requirement constraint

(2) . 9 Act + .1 Act «: g Tradeoff constraint
I -

(5) Aa > -1 Implied constraint

(4) Act- > -1 Implied constraint
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Solutions are generated as a function of 3 in Fig. 1 and 2. One can see

graphically the following situations relative to the feasibility of solutions

and the value of p.

For 3 > - .4161 - the tradeoff constraint does not influence the

external solution to the problem. This case represents situations where there

is no problem in meeting a given tradeoff constraint.

For -.9243 < 3 < -.4161 - there exists a feasible solution, the solution

of which is influenced by both the minimal reliability requirement and the

tradeoff constraint.

For 3 < -.9245 - no feasible solution exists since the constraint

Act > -1 imposes that the boundary is open on the left side in Fig. 1.

5. Separable Programming

Seaprable programming is a special class of nonlinear programming that

is adaptable to linear programming. The problems are constructed of

separable functions which have the form

m

<j>oo = y h. (x.)
.

l
. i i

i~i

The separable programming problem can be defined as finding a set of

x
'i, 1=1, 2,...,m which maximizes (or minimizes)

m

c(x) =
I f.(x )

i=l
-

subject tc the constraints

n

I g,: ex.) < b k=l,....,p
L = l
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RELIABILITY IMPROVEMENT INCREMENT FOR SUBSYSTEM 1

l

~i

1 1 '

- : "'
31 <*

CR
1

1+Aot
l)CR

2

1+Aa
2)=R

I

r.>

C/J

CONSTRAINTS:

9Aa + . lAa
?

<_ 3

-(Aa.ZnR, + Aa^ZnRJ < In R - /-R_
1 1 2 2 — o n R

or equivalent ly

(R
x

+ Aai )(R 2
1 + Aa

2
) > R

R

Aa , > -1

Aa 2
> -1

IMPLIED

IMPLIED

Act.

1

S =

S„ =

'1 ^~2

C-.0755, -1.32)

(-.551, -1.02)

(-.586, - .73

(-.342, - .43)

3=

. 2

Fig. 1
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OPTIMAL VAIAJES R,
(1 + ^ R. C1 + **2> AS A FU1FUNCTION OF BETA

999

,998

.998

,997
,

995 = .42

o

m
H
>~

CO

u.O

CD
<
l

—

J
Ui
a.

o
aa
XL
I—"

&
a:

,99

.98

,97

,95

,90

997 .998 .999

Fig. 2 REQUIRED RELIABILITY OF SUBSYSTEM ONE
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and

x. >
1
—

By approximating a nonlinear function of one variable by a piecewise linear

function, the problem becomes a restricted linear programmming problem, and

can be solved by a slightly revised simplex method. MPS/360 has this revision[23]

Formulation of the Problem

A continuous nonlinear function of a single variable, x. , can be

approximated by a piecewise linear function over a specified interval domain.

This is done by partitioning this intercal domain into n. disjoint, but

continuous, intercals. The (n. + 1) points of the partitions are represented

bv the set

S =
.1 2 i

X . , X . , X . , . . . , X .

' 1 1 1 1

There are two methods of representing the piecewise linear spproximation

oz a continuous nonlinear function of one variable. The method employed

here is known as the "delta method." Both methods are developed in

G. Hadley's Nonlinear and Dynamic Programming [22]. The "delta method"

uses the differences of adjacent points of the set, S, and the differences

of the functional values at the adjacent points in developing the

approximating equation of a function, f. (x.~) . The differences are
i " l

represented by

J j j-1
Ix .

= x .
- X . ,

1 .1 1 . -
i = 1,2, ... ,m

i k i-1
i = 1,2,. ..,n

AfJ = f.Cxp - f.Cx^ V
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where the subscript refers to a function and/or variable such as

x . f (:<), and g, . (x.) , and the superscript refers to a partitioning of
i 11 ki ' 1

a variable. That is, f.(x.) is the value of f.(x.) at x. = x J
. The11 11 11

differences for adjacent points and the corresponding functional values

for a function with n. = 4 are shown in Fig. 3.

To represent the variable x. and the approximation of f.(x.), a set

of variables, n , j = 1,2, ..., n. , is created that follows what is

known as the "restricted-basis-entry-rule." The rule is satisfied for

any one of the following conditions.

(i) < dJ < 1 iff n^ = 0, j = 2, 5, ..., n.

(ii) <_ D? <_ 1 iff D
l

= 1, l = 1, 2, . .., j-1

and

D
k =0, k = j + 1, ...,n.
i l

n.

(iii) O^D. 1
iff D| = 1, j = 1, 2, ..., n.-l

where n. is the number of partitioning intervals for a variable x. . D
J
.

represents a variable created for the j th partition of variable x.. In-

tuitively, for any _<_ D: 1 all previous D. variables (2. = 1, ..., i-1)

must have a value of one and all following values ( = j+1, ..., n.)

must be zero.

A Numerical Example [21]

Maximize

r = n
[1 - C1 " R/ J]
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f.(x.)
1 1

.x
1

1
=

1

x. •

l
- X.

l

Ax
2

1
=

9

X. -

1

1
- X.

1

Ax
5

l
=

3
x.
l

2
X.
i

ix
4

1
=

4
x. -

3
X.
i

X.
1

4
X . X.
1 l

Af
1

= f. (x
1

)
l li - f. (x.

)

i i

->

Af" = f
.
(x.

)

1 IK - f ^x
1

^

Af3
= f. (x

J
)

- f-(x
2

)
1 1

4 4
Af? = f. (x )

l 11 1 l'

Fig. 3. Linear Approximation of f.(x.)
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subject to

a = ) n
. I x . ) < P

°i >! V r -

r c. (x. + exp(x./4)) < C
go

=
i 3 3 J

" j-1

5

g.= ) w.x. exp(x./4) < W
3

j=l J j J

where x.j> 1, j=l,2,...,5. are integers.

The constraints associated with the five stage problem are

J

1 0.80 1

R.
J

P

O.SO 1

0.S5 2

0.90
*9

0.65 4

0.75 2

c . C w . W

2 0.85 2 7 8

3 0.90 3 110 5 175 8 200

4 0.65 4 9 6

5 0.75 2 4 9

It is noted that, in optimizing the system reliability, the decision variables

namely, the number of components used at each stage, are considered as

continuous variables. The nearest integer numbers are assigned to them

eventually.

The objective function was transformed to maximize

5 x.

S = in R = V in[l - (1 - R.) J
] ,

5
3 = 1

J

then the MPS/360 [23] was applied to solve the problem.

The procedure is recommended in MPS/360 to determine the existance of

a local optimum solution, if it exists. Separable programming, at its best,
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will guarantee only a local optimum. One reason is that unlike linear

inequality constraints nonlinear inequality constraints do not necessarily

form a convex set. A second reason is that a nonlinear function is not

necessarily concave or convex. The only way to guarantee a stationary

point in a global maximum is for a function to be concave, or if it is a

gloabal minimum the function must be convex. Sine the linear approximation

function of a separable nonlinear function will reflect its particular

concave and convex properties, separable programming will, at its best,

produce a local optimum solution.

The solution to the problem is

x. = 2.70000
1

x
2

= 2.32929

x, = 2.10000

x = 5.50000

x. = 2.80000

Following the similar rounding off procedures discussed in Example 3

of GRG section, the configuration of (5, 2, 2, 5, 5} will give the optimal

solution with system reliability, R , 0.9045 and consumes g = 35, j = 146.1
s

=
i

3
2

and g„ = 194.5. It is noted that separable programming is an approximate

method depending on the fineness of the grid equations for accuracy. The

uniform grid for this solution is only 0.10. The effects of grid si:e

on problem accuracy is dependent on the properties of the approximated

functions.
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CHAPTER 4 DETERMINATION OF COMPONENT RELIABILITY AND REDUNDANCY

FOR OPTIMUM SYSTEMS RELIABILITY

1. INTRODUCTION

In the design process, a system must not only be designed to meet its

functional requirement but must also be designed to perform its function

successfully. This latter requirement involves designing reliability into

the system. Often this involves designing to meet the reliability require-

ments within the framework of several system constraints. In some optimum

system reliability problems the element reliability is assumed to be fixed,

and the optimal number of redundancies at each stage is determined where the

system is subject to constraints. A number of optimization techniques have

been successfully applied to solve this class of problems [7], However, a

more general problem is one where both the optimal component reliability

and the optimum number of redundancies are to be determined in order to

obtain the best overall systems reliability [3]. Specifically the problem

is one where the designer must not only determine the number of redundancies

but also the reliability of each component. This is a mixed integer non-

linear programming problem.

In general, problems of this type are difficult to solve by the normal

system optimization techniques, for example, by the method of Lagrange

multipliers [3], sequential unconstrained minimization technique (SUMT) or

generalized reduced gradient technique [ "] because these techniques do not

provide integer solutions. The available integer programming techniques

do not guarantee an optimal solution. Hence a technique that provides an

integer solution as well as the optimal level of component reliability

is required. The suggested procedure is one such technique.

A series system with active component redundancy is considered in

this study. A combination of the well-known Hooke ar,d Jeeves pattern search [2]
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Notation

b. = the available resource for the i constraint
1

C = the available cost limitation in dollars

C.(R.) = the cost of one element at the j stage as a function of R.

a. . = the amount of the i resource consumed at the i stage

p. = the product of the weight per element and the volume per element

, .th
at the j stage

P = the limitation of the product of the volume times the weight

constraints

N = the total number of stages in the system of interest

R. = the initial component reliability at the j

u
stage

R.,Q. = the reliability and unreliability of one element at the j stage,
j J

respectively

R ,Q = the system reliability and unreliability, respectively

r = the total number of constraints

th
v. = the volume of one component at the j stage

- , r- , . th
w. = the weight of one component at the j stage

W = the limitation on weight

X. = the number of components used at stage j

X- = the initial number of elements used at the j

u

stage

X*(R) = a vector of optimal number of elements at each stage as a

function of the component reliability at each stage

th
X. = the components failure rate at the j

' stase
J

k-out-ot-n : F = the system is failed if and only if at least k of its n elements

are failed.

k-out-of-n:G = the system is good if' and only if at least k of its n elements

are good.
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and the suggested heuristic approach by Aggarwal, et al. [1] is proposed

as a stepwise optimization technique for solving this problem. The procedure

is simple and efficient; a component reliability is assumed and the optimal

number of redundancies is determined by the heuristic technique. A sequential

search routine for maximizing the overall system reliability is carried out

by using the Hooke and Jeeves pattern search.

2. STATEMENT OF THE PROBLEM

The system reliability of an N-stage parallel-series system, where both

the component reliability, R., and the number of components, X., at the

jth stage are to be determined, is expressed by

N X.

r CR.x) = n [l-(i-R-) J
] CD

3=1
J

subject to

N

I g (R.,X.) < b., i = 1,2, ..., r (2)

where the system reliability, R, = R (R,,R
9 , .., R^; X ,X

9 , ..., X ),

R., j = 1,2, ..., N, are all real numbers between and 1, and X.. ,

j = 1,2, ..., N, are all positive integers.

To set up equations (1) and (2), five assumptions are made, they are:

CI) Each stage is in series and is considered to be essential for the

overall operational success of the mission of the system. (The system is

denoted as a 1-out-of-N: F configuration). (2) All the stages as well

as all the parallel elements used at each stage are s-independent. All

components in parallel in the same stage have the same probability of failure
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(5) All the components at each stage are simultaneously working, and for a

stage to fail all the elements in that stage must fail (Each stage is denoted

as a 1-out-of-X. : G configuration). (4) A short circuit failure will not

be considered, that is, only a single mode of failure is assumed. (5) The

costs are additive between stages.

Both the number of redundancies and the component reliability improve-

ment will incur a "cost", which may be stated in dollars, weight, volume

or a combination of all three. In order to be specific, three such constraints

are assumed. These constraints have been used often to, test and demonstrate

optimization techniques. (4,5,6)

The first constraint is a combination of weight and volume and is stated

as fallows:

N N N
> gl .(X.) = w.v.(X.)~ = I P-(X.)- : P (3)

i=l
l l 1 i=l J J J j=i J 3

It is noted that the component reliability does not usually affect the

weight nor the volume, hence g . is not a function of R..
lj 3

The second constraint is expressed in dollars, and is a function of X.

and R.. It is stated as:
3

I g (X R ) =
I C (R )(X + exp(X /4)) <

j=l " J
'

J j=l J J J J

(4)

where C . (R
.
) is the cost per component at the jth stage. The cost is

j J

an increasing function of R. or conversely a decreasing function of the

component failure rare expressed by

C.(a.) =a. <'±
}

J

3 J 3 a.
J
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where a. and 3. are constants representing the inherent characteristics of each
J J

component at the jth stage, 8. > 1. If each component follows the negative ex-

ponential failure law, i.e.,

-A .t

R. = e
J

J

for all j, then the component cost at the jth stage is

0.

-t N
J

C-CR.) = a- (tT" (5)

where t is the operating time during which the component at stage j will not

fail. Usually a. and 0. and t are given.
J J

Thus, C-(R.) • X- is the cost of the components at the jth stage as a

function of R. and X.. An additional cost. C . (R
. ) exo fX . /4) is included, as

the cost for interconnecting parallel elements.

Substitute (5) into (4), one obtains a dollar constraint as

N
3 -

J a
j (izk3 cx

j

+ expcy 4^ 1C ' (6)

Similarly a weight constraint is stated as

N
T

N

I 8«».) = I « x, expCX 74) < W (7)

i=l J J j=l J J J

where w.X. is the weight of all of the components at the jth stage. Again

an additional factor is multiplied, which is exp (X-/r), due to the hardware for

interconnecting the links. Also note that the weight constraint is not a

function of the component reliability.

Mow, the problem can be stated as one where the R
7

, R , ..., R
r

;

X , X_, ..., X. f
are selected so that equation (I) will be maximized subject

to (31, (6) and {1) , where R,,R
?

, ..., R are real numbers between and i;

and X,,X , ..., Xv are positive integers.
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3. AN OPTIMIZATION PROCEDURE

The combination of the Hooke and Jeeves pattern search [2] and the

heuristic approach of Aggarwal, et al . [1] is employed for solving the

previously stated mixed integer nonlinear programming problem. The descriptive

flow diagram is shown in Fig. 1.

The Hooke and Jeeves pattern search technique is a sequential

search routine for maximizing the function, R (R,X) . The

argument in the Hooke and Jeeves pattern search is the component reliability,

R, which is varied until the maximum of R (R,X) is obtained. The heuristic

approach is applied to each value of R to obtain the optimal number of

redundancies, X,,X
7 , ..., X^,, which maximizes R (R,X) while satisfying the

nonlinear constraints. This heuristic approach is based on the concept that

a component is added to the stage where its addition produces the greatest

ratio of "increment increases in reliability" to the "product of decrements

in slacks". This ratio is defined by

X.

A(l-R.) 3

W=~3 3 (8)

1! 1

Ag
i3

cx
j

)

where

X. X. X. + l X.

A(i-Rj) J = Ci-Rj)
:

- d-Rj) 3
= RjU-Rj) 3

and

Ag. .(X.) = g. .(X.+l) - g.
.
(X.)

The computational procedures for evaluating the functional value of the

system reliability , R (R,X), at any point is:
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ASSUME R°, THE INITIAL 3ASE
POINT

FIG. 1. DESCRIPTIVE FLOW DIAGRAM FOR

COMBINATION OF HOOKE AND JEEVES PATTERN
SEARCH AND HEURISTIC APPROACH.

FIND OPTIMAL REDUNDANCIES, X*(R°), 3Y

THE HEURISTIC APPROACH AT R°. CALCULATE

THE SYSTEM RELIABILITY R (R~°,X*(R~°) )

.

.1

START AT BASE P0IN1

J,

MAKE EXPLGRATORY MOVES rflTH RESPECT TO R.

AT EACH MOVE FINE X*(R) 3Y THE HEURI ST
f /*

APPROACH, AND CALCULATE R
s
(R,x* r (R)). [STOP

OPTIMUM SOLUTION

IS REACHED

SAkE pattern move with RESPECT to r.

FIND X*(R) 3Y THE HEURISTIC APPROACH

CALCULATE R ( R,X* (R) )

.

DECREASE STEP SIZE WITH

RESPECT TO R.

j.

,MAKE EX.MORATORY 10VES rflTH RESPECT TO R.

AT E,vCrt MOVE F•IND X*(R) 3Y THE HEUR]:st IC

APPROAC; 1, \NC CAL vOi.n i C '% R,X*(R))

->

—
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1) For an initial starting point the component reliability,

R = (.\' R2' " " ' V* iS given -

2) (a) Substitute the value (R^R-j ••-, R^) into (1) and (6), then the problem

is to find (X ,X ,...,X ), a straightforward redundancy problem where the12 N

heuristic approach can be applied.

(b) Let X = (Xr X
2

, ..., X
N

) = CI, 1, .-., 1).

3) (a) Calculate F . (X .) for all j using (8).

(b) Select the stage having the highest F.(X.). A redundant component

is proposed to be added to that stage.

4) Check to see if the constraints are violated.

(a) If the solution is still feasible, add one redundant component.

Modify the value of X. and repeat step 5.

(b) If at least one constraint is exactly satisifed; the current value of

X is an optimal solution corresponding to (R- > R 9
, ..., R^J . Go to step 5.

(c) If at least one constraint is violated, cancel the proposed addition

of the redundant component; remove that stage from further consideration

and repeat step 3. When all the stages are excluded fTom further con-

sideration, the current values of X are the optimal solution with respect

to R = (Rr R
7

, ..., R^j).

5. Calculate the system reliability, R , the functional value, for the

_ *

assigned R and the optimum X .
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4. NUMERICAL EXAMPLES

Example 1. A five stage problem was solved with the values given in

Table 1. The optimal solution is presented in Table 2. The optimum

system reliability is 0.91494 at the point (R ,R
?
,R„,R ,R ;

X.,X ,X ,X ,X.) = (0.7582, 0.8000, 0.9000, 0.8000, 0.7500; 3,5,2,2,3).

Using the starting values of (R. ,R^,R_,R . ,RJ = (0.70,0.70,0.70,0.70,0.70), the
1 i. b 4 O

computation took 25 sec. to reach the optimum solution on an IBM 570/158

computer.

Example 2. A similar five stage problem as Example 1 was solved, but

where the limitations on the constraints were p = 220, C = 550,

W = 400. The optimal solution obtained from using the following two sets

of starting values of R = (0.7,0.7,0.7,0.7,0.7) and R° = (0.3, 0.8, 0.3,

0.8, 0.8) are presented in Tables 5 and 4. The optimal system reliabilities

for these two set of solutions are 0.995657 and 0.994767. The difference is

about O.ll'i. However, the optimum component reliabilities and redundancies

are (0.900, 0.850, 0.856, 0.750, 0.850; 5,4,4,4,4) and (0.850, 0.865,

0.902, 0.700, 0.900; 4,4,5,5,5), respectively. It seems that the functional

value of the systems reliability, at the optimum is quite flat, therefore,

there is a flexibility to select various values of component reliabilities and

redundancies which have nearly the same optimal system reliability.

5. CONCLUDING REMARKS

The determination of the optimal number of redundancies as well as the

optimal component reliability level in each of stages are carried out by a

combination of the well-known Hooke and Jeeves pattern search technique

and a heuristic approach. The optimal system reliability problem is an



Table 1. Constants used in Example 1.
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j
J

p
j

w.
3

1 2.33 X io"
5

1 7

2 1.45 X 10" 5
2 8

3 5.41 X 10" 6 3 8

4 8.05 X 10' 5
4 6

5 1.95 X io~
5

2 9

110 175

W

200

Bj = 1.5, j = 1,2,3,4,5

t = 1000
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Table 2. Optimal solution for Example 1.

R, R R_ R, R_
1 2 3 4 o

Starting point 0.70 0.70 0.70 0.70 0.70

Initial step size 0.05

Final step size 0.00039

R
i

R
2

R
3

R, R- X. X_ X_ X X-
4 d jl 2 3 D

Optimal point 0.7582 0.8000 0.9000 0.8000 0.7500

Optimal system reliability 0.91494

Slack for the first constraint = 28

Slack for the second constraint = 0.033727

Slack for the third constraint = 1.4113
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Table 3. Optimal solution for Example 2

R
l

R
2

R
3

R
4

R
5

X
l

X
3

X
3

X
4

X
5

Starting point 0.7 0.7 0.7 0.7 0.7

Optimal point 0.900 0.850 0.856 0.750 0.850 3 4 4 4 4

Optimal system reliability, R = 0.993657

Slack for the first constraint = 35,

Slack for the second constraint = 0.033247

Slack for the third constraint = 18.476

Initial step size = 0.05

Final step size = 0.0002
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Table 4. An alternate optimal solution for Example 2

R. R n R- R, R, X. X. X, X. X.
1 2 o 4 o 1 2 j 4 o

Starting point 0.8 0.8 0.8 0.8 0.8

Optimal point 0.850 0.863 0.902 0.700 0.900 4 4 3 3 3

Optimal system reliability, R = 0.994767

Slack for the first constraint = 27

Slack for the second constraint = 0.006542

Slack for the third constraint = 24.226

Initial step size = 0.05

Final step size = 0.0002
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extension of the usual reliability optimization problem and is a mixed integer

nonlinear programming problem. The heuristic approach insures the integer

number of redundancies with nonlinear constraints, while the Hooke and Jeeves

pattern search optimizes the component reliability level. This procedure seems

to be very efficient in solving this problem.

ACKNOWLEDGEMENT

This study was partly supported by Office of Naval Research, Contract No.

N00014-76-C-0842.

REFERENCES

1. Aggarwal, K.K., J.S. Gupta, and K.B. Misra, "A New heuristic criterion for

solving a redundancy optimization problem", IEEE Transactions on Reliability ,

Vol. R-24, No. 1, pp. 86-87 (April 1975).

2. Hooke, R. , and T.A. Jeeves, "Direct search solutions of numerical and

Statistical problems", J. Assoc. Compt. Mach. , Vol. 8, pp. 212-224 [1961).

3. Misra, K.B., and M.D. Ljuboievic, "Optimal reliability design of a system:

a new look", IEEE Transactions on Reliability , Vol. R-22, pp. 255-258, (Dec. 1<

4. Sharma, J., and K.V. Venkateswaran, "A direct method for maximizing the system

reliability", IEEE Transactions on Reliability
,
Vol. R-20, No. 4, pp. 256-259

(November 1971)

.

5. Tillman, F.A., and J.M. Littschwager , "Integer programming formulation of

constrained reliability problems", Management Science , Vol. 15, No. 11, pp. 837-

399 (July 1967)

.

6. Tillman, F.A., C.L. Hwang, L.T. Fan, and S.A. Balbale, "Systems reliability

subject to multiple nonlinear constraints", IEEE Transactions on Reliability
,

Vol. R-17, No. 3, pp. 155-157 (September 1968).

7. Tillman, F.A., C.L. Hwang, and W. Kuo , "Optimization techniques for systems

reliability with redundancy - a review", IEEE Transactions on r.el 1 iz i 1 :. r•

.

(this same issue, 1977)

.



309

APPENDIX

OUTLINE OF SEVERAL
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A.1. DYNAMIC PROGRAMMING

Dynamic Programming provides a powerful tool for solving multi-

stage decision processes which arise in various fields. It is based on

the so-called "principle of optimality" and employs the techniques of

invariant imbedding. The essential notions of dynamic programming are

linked to a serial structure. As mentioned, its cornerstone is the principle

of optimality founded Bellman (1957). It states, "An optimal policy

has the property that whatever the initial state and initial decisions are,

the remaining decisions must constitute an optimal policy with regard to

the state resulting from the first decision."

Consider a multistage process for which x denotes a state vector
n

which represents a set of variables from stage n, and is a decision

(or control) vector which stands for a set of decision (or control) vari-

ables at stage n.

The notion of stage is actually an abstract one and the function of

each stage is to transform the state variables from the input state to the

output state. This transformation can generally be expressed as

x = T < x +, 5 ° )> n = N, N-1, ..., 2, 1. (1)n n n+L n

Equation (1) is of vector form. If there are s state variables and one

decision variable, equation (1) can be written as

x
- „

= T
i r,

(x
i j.i» x

o 4.1' ••• x
.ii' ° >• (2)t,n i,n

1
, n+1 2, n+l s,n+l n

The objective of optimization of a multistage process is to seek a

set of admissible values of , ..., 9 so that a desired performance
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criterion or a return function which is the objective function is maxi-

mized (or minimized). The characteristic feature of a multistage derision

process is that there is an interval profit or return associated will) each

stage of the process. The objective function can be expressed as the

summation of the interval profits,

1

S(xM_,.; ..., 8 ) = y g (x ; ). (3)
N+l N 2 1 '' n n+l n

n=N

The value of the objective function depends on the initial state and a

sequence of the decisions, 9 , ..., , . If we represent the maximum
N 2 1

return function or the maximum objective function by fM ( xM .i)> then

f
N
(X
N+l

}
= f

N
(X

l,N+l'
X
2,N+1' •" X

s,N+l
)

= max S(x ; . .
. , )

N+l N 1

J g (x .,; 6 ) (4)= max / g vx ; o

{ } n=N

Thus, in general, f (x ) is the maximum return obtainable from the
n n+l

operation of an n-stage process if an optimal policy is followed starting

with the initial state, x
n+l

If there is one decision variable in each stage, equation (A) expresses

an N-dimens ional optimization problem because this problem must be opti-

mized with respect to ail the N decision variables. The dynamic programming

technique is to deal with this problem as N' one-dimensional problems.

For a one-stage process, equation (4) becomes

f- . (x ) = max (g.(x ; 8 ) )

).
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which is the simplest optimization problem among the sequence of problems

for n - J, 2, . .., N. The other members of this sequence can be obtained

by writting equation (A) in the form,

f,(x ., ) = max max ... max fg (x ;0 ) + ... + g,(x.; f) > J

1 n+1 n n+1 n 12 1

0. 9,
n n-1 1

Since the inputs to stages following stage n are all affected by
n

and the state of stage n is not affected by decisions made at stages

following it, we can rewrite this as

f (x ) = max ig (x ; ) + max ... max (g (x ;

n n+J „ n n+1 n „ ,. n-1 n n-
n o o
n n- i 1

+ . . . + g
1
(x

2
; oy) >. (6)

1 ne expression,

max

n-1 1

max (g (x ; 6 )+...+ g (x ; ))

,

v n-1 n n- ] 12 1
;

stands for the maximum return (the objective function) from an (n-l)-stage

process with initial state x . Hence, we can also write
n

f (x ) = max ... max (g (x ; fl )+...+ g (x ; , ) . (7)
n- I n . n-1 a n- 1 12 1

n-1 1

Thus, equation (6) can be simplified to

f (x ) = max fg (x ; 6 ) + f (x ))n n+1 ,) »n n+1 n n-1 nu n

or (8)

f (x ,_) = max (g (x .. ; u ) + f ,
(T(x . . ; ))).

n n^l n n+1 n n-1 n+L n
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"his i ~> the so-called functional equation and, in essence, a mathematical

statement of the principle of optimality. It gives a recursive relationship

between an n stage process and an n-1 stage process. The solution of the

functional equation yields the value of the maximum return and the cor-

responding optimal policy which belongs to the set [0 ].
n

Further detials concerning dynamic programming as an optimization

tool are available in the texts by Bellman (1957) and BeLlman and Dreyfus (1962)

REFERENCES

Bellman, R. , Dynam i c_ Programming^, Princeton University Press, Princeton
(1957).

Bellman, R. , and S. P.. Dreyfus, Applied Dynamic Programming,
Princeton University Press, Princeton (1962).
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A2. THE DISCRETE MAXIMUM PRINCIPLE

Consider a simple multistage process consisting of N stages connected

in series. The state of the process stream denoted by an s-dimensional

vector, x = (x , :< , ..., x ), is transformed at each stage according to

an r-dimensional decision vector, = (A , A , ..., ), which represents

the decisions made at that stage. The transformation of the process stream

at the nth stage is described by a set of performance equation in vector

form.

x° = T
n
(x

n_1
;

n
), (n = 1, 2, .... N) (1)

x = a

A typical optimization problem associated with such a process is to

find a sequence of !) -
, n = 1 , 2 , . . . , N, subject to the constraints

*" [0° 0» .... 0»] < (2)
l i 2 r —

(n = 1, 2, . .
.

, N; i = 1, 2, . . . , r)

which makes a function of the state variable of the final stage

S = ) ex , Cc. = constant) (3)

1=1
X i

an extremum when the initial condition x = a is given. The function, S,

which is to be maximized (or minimized), is che objective function of the

process.

The procedure for solving mien .in optimization problem by i ho e! I sort* to

maximum principle is to introduce an s-dimensional adjoint vector /. and

a Haraiitonian function H , which satisfy the following relations:
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H
n

= (zV x" - )' *" T" (x
n-'; 0"). (4)

i = J
' '

(n = I, 2, ... , N)

- ! )H°
z -

" -~

J

U - 1, 2, ..., s; n - 1, 2, ..., N) (5)

3x

.

l

z. = c, (i = 1, 2, ..., s) (6)

If the optimal decision vector function A
, which makes the objective

function S an extremum, is interior to the set of admissible decisions ')
,

the set given by equation (2), a necessary condition for S to be (local)

extremum with respect to 6 is

)H
n—
- =0, (n = 1, 2, ..., N) (7)

36

If H is at a boundary of the set, it can be determined from the condition

n
that H is (locally) extremum.

Further detials on the discrete maximum principle can be found in the

text by Fan and Wang (1964).

REFERENCE

Fan, L. T. , and C. S. Wang, The Discrete Maximum Pri nciple
,
Wiley,

New York (1964).
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A3. THE GENERALIZED REDUCED GRADIENT METHOD (GRG)

The generalized reduced gradient method Is a method of nonlinear

programming proposed by Abadie and Carpentier (1965, 1966, 1969). The

method is essentially a generalization of the Wolfe reduced gradient

technique [Wolfe, 1963], which solves problems having a nonlinear ob-

jective function and linear (equality) constraints. In the Wolfe method,

the variables are classed as independent and dependent. From the set of

linear (equality) constraints, the dependent variables are obtained in

terms of the independent \ariables, and the expressions thus obtained

are substituted into the objective function. The original problem,

therefore, is reduced to an unconstrained one with reduced dimension. A

variety of optimization techniques may then be used to find the optimum

solution. Applying the same concepts to problems with nonlinear constraint-

adds to the computational difficulties, but is not altogether impossible.

The general nonlinear programming problem with nonlinear equality con-

straints is defined as follows:

Determine vector X so as to maximize

f
Q
(X) (Al)

subject to the constraints:

f(X) = (A2)

and the boundary conditions:

a < X < b, (A3)
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where X, a , and b ire N-dimensional column vectors , and f(X) is an

limcnsional column vector or" constraint functions in I , of vector

|>M) . Inequality constraints may be employed by the appropriate I i jii

of slack variables.

The problem is solved by partitioning the vector of variables into the

independent and dependent sets of variables, of N-M and M dimensions,

respectively. Let

X = [x,y] (A4)

where x is the (N-M) -dimensional set of independent (basic) variables, and

y the M-dimensional set of dependent (nonbasic) variable 4-". If the constraint

functions satisfy the requirements of the Implicit Function Theorem

(Apostol, 1957), then the non-degeneracy assumption is that the dependent

variables can be expressed as functions of the independent variables, i.e.,

y = Hx), (A5)

such that y is within the boundary:

a <_ X = [x,y] < 5. ;A6)

When this condition Joes not hold, the basis is changed until a feasible

solution is obtained.

By substituting the vector y into the objective function, the problem

may now be simply defined as:

Maximize f
Q
(X) = f

Q
(x,y) = f

Q
(x,<j)(x)) E F(x) [A7]

suhject to :

a < x < b
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Computational Procedure

The procedure for using the GRG, method is summarized below [Abadie,

1970; Hwang, et al. , 197 21:

Step 1. Compute the direction of movement, h , at the starting point

X° = [x , y ]
, by computing the "reduced gradients" at this point:

-oT __
3F(x ) s

3x Ox

3f 3f

3;°

3y_

3x°

(A9)

But from (A2) we have:

21 + ii .ix.
3x 3y 3x

(A10)

Solving for 3y/3x, we obtain

Iz . . ill

3x

ir1

'•3y>

3f

3x
(All)

Substituting (All) into (A9) gives

•oT o o 3f

3x° a
-o L-Q,

3 y ^ 3 y '

3f

3x°

(A12)

-o
Mow the "projected reduced gradinets", P , for each component of the in-

dependent vector x, are computed in the following manner:

if x = lower bound and g <_

P .
= \ if x. = upper bound and g. >_

^g otherwise.

(A13)

1 9 N-M
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N ow

h° = P° (Ai4)

Step 2. It is desirable to stay in the feasible region, or at least

close to it, by selecting a proper direction of movement. The steps for

vectors x and y are x + 6h , and y + 0K , respectively. The desirea

movement is along the surface of the constraints. It is accomplished

by rinding the tangent to f(x + 9h
, y + 9K ) = at point (x

, y ),

that is:

1L. . h
u -»

. R° = (MS)
-O -o *- '

3x 3y

This yields

Now,

-O fof ^, f3f j rO

f(x° * 8h°, y° 3K°)

is to be optimized for 9 using a one-dimensional search technique

Step 3. After calculating:

-1 -o -o
x = x + an

-1 -o -o
y = y + 9K

f (l
l

. y
1

).

the values o\
: the independent variables are projected into the bounds

a < X < b as fol lows

:
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lower bound if x. + Sh. < lower bound
J J

~

.x. = -(upper bound if x. + h > upper bound (A17)

x. + 6h. otherwise
J J

j = 1,2, .... N-M

Step 4. A feasible solution is developed by solving the following

by an iterative method:

f(x\ y
1

) = o.

The existence of y = $(x ) is insured by the Implicit Function Theorem as

mentioned before. If a component of y violates a boundary condition

(degeneracy), a change of basis occurs. Two cases may arise at the end:

- 1 - ]

a) if the iterative procedure does not converge to a y , then x
J

is out of the functional domain. This is alleviated by reducing 6 and

returning to step 3.

b) if the solution obtained is y , then the solution vector is

X - [x
, y ] . If the solution vector does not improve the objective

function, 8 is reduced by half and the procedure is returned to step 3.

Step 5. At this step, X is set equal to X and the algorithm is

repeated. However, if a better value for 8 can be somehow determined,

a return to step 3 is made before the iteration proceeds.

The termination criterion for the GRG method is, theoretically,

when:

P° = 0, i = 1,2, ..., N-M.

In practice, however, the following three stopping criteria are used:
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JN-M ,

J (P°)~ < t.

2) p° < e
2

(Aia)

3) If^X
1

) - f
o
(X°)| < ,

s
.

The GRG method has been studied extensively, and coded in FORTRAN

by Abadie (1969), Abadie and Guigou (1969, 19 70), and Guigou (1969, 1971).

Three generations of the program have been developed. The first, called

GRG 66, was an experimental code, followed by the second one, GRG 69.

An improved code, GREG, is the outgrowth of the first two, and by far,

the most improved one. It is obtainable through J. Abadie, Electricite

de France, Paris, France.
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STEP 1) SELECT INITIAL

STARTING POINT, x°

NO SELECT A

~^\ FEASIE
- -0

dLE x

->

(STEP 1.1) COMPUTE THE REDUCED GRADIENT

r-,7 -i-l

^
3x ay u 3y

37

3^

<

^L
(STEP 1.2) DETERMINE THE PROJECTED

REDUCED GRADIENT.

! IF x? = LOWER BOUND AND g? <

»fp?
= IF X? = UPPER BOUND AND q? >

1

1
—

'i
1

.0
g^, OTHERWISE

Fiq. 1 Computer flow
diagram for GRG algorithm
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(STEP 1.3) COMPUTE THE DIRECTION np MOVEMENT, h , FOR

^

T3

A SIMPLE EXAMPLE IS h° =-. D

v_

(STEP 2) COMPUTE THE DIRECTION OF MOVEMENT pj FOP

-0
y

(STEP 2.1)
1

V
(STEP 2.2) USE A ONE-DIMENSIONAL

SEARCH TO MAX fn(£° + qT?
,

y"° + ek ^

V
.« -i -o

x(STEP 3) CALCULATE x' « x" + efi°, y
1

- 7 + e
k°

PROJECT x
1

INTO P.

f
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F1q. 1 (continued)
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A4. GEOMETRIC PROGRAMMING

In an earlier section we saw how linear progr.'imming problems could

be formulated in terms of both primal and dual problems. By employing

the inequality which states that the arithmetic mean is at least as great

as the geometric mean, a dual problem for many optimal design problems

may be formulated. Geometric programming uses this inequality and the

relationsips of the primal and dual problems to solve optimization

problems. The primal problem is expressed in terms of a class of functions

which we call positive polynomials, or posynomials for short.

The primal problem is that of minimizing a posynomial S subject to con-

straints of a certain type. Let M denote the constrained minimum value

of the primal function S. Because of the inequality relating the arithmetic

and geometric means, there is a related maximization problem concerning a

function v which is the dual function. Tt will be shown that the dual

problem is one of maximizing v subject to certain linear constraints. We

will also show that M is the constrained maximum vlaue of v as well as the

constrained minimum value of S.

Geometric programming is based primarily on the arithmetric mean

geometric mean inequality which states that the arithmetic mean is at

least as great as the geometric mean. For the general case, the weighted

arithmetic and geometric means satisfy the relation

n n

)
'

<S.U
f

- il u''
1

(1)

1=1 1=1

where the 5 are the weights which must sum to unity, that is, the

normality condition,
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5, + 6 +....+ (S -I, (2)
1 2 n

must be satisfied. Equation (1) is an equality if and only if all of the

U . are equa 1

.

i

Now, suppose we wish to find the minimum vJauc of the objective function

x X

S » ~ + x, + 2 -- (J)
2 2 x_

X
l

we have

1 1 2

Ax i , o t Ax, » . 4x„ .4 4 » 4x, . 4

From this equation w c find that 4 is a lower bound fur S, that is,

S > 4 (5)

Using differential calculus, we can show that 4 is the minimum vlaue of

S and that this occurs at x = x = 1.

The preceding example has shown that we can obtain the minimum

value of an objective function directly by properly choosing the weights

of each term in the posynomial. If the geometric mean is properly

weighted, it is independent of its variables, and it is not necessary to

determine the values of the variables prior to finding the minimum value

of the objective function. it is this unique property of Ltic geometric

mean that- makes it easy to minimize certain posynomi a I s

.

The weighted arithmetic mean - gemoetrie mean inequality with the

normality condition can be written as

u 1 u 2 u n

u, + u + ... + u - (-r
1

) (-— ) ... (--A) (6)12 n —
o* . o c>12 n
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If we lee u. 6 . If . for t = k, 2, ..., n,
i li

The Left side of this inequality is the posynomial S that is to

be minimized. For simplicity, we shall refer t<> equation (h) as the

geometric inequa lity, and we shall call the left side the prima l function

and the right side the predual function . Using V to denote the predua]

function, the inequality, equation (6) becomes

S > V (7)

[f the primal function is a posynomial and the u. are given by

m a

u. = C
ji

J
i = l

l
(8)

Substituting the above into

u u u

v - <«? <«? ••• <f>12 n

(9)

gives

*1 6
2

C 1. 2 m
. ( - ) X X . .. X

" 12 m
n

(10)

where

i = 1

o. a.
.

i n J - 1, 2 (li)

Sometimes it is passible to choose the weights .S . in such a way that all
i

of the exponents D. are zero. When this is possible, the predual function,



V. does not depend on Che variables x,, x„, .... x . When all of the
1 2 n

D are zero, equation ( 10) becomes
j

C, I C. 2 , C . n

*-bt> Is) -^ (,2 >12 n

which we shall refer to as the dual function, v.

From inequality (7), we know that out objective function, S has a

minimum point. We shall use M to designate this positive greatest lower

bound of S which must satisfy the inequality

S > M > v (13)

Further details on how to solve optimization problems with constraints

using geometric programming are provided in the texts by Duff in et al.

(1966) and Wilde and Beightler (1967).
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The objectives of this thesis are:

(1) to make a critical review and classification of all system reliability

optimization problems and various optimization techniques which have

been used;

(2) to study the optimizacion techniques of the generalized reduced

gradient method (GRG) and a generalized Lagrangian functions method

applied to solve the system reliability optimizacion problems. Both

of the algorithms have not been applied in this field yet;

(3) to extend the regular system reliability optimization problems for

simple reliability allocation problem or simple redundancy allocation

problem to the one taking both of them in consideration.

(4) to propose new methods for determining integer solution, particularly,

heuristic mechods.

The rationale is that this "topic" is another step in the collection,

classification, presentation and testing of new problems and new techniques

that is vital to solving the system reliability optimization problems.

A stane-of-che-art review of the literature related to optimal, system

reliability with redundancy is presented in Chapter 2.

In Chapter 3, the optimization techniques are presented, wnich are (a)

to maximize the system reliability of various system configurations suojeec

to the 'cost' constraints, or (b) to minimize any specific 'cost' while

satisfying the minimum requirement of the system reliability. In the

chapter, literature published on optimal system reliability is classified

and critically reviewed. Various problems are also classified and resolved

by heuristic approach, dynamic programming, and integer programming.



These optimization techniques always give solution of integer numbers which

meet the integer requirement of redundancy allocation problems

.

Sequential Unconstrained Minimization Technique (SUMT) has been widely

used in solving many optimization problems. The problem with a tangent form

cost function is successfully solved by SUMT. Generalized Reduced Gradient

method (GRG) and generalized Lagrangian functions method have been used in

solving the system reliability optimization problems in Chapter 3.

The maximum principle, the method of Lagrange multipliers and the Kuhn-

Tucker conditions, geometric programming, and several miscellaneous opti-

mization techniques (e.g. linear programming and separable programming) are

also presented in Chapter 3 to cnver the comprehensive discussion of opti-

mization cechniques having been used in system reliability optimization

problems

.

The extension to the usual reliability optimization problems is pre-

sented in Chapter 4. The problem is to include the determination of optimal

level of component reliability and the number of redundancies in each of

the stages simultaneously. The Hooke and Jeeves pattern search technique

in combination with a heuristic approach is proposed to solve this mixed

integer nonlinear programming problem.


