by
WAY KLO

```
B.S. (Nuclear Engineering), National Tsing-Hua Unirersity,
    Taiwan, }197
M.S. (Nuclear Engineering), University of Cincinnati,
                        Ohio, 1975
```

 A NASTER \({ }^{2}\) S THESIS.
 submitted in partial fulfillment of the
requirements for the degree
MASTER OF SCIENCE
Department of Industrial Engineering
KANSAS STATE UNIVERSITY
Manhattan, Kansas
1978
Approved by :

ACINCULEUGEMAENTS

The autnor wishes to express his deep gratitude to Dr. C. L. Hwang, major professor, for his sincere guidance, constructive criticism, and corments through this work; to his supervisory committee members, Dr. F. A. Tillman, and Dr. D. Eckhoff for their encouragement and creative advice.

The author thanks Mrs. Marie Davis for typing this thesis.
This study was partly supported by Office of liaval Research (Contract No. W00014-76-C-0842).

TABLE OF CONTENTS

ACKNOLEDGEMENTS
CHAPTER I INTRODUCTION i
REFERENCES 3
CHAPYER？ OPTIMIZATION TECHNIQUES FOR SYSTEMS RELIABILITY
GITH REDUNDANCY－A REVIEN 3
2.1 Introduction 9
2.2 Systems Mociels 10
Z．j Statements of the Various Optimization Probloms 15
2．4 Optimization Techniques Used to Detシzmine the
Opさえmai Systernj Reliability 20
2.5 Conciuling Remarks 2：
REFERENCES 23
CHATER j OPTIMIUATION OF SYSTEM RELIABILITY 3.4
 こる
1．Introduction 38
2．Sharma－Venkateswaran＇s Approach 44
3．Hggarwal＇s tpproach 52
＋．Mis：a＇s Approach 39
5．Ushakov＇s Approach $5+$
5．Vakagawa－Nakashima＇s Apprcach $5 i$
RETCRENCES －
3．2 DYNAMIC PRGGRIMTNG JPPLIES IO OPTELA SYGTEM RELABIUTM -3
page

1. Introfuction -5
2. Basic Dynamic Programaing Approach 57
j. Dynamic Programming ApproachUsing Lagrange ilultipliers110
3. Dynamic Programing ipproach Using
the Corcepts of Dominazing Sequence 12^{-}
P.EFERENCES 133
3.3 THE DTSCRETE WAXIMUM PRINCIPLE APPLIED :O
OPTIMUN SYSTE: REEIABILITY 140
4. Introduction 1.40
5. Starement of the Problem and the
Compurational Procedure 140
6. Example 145
7. Vumerical Results 151
8. Conciusion 153
REFERENCES 154
3.4 SEQUENTIAL UNCONSTRAINED MINIMIJATION TECHNIQUE (SUMT! APPLIED TC OPTIMAL SYSTEN RELIABILITY 155
i. Introduction 155
9. Formulation of the Problem 156
j. Computational Procedure of Suit? 150
t. Numerical Examples 16.5
REFERENCES 159
3.5 GENERALIEED REDUCED GRADIENT METEOCD (GRG)
APPLIED TO OPTLMUR RELLABILIT: 181
10. Introduction 181
11. Numerical Examples 188
REFERENCES
3.6 I:ETHOD OF LAGRAVGE MULTIPLIERS AND THE KUHN-TUCKER
CONDITIONS IN OFTIAAL SYSTEM RELIABILIT: 190
i. Introduction 190
12. Lagrange Multiplier Method for Single Constraint Problem 192
13. Kuhn-Tucker Conditions 156
14. Method of Lagrange ifultipliers and the Kuhn-Tucker Conditions for Two Iinear Constraints Problems 139
15. Conciusion 201
REFERENCES 204
3.7 THE GENERALIZED LAGRANGIAN FUNCTION METHOD APPLIED TO OPTIMAL SYSTEMS RELIABILITY 204
16. Introduction 204
17. The Generalized Lagrangian Function and the Computational Procedures 205
18. Numerical Examples 208
REFERENCES 217
19. 3 GEOMETRIC PROGRARPIING APPLIED TD OPTINAL EYSTE:
RELIABILITY 12
20. Introduction 213
21. Formulation of the ? oblem $: 23$
3．A Numerical Example 225
REFERENCES 230
3.9 INTEGER PROGRAMMING APPLIED TO OEMIMAL SYSTE：
RELIABILITY 231
1．Introduction 231
2．Partial Enumeration Method 238
3．The Gomory＇s Cutting Plane Method 212
4．The Branch and Bound ．ietrod 218
5．The Gomory＇s Cutting Plane Methoc 254
6．The Lawler－Bell Partial Enumeration Vethod $25 i$
7．The Geoffrion＇s Implicit Enumerazion Mernod 253
REFERENCES 255
5． 10 DTUER METHCDS AOPLIED TO THE EYSTEM
RELIABILITY OPTTMIEATIDN RSOBEEMS 260
1．Introduction 269
2．A Classical ipproach -70
3．Parametric Merhod ごう
＋．Linear Programming $=31$
5．Separable Programmirg 254
REFERENCES 292
CHAPTER 4 DETERMINATION OF COMPONENT REIIABILITY AND REDINDANCY FOR OFTEMUS SYSTEVIS RELIABILITY 295
1．1 Introduction -25
4． 2 Statement of the Protem 29^{-}
$1 . j$ in Cotimization Proceduxe 300
+. 4 Nume=ical Examples 3うう
+. 5 Concluding Remarks 313.3
REFERENCES 3i). 5
APPENDIX OITTLINE OF SEVERAL OPTIIIIEATION TECHNIQUES 309
A1. JYNAMIC PROGRAIMTAis 310
A2. THE OISCRETE MAXIMJM PRINCIPLE 314
dF. THE GENERALIEED REDUCRD GRAUIENI METHOD (GRG) 316
A4 GEOMETRIC PROCFAMMING 323

CHADRER - TVTRODCCTION

The system effectiveness is ofren used to describe the overdil capability of a system to accomplish its mission. If the system is effective, if carries out its intended Eunction well. İ it is not, atcention must be directed :o those system attributes which are deficient. Df the major attricutes decermining system offactiveness, the one that has received the most thorougn and systemari= stucy is reliacility.

> Relíability is the probability of successful operation. Ore defiaizion reads "Reliabllity is the probability of a device performing its purpose adequately for the period of time intended under the operating conditions encountered" (Racio-Electonics-Television Manfacturers Association, 165j). Therefore, the probability that a system successiflly pertorms as desionied is called the "system reiiability." Such probability is also referred $=0$ as the "probability of survival." In most cases the probabiliey with whin a device will perform its function is not known at first. Also the true reliability is never exactly known, wnich means the exact numerjcal oalue of the probability of adequate perEormance is not rinown. 3 ut numerical estimates quite close to this value can be ottained by the use of statistical Rethods and pzobailitey calculations.

Reliability has been a measure of the sapacity or a syscem $=0$ cpezate without failure when it is put inco sezvice. Eor convenience, reliajilicy has also been described as the ability of exuipment to preserve ies outfle characteristics (paramezers) withir establishac limire under giver opeaiting conditions. From this concept, it also Eollows znat an unzeliacle Busyem is

गuEput characteristics drift outside acmissible limits［3！．Such character－
 Ëequency characteristics，esc．

System reliability i．s a measure of how well a syscem performs or meets its design objective，and ic is usualij exprassed in cerms of the reii－ abilities of the subsysters or components．The following terminologies are detined．A＂part＂or＂element＂is the least subdivision of a system，or an item Enat cannot ordinariny be disassemisled without being destroyed． A＂circuit＂is a collaction of parts thac nas a specizic Eunceioii．A ＂component＂then ij a collection of parts and／or circuits，which rapresents a self－contained Element of a complete operaring system and perzorms a Euncion nacessary to the operation of that syscam．＇Unit＂，＂comeneme＂， and＂subsystem＂are syronymous．A＂ミystem＂dan tran be craracterized as a group of subsystem especialiy integrated $=0$ periom a specifio oprrationel function or Eunctions．

The＂relabilizy＂of a system is the probainili：y of a success ful operacion of the sustem for a specỉied period of tiȧ．In describing the reliability of a given system it is necessary to specify（1）the equipiner： faiture process，（2）the system configuration which describes hory the equipmen：－ 3 conincted and the rules oE operazion，and（3）the stare in which the syscem is to be defined as failed．The equipment failuta peocess describes the probability law governing those failures．The systam con－ Eiguration，on the other nand，derines the manney in wnich the sisten
 the reifabinity function for a non－maintained systen is co defnne こis こonaitions of ajsten failuzas．

There exist several methods to improve the system reliability. Sorue oz these methods approach the proolem by using large safety factors, zoducing the complexity of the systera, incraasing the reliability of constituent components through a product improvement program, using strictural redundancy, and practicing a planned maintenance and repair schedule. A gcod deal of effort has been made in the field of optimal reduncancy al.loこation.
A.system in many cases is not contined to a singie component. ihat Ne really want to evaluate is the raliability of thuse systems wincii are simple as rell as those which are extremely complex. Io cevelop functions expressing the system reliability, both conventional statiscuc (probabilistic) Geory and Markovian process have been used.

Reliability engineering appeared on the scene in the late ig $\mathrm{C}_{\mathrm{C}} \mathrm{s}$ and early 1950's and first applied to the field os communcarion and Eransportatich. Much of the early reliability work was confined to making ramde-offs between cartain performance and reiiabiliry aspects je sutstas. However, in the erer-increasing complex systems of today reliabinity has become increasingly important.

In this thesis a thorough discussion of reliability optiaization probiems is presented. The contents incluce a cxiticai review oj opにimization Eechniques for system reliability with redundancy, and the deFenination of component reliability and recundancy for octimum sys -em rai.iabilizy.
As ccmplexizy increases, so musc reliability.

```
    The bt jectites of this chesis are:
```



```
    ability oncimization nrobjems which nave been anal:zed with variow
    notianiaction techmiques;
(2.) to study che generaiizec caiuced gradient method (GRG) and a
    generalizei Lagrangian function method appiied to system reliabiifty
    optimiza=ion problers. 3oth of these methods have no= previously been
    anplied to these probianis:
(3.) =0 弓eneraiize the systen reliabiliay cpaimazation problems ic inciune
    reliabilicy allocacion and redunciancy allocation simuleaneously;
    ..) =o propose mew methods for deteruirimg intoger sclutior, particularly,
    neuris:-:= nethoris.
    A stare-of-rine-art review of the litevature related to optimal systam
relamivity with reduncamey is presenced in Chapter 2. The literature is
\therefore\assizied as follows.
    Ontima! sucsem reliability modals with recundancy
        Scrries
        Paralle%
        Se:ies-parailel
```



```
        scaridby
        Cumpica (nonseries, nonparallel)
```

Optimization technaques for obtaining ovtimal Evstem config:nazions are:

Integer programing	
Dynanis prograrming	
Yiaximum principle	
Linear progranming	
Geomerric programming	
Sequential unconstrained minimization technique (SUMT)	
Moditied sequential simplex pateern search	
Sagrange multipliers and Kuhn-Tucker conditions	
Generalized Lagrangian funccion	
Generalized reduced gradient (GRC)	
Heurisei.c approaches	
Sarame'ric approaches	
Pseuco-Boolean jrograming	
Misce!.laneous	

One zoal of the reliability engineer is tc finc the bes: way $=0$ increase the system reliability. Six important methods for doing this are [6]: (1) keep the system as simple as is compatibie wirh the performance requiremenis. Nonessential componenes and unecessarizy complex confizurauions only increase the probabilizy of system Failure. One aspact of complexity wich produces mraliabiligy is subsystem interaztion wich way be envimonmental i2j. (2) increase the reliabilizy of the componenss in the systex. (3) use paraliel redundancy to the less raliabie components or stages. (4) use siandoy redundancy winh is swiccied to the active components or stages when they fail. (S) use repair maintenarce winere failed componerts are repiaced but not automaticaily switched in as in (ú).
(6) use preventive maintenance where components are replacec oy new ones whenever they fail or ar some specific cime, whichever comes i̇ミ=s= [i]. A gnod jeal of aftort has been aade in the fjeld of optimai redundenc: allocarions. Bowever, to increase the sustem reiiabilicy, the syscen wiil spend more "rost" in weignt, valunie size, noney expenjiture, eta. :e meet the raquimemen of highe syetem refabisity bence, ir. Chapoer 3
optimization techniques are introcuced which include (a) to maximize the system reljability of variulus syiseem configurations subject to the "cos:" constraints, or (b) to minimize any specific "cost" while satisfying the minimum requirement of the system reliabilicy.

In this chapter, the licerature published on optimal system reliability is classified and critically reviewed. Various problems are also classified and solved by a heuristi: approach, dynamic programing, and integer programang. These optimization techniques always give solution of integer numbers winch meet the implied inseger requirement of zedundancy allocation probleins.

Sequential Unconstrained Minimization Technique (SUMT) has been wicely usad in solving many opeinization problems. The problen wan a tangent Eozith cost function is successfully solved by SUMT. Generalized Recuced Gradient method (GRG) and generalized Lagrangian functions method have been deve...oped but have never been used in systen reliability optimization proolems. The GRG thethod is an elaborata extension of hill-climbing gradient zechnicues, and has been codad in FCRTRAV in a program named CREG. A new type of the generalized cr augmenced Lagrangian function provosed by Sayama er ai. Eor finding the solurion of a non-linear programang problem with inecuaity constrajnt.s is also explored in this chapter. Since neither methoc gives integer solutions, rounding off procedures are applied whenever the redundancy allocation proble: is solved.

The maxinum principle, the method of Lagrange mioipliars and the Kuhn-Tucker conditions, geomerric programming, and several ziscellaneous optimizaticn zechnigues (eg. linear programing and sepazable programring)
are also effectivnly introduced in this chaprez which provides a compre－ hensive discussion of optimization technjques having been used in studying systen re1iabiliたy opeimization problems．

It is noted that most of the optimization cechniques employed in this rhesis，are limited to solving small system reliability optimization problems．

In Chapter 4 a problem is presented which simultaneously incluses the detemination of the optimal level of component reitabilicy and the number of redundancies in each of the stages．The provlem is one in winich the component failure rates are variables and che optimal こrade－oif detween adding components in redundancy or the improvement of an individual cor－ ponent＇s reliability is considered．This becomes a mixed intecer oroー gramaing problen in which the system reliability is to be maximized as a furction of component reliability level and the number of components ised 2t each stage．The Hooke and Jeeves pattern searcin technique in comini－ acion wich the heuristic approacn by Agganvai，ez ai．is w上Iİzec co solve this proolem．

Chapter 4 extends the usual reliabili．g ovtimiaation problem to determine bっгh the cptimization of component reiiability and the number or redunlancies in each of゙ tile seayes．

REFERENCES

1. Goldman, A. S., and T. B. Slattery, Maintainability - A Major Element of Sustem Effertiveness, N. V. Wiley (1964).
2. Lloyd, D. ※̈., and M. Lipow, Reliability: Management, Methods, and Mathematics, Englewood Cliffs, N.J.: Prentice-Hall (19́2).
3. Polovko, A. M., Fundanentals of Reliability Theory, ….: Academic (1963).
4. Sancler, G. K., Svstem Reliability Engineering, Englewood Cliffs, iv. i. : Prentice-idall (1963).
5. Srooman, X. L., Pnobabilistic Reliabili.ty: An Engineering aporoach, N.Y.: MCGram-Hill (1968).
6. Smith, C. O., Introduction to Reliability in Lesign, N. V.: McGraw-\#j11 (1976).

I. IVTRODUCTION

The reliable veriormance of a srstem for a mission under various conditions is of utmost importance in many industrial, military, and everyday life situctions. Although the qualitative concepts of rekiability are no: new, its quantitative aspects have been developed over the past two decades. Such development has resulted from the increasing neecs for highly reliable systems and components with more safei, and less cost.

There exist several methods to improve the systen re: iabilit. Some of these methods approach the problem by using large safezy Eis=こors, reducing the complexity of the system, increasing the reliability of constituent components through a product improvement program, using structurz! redundarcy, and practicing a planned maintenance and renair scheduie. a yood dea: of effort has been centered in the field of optinal redundancy allocation.

A state-of-art review of the literature related to optimai systams reliability with redundancy is presented in this paper. The ijrst part of che reference iist is concerned with basic reliability [i-1"] and optimizatiun termiques [18-65]. The reference for the various optimizazion cechniaues are: optimization techniques in general [18-23], integer prograinming [21-22], the maximuin principie [30-35], the generalized reduced gradiert method $G R: 7$ [3:-42], modiEied sequential simplex pattern search [.ij-ió], the sequential unconstamined minamization tecimique (SUMT) [$\left.4^{-}-52\right]$, the methoc of Lagrange mutipiters and the Kum-Tucker conditions [jコ-jt]. the generaiized Lasrangian functions method $[55-58 j$, dymamic programning [59-ej], and gevineivil programming [64-66].
The socund part of the reference ILst soncentates inaioly on artian os

which are classified into two caregories: the system configurations and the op:imization techniques emploved, see Tibles land 2. In Table \therefore. the literature for the different system configurations is separated into the following model sub-categories: series, parallel, series-parallel, parallel-series, standby, and non-series-parallel models. In Table 2, the same literature is reclassified to indicate the variety or optimization techniques utilized.

Although the authors have tried to give a reasonably complete survey, those papers, no: included, vere either inadvertently overlooked or considered not to bear directly on the topics of this survey. The authors apologize to both the readers and the researchers if we have omitted any relevant papers.

2. CISTEMS YODELS

In this review, we assume that the reader is familiar with the material treated in these models. For a discussion of the definitions and formulations of the basic concepts, the authors suggest reviewing the books on reliability as stated in the references [1-17]. We will briefly review each cf the models considered in this survey.

The first model considered is an N-stage series system and $1 s$ shown in Fig. 1. In this system, the functional operation depends upon the proper operation of all system components. The second model is an リ-stage parallel system which is shown in Fig. 2. There are M paths connecting the input to the output, and all components must fail for the system to fail.

Figure 3 shows a mixed series-parallel system in which is conponerts are comected in a series arrangement where U such series connections are connetted in parallel to form the system. Figure \perp shows a mixed parallelseries system. In this susten, N stages are connected in series where componentis are conneczed in parallel at each stage.

Table 1 . The reference classification for the opimization of syscens reliability with redundancy with regard co varicus system configuration.

System Configuration	References
Series	$\begin{aligned} & 70,72,76,77,73,79,83,37,88,89,108, \\ & 122,125,129,130,136,139,1+1,142 \end{aligned}$
Parallel	$\begin{aligned} & 70,71,79,88,89,95,104,122,129,136, \\ & 139,141,142 \end{aligned}$
Series-parallel	$\begin{aligned} & 79,98,99,94,95,110,122,124,129,130, \\ & 1+1,1+2 \end{aligned}$
Parallel-series	$62,69,72,75,77,-8,79,80,81,82,85,94$ $87,88,39,92,93,94,96,98,100,101,104$, $105,10,107,108,109,110,111,112,114$, $115,116,117,118,119,120,122,124,120$, $127,128,129,130,132,134,135,136$, $138,159,141,142,143$
Standby	$\begin{aligned} & 77,89,90,93,108,120,121,122,127,129, \\ & 130,135,141,142 \end{aligned}$
Von-series-paralle! (including bridge network)	$68,-0,-1,75,-9,30,91,97,1.36,110$

Table 2．The reference classification for the optinization techniques enployed Eor systems reliability with redundancy．

Opitmization technique
References

Intege：progranming	$\begin{aligned} & 80,87,90,92,98,103,105,106, \\ & 107,112,116,120,135,137,139 \end{aligned}$
Dynami：programming	$\begin{aligned} & 75,80,84,94,96,99,101,104, \\ & 108,127,128,133,143 \end{aligned}$
The maximun principle	82，110，138
Linear programraing	98， 131
Geometric yrogramming	83，114
Sequentia，unconstrained minimization technique	91，134，136，140
Nodifiad Eequential smplex patte：n search	71， 118
The method of iogrange muti－ ？tiers and the Kuhn－rucker cond：tions	$77,73,31,108,110,111,15.5$
The generaiizer Lagrangian Eunction method	100
Generalized reduced gradient method	100
Heuristic avproac：	58，69，100，132
Perametris sporoach	71，プ，フЈ，8？
Pseudo－buolear progremming	93
Others（missellneous）	$\begin{aligned} & 76,-7,-8,88,89,95,100,109, \\ & 11-, 119,121,122,125,128,130, \\ & 141,142 \end{aligned}$

FIG. I: AIV IN-STAGE SEREES SYSTEン

=-G. 2: AN BO-STMGE PARMLEELSVSE:

FIE. 3: A MIXEJ SEREES-PARALLEL SYSTEM

F-G. L: A MIXED PARALEEL-SERIES SYSTEM
in elenent standyy system is shown in Fig. 5, which has the same form as a mixed parallel-series system. \because owever, in this system the paralle? components are not ail active at the same time. Figure 6 shows a suster. standov system which h'ts the same form as a mixed jeries-parailel system. rowever, when a system standhy system is used, the parallel 1 series subsystems are not ail active at the same time.

Figure 7 shows a typical non-series-paraliel reliability systera. The reliability of this system can be evaluated by using conditionai probabilities OV other approaches. Figure 3 shows a complex bridge netivork sys=em which is one of the complex reliability systems in the form of the oridge retinork.

Table 1 presents the literature on the optimization of systems re:iability for the above sustems models.
3. STATEMENT OF THE UARIGLS OPTIMIZATION PROBLEMS

The structure of the optinization problems, which are relevar: io our survey, are stated below and the literature is identified in Tabie 3.

Fow an M-stage series model (see Fig. 1), the problem is one of àhoこaこing the reliabilizy to aach of the components so that the relianility ls maxinizee and can be stated as

Problem?

$$
\text { yaximize } R_{s}=\prod_{j=1}^{V} R_{j}
$$

subject to
$\left.\sum_{j=1}^{v} g_{i j} i R_{j}\right) \leq r_{i}, \quad i=1,2, \ldots \ldots m$
where R_{s} is the svotems reliability, R_{j} is the component reliability of the jth stage, $a_{i j}\left(R_{i}\right)$ is the resoumce i consumed at stage j, and h_{i} is the total amount of resourse i ivailable. The funczion, sij (ri), can eizher je

FIG. 5: AN ELEMENT STANDOY SYSTEM

[^0]

FIG. 7: A TYPICAL NON-SERIES-PARALLEL RELIASILIOY SYSTEX

Table 3. The reference classifications with regard to the structure of the optimization problems

Formuation of problens	References
Problen l: Optimum reliability allocation for an N -stage series system	$9,76,99,100,110,113,125$
Problem 2: Optimum redundancy allocation, maximization of systems reliability subject to cost constraints	$\begin{aligned} & 69,72,75,77,50,81,83, \\ & 84,88,89,90,92,93,94, \\ & 96,98,100,105,106,107, \\ & 108,109,110,111,112,115, \\ & 114,115,116,117,115,119, \\ & 120,121,122,125,126,129, \\ & 130,132,134,135,136, \\ & 137,138,139,141,142,115 \end{aligned}$
Problem 3: "Cost" minimization problems subject to the minimum requirement of the system reliability	$\begin{aligned} & 72,78,90,31,93,100,112, \\ & 113,122,125,131,155,157, \\ & 139 \end{aligned}$
```Eroblem 4: System reliability maximization ror a non-series-parallel Reliability allocation Redundancy allocation```	$\begin{aligned} & 80,91, \quad 100, \quad 1.10 \\ & 68,71,136 \end{aligned}$
Otners   Maximization of the system profit Maximization of the ratio of the system reliability to the power demand of the system	$\begin{aligned} & 32,128 \\ & 104 \end{aligned}$

i further detineation of this problern can je stazed as fincing the optimum number of recumaincies（sきe Figs．－－）wich maximize the sysiem re－ liabilit，subject to＂cost＂constraints，or the minimizaこion ozesyter＝osts subject to the condition that the systern reliability is equal to or greater than a desired level．These problems are stated as：

Problem？

$$
\text { Maximize } \quad R_{S}=\prod_{j=1}^{N} R_{j}\left(X_{j}\right)
$$

subject to

$$
\sum_{j=1}^{N} g_{i j}\left(x_{j}\right) \leq b_{i}, \quad i=1,2, \ldots, m
$$

where $R_{j}$ is the reliability of the $j$ th stage（subsystem），which is the function or the number of components，$x_{j}$ ．

Problem 3

$$
\text { Minimize } C_{s}=\sum_{j=1}^{N} C_{j}\left(X_{j}\right)
$$

subject to

$$
R_{s}=\sum_{j=1}^{N} R_{j}\left(x_{j}\right) \geq R_{r}
$$

where $C_{s}$ is the total cost of the systen and $C_{j}$ is the cost of the jth staite Which is a function of the number of components in each stage， $\mathcal{K}_{j}$ ．The systems reilability，$R_{s}$ ，has to be greatar than or equal to the yequined systems reliability，$R_{r}$ 。

The systems reliability for the complex systems (see Figs. - and 8) are obtained by using Bayes' theorem involving conditional probabilieies or other network approaches. The optimization problem is stated as

Problem 1

$$
\text { Maximize } R_{s}=f\left(R_{1}, R_{2}, \ldots, R_{N}\right)
$$

subject to

$$
\sum_{j=1}^{N} g_{i j}\left(R_{i}\right) \leq b_{i}, \quad i=1,2, \ldots, m
$$

where the systems reliability is a function of the component reliabilizy, $R_{j}$.
4. CPTIMIJITION TECHNIQUES USED TO DETERMINE THE OPTIMAL SYSTEMS RELIABILITY

Yost of the problems stated are nonlinear integer programming problems. These problems are more difficult to soive than the general nonlinear programing pronlems because the solutions are required to be integers. Many algorithms have been proposed but only a few have been demonstrated to be effective when applied to large-scale nonlinear programming yroblems. None have proven to be superior over the others so that it could be classified as the aigorithr for solving general nonlinear programming probiems [22].

The literature on the optimization techniques which are relevant to this survey is classified and presented in Table 2. All the optimization techniques employed in the -7 papers $[67-14 j$ ] have limited success in solving all of the problems.

I!though integer programming [24-29] yields integer solutions, the transiomacion oí nonlinear objective functions and constraints into a linear form so chat integer programming can be applied is a difeicult task. In
addition, the varıous integer programning techniques do not guarantee that optimal solutions can be obtained in a reasonable time. Dynamic proyramming [59-63] has the dimensionality difficulties which increase witn the increase of the number of state variables, and $i t$ is hard to solve problems with more than three constraints. Similarly, the maximum principle [30-33] has difficulty in solving problems with more than three constraints. Likewise geonetric programming $[64-66]$ is restricted to problems that can be formulated by posynumial functions

The sequential unconstrained minimization technique (SINMT) [4T-シこ], the generalized reduced gradient method (GRC) [34-42] modified sequential simplex pattern search $[4 \vec{j}-46]$, and the generalized Lagrangian function method [ $55-58$ ] are probably the few techniques that have been demonszrated to be effective when applied to large-scale nomlinear programming probloms. However, the solutions are nonintegers and hence the optimal solution winich rust be integer is not guaranteed.

5
CONCLUDING REMARKS
Al: the optimization techniques emploved in the papers surveyed have limited success in solving some small-scale svsten reliability optimization problems. Few techniques have been demonstrated to be effective when zopliec to large-scale system reliability ootimization problems.

There are some new directions which additional optimization work would be Eruitful. For example, one extension to the usual reliability optimization problem is to include the determination of the optimal level of component reliability and the number of redundancies in each of the stages simuitaneously. The probiem is one in which the component failure rate is a variable and
the optimal trade off between adding components in redundancy or improvement of the indivjdual component reliability is to be determined. Another example is one where the optimization of multi-stage system reliability is achieved by choosing a more reliable component out of several possible candidates at stage 1 , adding redundant components in parallel at stage 2 , and using a k-out-of-n: Co configuration at stage 3 .

Cost data for improving systems reliability are critically needed. Very little of these cost data are available. In the formulation of objective functions or constraints, actual cost data are necessary to realistically model the problems.

Increasing complexity of modern-day equipment, both in military and commercial areas, has brought with it new erfineering problems involving high performance, reiiability, and maintainability. In this regard availability, which is a combined measure of maintainability and reliability, has received wide increased usage as a measure of system effectiveness. A survey of this iiterature is presented in reference (144). A logical classification of. various aspects of this problem is presented.

## REFERENC:S

## (1) ON RELIABILITY AVD OPTIMIEATION TECHNIQUES

## RELIABILLTY

1. ARINC Res. Corp., Reliability Engineering, Englewood Cliffs, N.J.: Prentice-Hall (1964).
2. Amstadter, B. L., Reliability Mathematics, N.Y.: McGraw-Hill (1971).
3. Sarlow, R. E., and F. Proschan, Mathematical Theory of Reliability, N.Y̌.: Wiley (1965).
4. Barlow, R. E., and F. Proschan, Statistical Theory of Reliability and Life Testing, N.Y.: Holt, Rinehart, and Winston (1975).
5. Bazovsky, I., Reliability Theory and Practice, Englewood CIiffs, N.I.: Prentice-Hall (1961).
6. Calabro, S. R., Reliability Princioles and Practice, N.J.: RAcGraw-Hill (1962).
7. Gnedenko, B. V., Y. K. Belyayer, and A. D. Solovyev, Mathematical Methocis of Reliability Theory, N.Y.: Academic Press (1969).
S. Grouchko, [. (ed.), Operations Research and Reliability, N.Y.: Gorcion and Breach (1959).
8. Lloyd, D. K., and M. Lipow, Reliability: Management, Methods and Mathematics, Englewood Cliffs, N.J.: Prentice-kali (1962).
9. Mann, N. R., R. E. Shafer, and .i. D. Singpurinlla, Methods for Statistical Analysis of Reliability and Life Data, V.Y.: Wiley (1974).
10. Meyer, ?. L., Introductory Probability and Statistical Apolication, Mass.: Addison-Nesley Publishing Company (1966).
11. Myers, R. H., K. L. Nong, and H. M. Gordy, Reilability Engineering for Electronic Svastem, N.Y.: Wiley (1964).
12. Pieruschaka, E., Principles of Reliability, Englewood Cliffs, N.J.: Prentice-Hall (1965).

1̈̈a. Polovko, A.11., Fundamentals of Relianility Theory, K.Y.: Nuademiz (1068).
14. Rau, J. G., Optinization and Probabilizy in Sustens Engineering, N.Y.: Van Sostrant Reinnold Comp. (1970).
15. Sandler, G. U., Jystan Re?iability Engineering, Englerood Clitiss, i.J.: Prentice-iall !965j.
10. Shoman, 1. L. Dnobahilistic Reliabilizy: An Engineering ipproach, A.Y.: MoGrow-Hill (ive
17. Zelen, M. (ed..), Statistical Theory of Reliability, Madison, Wisconsin: University of Wisconsin Press. (1964).

## GENERAL OPTIMT ZATION TECHNIQUES

18. Abadie, J. (ed.), Integer and Nonlinear Programning, N.Y.: NorthHolland/American Elsevier (19*0).
19. Beveridge, G. S. G., and R. S. Schechter, Optimization: Theory and Practice, N.Y.: McGraw-Hill (1970).
20. Fletcher, R., Optimization, N.Y.: Academic Press (1969).
21. Leitmann, G., Optimization Techniques with Applications to Aerospace Systems, N.Y.: Academic Press (1962).
22. Himmelblau, D. M., Applied Nonlinear Programming, N.Y.: MoGraw-Hill (1972).
23. Wilde, D. J., Optimum Seeking Methods, Englewood Clifês, II..J.: Prentice-Hall (1964).

## INTEGER PROGRMMITNG

21. Garfinke1, R. S., and G. L. Nemhauser, Integer Proganming, N.Y.: Wiley (1972).
22. Geofirion, A. M., "An improved implicit enumeration approach for integer programming", RAid Corp. Rept. RM-5ó44-PR June 1968, or Oper. Res. Vol. 17, pe. 457-454 May-June (1969).
23. Gomony, K. E., "Outline of an algorithm for integer solutions to linear problem," Bulletin of the American Mathematicai Society, Vol. 6!, No. 5, pp. 275-278 (1958).
24. Hu, T. C., Integer Programming and Vetwork Elows, Mass.: AddisonHesley Publishing Comp. (1969).
25. Salkin, H. M., Inteqer Programming, Mass.: Addison-ivesley (19-5).
26. Taha, H. A., Integer Programing - Theory, Applications and Computations, N.Y.: Academic Press (1975).

THE MAXIMUM PRENCTPLE
30. Denn, M. M., Optimization by Variationai Methods, N.Y.: McGram-ij:1(1969).
31. Fan, L. T., and C. S. Wang, The Uiscrete Maximum Principle - A Study of Muitistage Systems Optimi ation, y.Y.: Miley (1964).
32. Fan, L. T., The Continuous Maximun Principle $-\lambda$ Study of Complex Systems Optimization, V.Y.; Wiley (1966).
33. Pontryagin, L. S., V. G. Boltyanskii, R. V. Gamkrelidge, and E. F. Mischenko, The Mathematical Theory of Optimal Processes, (English Translation by K. N. Trirogofif) Inerscience, N.Y. (1962).

## GENERALIZED REDUCED GRADIENT METHOD

34. Abadie, J. and J. Guigou, Numerical experiments with the GRG method, in Integer and Nonlinear Programing, e.d. J. Abadie, Amsterdam: North Holland Publishing Co. (1970).
35. Abadie, J., Solution des questions de dégénérescence dans la methode CRGG, EDF* note HI 143/100 due 25 (September 1969).
36. Abadie, J., Application of the GRG Algorithm to Optimal Control Problem, in Integer and Nonlinear Programming, e.d. J. Abadie, North Holland Publishing Co. Amsterdam (1970).
37. Abadie, J., and J. Carpenter, Generalization of the Wolfe Reduced Gradient Method to the Case of Noniinear Constraints, in Optimizazion, ed. R. Fletcher, iv.Y.: Academic Press (1969).
38. Abadie, J. and J. Guigou, Gradient réduit généralisé, EDF* note HI 069/2 du Avril (1969).
39. Colvill, A. R., A comparative study of nonlinear programing cocies, [BM New York Scientific Center, Report 320-2949 (1968).
40. Guigou, J., Presentation et utilisation du code GRG, EDF* note Hi 102/02 du 9 Juin (1969).
41. Guigou, J., Presentation et utilisation du code GREG, EDF* nore Hl 582/2 due 25 Mai (1971).
42. Hwang. C. L., J. L. Williams, and L. T. Fan, Introduction to the Generalized ieduced Gradient Method, Institute for Systems ijesign and Optimization, Report No. 39, K.S.U., Manhattan, Kansas ó $=02$.

## YODIFIED SEQUENTIAL SIMPLEX PITTERN SEARCH

4j. Box, M.J., "A new method of constrained optimization and a comparison with? other methods", Computer Journal, Vol. 8, pp. ミこ-52 (1965).
4. Fan. L. T., C. L. Hwang, and F. A. Tillman, "A sequential simplex pattern search solution to production planning probiems', AIIE Transactions, Vol. 1, pp. 267-27j (1969).
45. Veldex, J. A., and R. Vead. "A simplex mathod for function minimıation", Cumputer Joumai, Vol. ${ }^{-}$, pp. $308-313(: 965)$.
46. Sheela, B. V., and P. Ramamourchy, "SNIFT-A new constrained optimization technique', Computer Methods in lpplied Mechanics and Engineering, Vol. 6, pp. $309-517(1975)$.

## SEQUENTIAL UNCONSTRAINED MINIMIZATION TECHNIQUE

47. Bracken, J., and G. P. McCormick, Selected donlications of Nonlinear Programing, N.Y.: Wiley (1968).
48. Fiacco, A. V., and G. P. McCormick, Vonlinear Programming:

Sequential Unconstrained Minimization Techniques, N.Y.: Wiley (1968).
49. Hwang, C. L., K. C. Lai, F. A. Tillman, ans L. T. Fan, "Optimization of system reliability by the sequential unconstrained minimization techniques", IEEE Transactions on Reliability, Vol. R-24, pp. 133-135
50. Kowalik, J., and M.R. Osborme, Methods for Unconstrained Optimization Problems, Elsevier, N.Y. (1968).
51. Lai, K. C., Ontimization of Industrial Management Systems by the Sequential Unconstrained Minimization Technique, A master's report, Kansas State University (1970).
j2. McCormick, G. P., N. C. Mylander, III, and A. V. Fiacco, "RiC
Computer Program Implementing the Sequential Unconztrained
Minimization Technique for Vonlinear Programniny", SHARE Number 3189.

## YETHOD OF LAGRANGE MULTIPLIERS AND THE KUHN-TUCKER CONDITIONS

5.3. Hwang, C. L., P. K. Cupta, and L. T. Fan, Method of Lagrange Multipliers and the Kuhn-Tucker-Conditions, Institute for Systems Design and Optimization, Report No. 60 , Kansas State University (1971)
54. Kuhn, V. W. and Tucker, 1. W., Von-Linear Programming, Proceedings of the Second Serkeley Symposium on Yathematical Statics and Probability, J. Neyman, Ed., University of California Press, Berkeley, California, pp. 481-492 (1951).

## THE GENERALIZES LAGRANGI.AN FUNCTIONS METHOD

55. Everett, H., "Generalized Lagrange Multipiier Method for Solving Problems oí Optimal Allocation of Resources", Operations Research, vol. 11, pp. j99-417 (1965).
56. F. A. Lcotsma, "A Survey of Methods for Solving Constrained Minimzation Probiems via Unconstrained minimization", in Vumerical Methods Eor Non-Lirear Optimization, F. A. Lootsma (ed.) Academis Press (197J); also in Oetimization and Design, M. Avriel, M. J. Rijckaert, and P. J. Wilde (eds.) Prentice-Hall, pp. 38-118 (1973).
57. Roode, J. D., Generalized Lagrange Function and Yathematical Progranriing, in Dutimization, ed. R. Fletcher, N.Y.: Academic Press (1969).
58. Sayama, H., Y. Kameyama, H. Nahayama, and Y. Jawaiagi. The Generalized Lagrangian Function for Mathematical Programming Problems, Tnstitute For Evstems Design and Optimization, Vo. 55, Kansas State liniversizy, lianhaťan, Vansas 66506 (1974).

## DYNAMIC PROGRAMMING

59．Bellman，R．，Dynamic Programming，Princeton，V．J．：Princeton University Press（1957）．

60．Bellman，R．，and S．E．Dreyrus，Anplied Dvamic Programming，Princeton， N．J．：Princeton University Press（i962）．

61．Bellman，R．，Modern Analytic and Computational Methods in Science and Mathematics，N．Y．：Elsevier Publishing Co．（1968）．

62．Hadley，G．，Nonlinear and Dynamic Programming，Reacing，Mass：Addison－ Wesley（1964）．

6j．Nemhauser，G．L．，Introduction to Dynamic Programming，N．$\because$ ．：Wiley（1967）
GEOMETRIC PROGRAHMING
64．Duffin，R．J．，E．L．Peterson，and C．Zener，Geometric Programing， N．Y．：Wiley（1967）．

6三．Nijkamp，P．，Planning of Industrial Complexes by Means of Geometria Programming，Rotterdam Uriversity Press，Rotteriam，Netherlands．（1972）

66．Dener，C．，Engineering Design by Geometric Programming，N．Y．：Wile：－ Interscience，（1971）．
（2）DN OPTIMIZATION OF SYSTEMS RELIABILITY WITH REDUNDANCY
67．Aggarwal，K．K．，and J．S．Gupta，＂On minimizing the cost of riẻiable
 （August 1975）．

68．Aggarwal，K．K．，＂Redundancy optimization in general systems＂，IEEE $\frac{\text { Transactions on Reliability，}}{1976 \text { ）．Vol．R－25，No．5，pp．330－332（Decemper }}$

69．Aggarwai，K．K．，J．S．Gupta，and K．B．Misra，＂A neiv heuristic ことiたerion for solving a redundancy optimization problem＇，IEEE Transactions on Reliabilitr，Vol．R－2t，Vo． $1, \mathrm{pp}$ ．86－87（Apri！19：5）．

70．Aggarwal， $\mathrm{K}_{\mathrm{K}} . \mathrm{K}$. ，and K．B．Misra，and J．S．Gupta，＇Reliability evaluation－ a comparative study of different techniques＂，Microelectronics and Reliabjlity，Vol．14，No．1，pp．49－56（Feb．1975）．
－1．Banerjee，S．K．，K．Rajamani，and S．S．Deshpande，＂Optimal redundancy allocation for non series－parallel retworks＇．IEEE Transactions on Reliabilicy，Vol．R－25，No． 2 ，po．115－117（June 1976）．

T2．Banerjes．S．K．，and K．Rajamani，＂Optimjzarion of svszem reliability using a parameveic anproach＇＂，LEEE Transactions on Reiiabıliz．Vo：． R－22，pp．35－59 Apri！1975）．
-j. Banerjee, S.K., and K. Rajamani, "Parametric representation fo probability in two dimensions - a new approach in system reliability evaluation', IEEE Transactions on Reliability, Vol. R-21, pp. 56-60 (February 1@ 72 ).
74. Banerjee, S.K., and K. Rajamani, "Closed form solutions for deltastar and star-delta conversions of reliability networks", IEEE Transactions on Reliability, Vol. R-25, $\because$ O. 2, pp. 118-119 (June 1976)
75. Bellamn, R.E., and S.E. Dreyfus, 'Dynamic progranning and reliability of multicomponent devices", Operations Research, Vol. 6, pp. 200-205 (March-April 1958).
76. Beraha, D. and K. B. Misra, "Reliability optimization through random search algorithm", Microelectronics and Peliability, Vol. 13, pp. 295-297 (August 1974).
77. Black, G., and F. Proschan, "On optimal redundancy", Operations Research, Vol. 7, pp. 581-588 (1959).

T3. Bodin, L.D., "Optimization procedure for the analysis of coherent structures", IEEE Transactions on Reliability, Vol. R-13, No. 3 , pp. 119-126 (August 1969).
79. Brown, [.B., "A computerized algorithm for determining the reliability of redundant configurations", IEEE Transactions on Reliability, Vol. R-20, No. 3, pp. 121-124 (August 1S71).
30. Burton, R.M., and G.T. Howard, "Optinal system reliability for a nized series and parallel structure", Journal of Mathematical Analvsis and doplications, Vol. 28, pp. 370-382 (1369).
81. Everett, H. III, "Generalized Lagrange Wultiplier Method for solving problems of optimum allocation of resources:, Operations Research, Vol. 11, No. 3, pp. 399-417 (May-June 1965).
32. Fan, L.T., C.S. Wang, F.A. Tillman, and C.T. Hwang, "Optimization of systems reliability", IEEF Transactions on Reliability, Vol. R-16, pp. 81-86 (1967).
83. Federowicz, A.j., and M. Mazumdar, "Use of geometric programming to maximize reliability achieved by redundancy ${ }^{\prime \prime}$, Operations Research Vo1. 16, No. 5, pp. 948-954 (Sept.-Oct. 1968)
34. Fyife, D.E., W.i. Hines, and N.K. Lee, "System reliability allocation and a computational algorithm", IEEE Transactions on Reliability, Voi. R-17, No. 2, po. 6t-69 (June 1963)
35. Geisler. W.A., and H.W. Karr, 'The desion of military supply tables for spare parts", Dperations Research, Vol. 4, pp. 151-144 (1956).
36. Cen, M., H. Ckuno, and S. Shinofliji, "in ovtimizing method in system reliability with failure-modes by imp!jcit enumeration algorithm": J. of the Operations Research of Japan, Vol. 19, pp. 99-116 (June 1976).

S7. Chare, P.M., and R.E. Taylor, "Optimal redundancy Eor reliability in series system', Operations Research, Vol. 17, pp. S38-847 (Sept. 1969).
33. Gordon, R., "Optimum component redundancy for maximum system reliabilizy", Operations Research, Vol. 5, pp. 229-243 (April 1957).
89. Hees, Ir.R.N.v., and Ir.H.W.v.d. Meerendonk, "Optimal reliability of parallelmulti-component systems", Opertions Research Ouarterly, Vol. 12, No. 1, pp. 16-26 (May 1961).
90. Hwang, C.L. L.T. Fan, F.A. Tillman, and S. Kumar, "Optinization of life support system reliability by an integer progranning method", AIIE Transactions, Vol. 3, No. 3, pp. 229-238 (Septomber 1971)
91. Hwang, C.L., K.C. Lai, F.A. Tillman, and L.T. Far, "Optimization of systen reliability by the sequential unconstrained minimization techniques", IEEE Transactions on Reliaoility, Voi. R-24, yp. 13j-135 (1975)
92. Hyun, R.N., "Reliability optimization by 0-1 programming for a syミtem with several failure modes", IEEE Transactions on Reliability, Voi. R-24, No. 3, pp. 206-210 (August 1975).
93. Inoue, K., S.L. Gandhi, and E.J. Henlev, "Optimal reliability design of process systems", IEEE Transactions on Relizbilitv, Vol. R-2ラ, No, 1, pp. 29-33 (April 197t)
94. Jensen, P.A., "Optimization of series-parallel-series netivorks", Doerations Research, Vol. 18, pp. 4-1-48? ('12y-June 19~0).
95. Kheale, S.G., "Reliability of parallel systoms with ravair and switching", Proceedings of the Seventh National Symposium on Keliability and Qualtiy Control. pp. 129-153 (1961).
96. Kettelle, J.D., "Least-cost allocation of reliabiiity investment", Operations Research, Vol. 10, pp. 249-265 (March-.tpril 1967).

9". Kim, Y.H., K̈.E. Case, and P.M. Glare, "A method for computing complex system reliability", IEEE Transactions on Reliabilizy, Vol. R-2i, No. 4 , pp. 215-219 (November 1972).
98. Ǩolesar", P.i.. "Linear programming and the reliability of multicomponent systems", Naval Research Logistics Quarterly, Vol. 15, pp. 317-327 (Sept. 136").
29. Kulshrestha, D.K.. and M.C. Gupta, "Use of dynamic programing for reilability engineers, IEEE Transactions on Reliability, Yol. R-2?, po. 240-2+1 (Oc: ! ! 9-j).
100. Kuo, W., "Optimization Techniques for Systems Reliability with Redundancy", M. S. Thesis, Kansas State University, (1977).
iणl. Lambert. B.K., A.G. Walvekar, and J.P. Hirmas, "Optimal redundancy and availability allocation in multistage systems", IEFE Transactions on Reliability, Vol. R-20, No. 3, pp. 182-185 (August 1971).
102. Laut, S., "Subsystem optimization effectiveness improvement by the option tradeoff analysis process", IEEE Transactions on Svstems Scier.ce and Cybernetics, Vol. SSC-4, No. 2, pp. 133-137 (July 1968)
103. Lawler, E.L., and M.D. Bell, "A method for solving discrete optimizaiton problems", Operations Research, Vol. 14, pp. 1098-1112 (Yov.-Dec. 1966)
104. Liittschwager, J.M., "Dynamic programming in the solution of a mulcistage reliability problem', Journal of Industrial Engineering, Vol. 15-16, pp. 168-175 (1964-1965).
105. Luus, R., "Optimization of system Reliability by a new nonlinear integer programming procedure", IEEE Transactions on Reliability, Vol. R-24, pp. 14-16 (April 1975).
106. Mcteavey, D. W., 'Numerical investigation of parallel redundancy in series systems", Operations Research, Vol. 22, pp. 1110-1117 (Sept.-.Oct. 1974).
107. McLeavey, D. W., and J. A. McLeavey, "Optimization of system reliability by branch-and-bound", IEEE Transactions on Reliability, Vol. R-25, No. 5, pp. 327-329 (December 1976).
108. Messinger, …, and Shooman, H., "Technique for oprimum spares allocation: a tutorial review", IEEE Transactions on Reliability, Vol. R-19, pp. 156166 (November 1970)
iOS. Misra, K.B., "A simple approach for constrained redundancv optimization problems", IEEE Transactions on Reliability, Vol. R-21, .Vo. 1, pp. 3034 (Feruary 1972).
iiO. Misra, K.B., "Reliability optimization of a series-parallel system", IEEE Transactions on Reliability, Vol. R-21, No. 4, pp. 250-238 (November 1972).
111. Hisra, K.B., and M.D. Ljubojevic, "Optimal Reliability design of a system: a new look", IEEE Transactions on Reliability, Vol. R-22, pp. 255-258 (Vecemicer 1975).
112. Misra K.B., "A method of solving redundancy optimization puoblems": IEEE Transactions on Reliability, Vol. R-20, No. $3 . p p .11-120$ (iugust 1071).
113. Misra, K. B., "On optimal $\quad$ ©liability design: A review", IFAC for 6th World Conference, Boston, Mass. USA pp. 3.4,1-3.4,10 (August 19:5).
11. Hisra, K. B., and J. Sharma, "A now geometric programming formulation for a reliability problem', International. Journal of Ruality Control, Vo1. 18, No. 3, pp. 497-503 (1973).
115. Misra, K. B., and C. E. Carter, "Redundancy allocation in a system with many stages", Microelectronics and Reliability, Vol. 12, pp. 223-228 (June 1973).
116. Misra, K.-B., and J. Sharma, "Reliability optimization of a system by zero-one programming", Microelectronics and Reliability, Vol. 12, pp. 229-233 (June 1973).
117. Misra, K. 5., "A method for redundancy allocaticr", Microelectronics and Reliability, Vol. 12, pp. 389-393 (October 1973).
118. Misra, K. B., 'Reliability optimization through sequential simplex search", Int. J. Control, Vol. 18, pp. 173-18j (1975).
119. Misra, K. B., and J. Sharma, "Reliability optimization with integer constraint coefficients", Microelectronics and Reliability, Vol. 12, pp. 431-433 (November 1973).
120. Mizakami, K., "Optimum redundancy for maximum system reliability by the method of convex and integer programming", Cverations Research, Yo!. 1ó, pp. 392-406 (March-April 1963).
121. Morrison, D.F., 'The optimum allocation of spare components in system", Technometrics, Vol. 3, No. 3, pp. 399-406 (August 1361).
122. Moskowitz, F., and J.B. McLean, 'Some reliability aspects of system design'", $\frac{\text { IRE Transactions on Reliability and Ruality Control, Voi. PGRLC - 8, pp. T-5.5 }}{\text { (September }}$
12.3. Myers, B.L., and N.L. Enrich, "Algorithmic optimization of system neliability" Annual fechnical Conference Transactions, American Society for Ruaiizy Contro1, pp. 455-460 (1963).
124. Velson, A.C., Jr. I.R. Satts and R.L. Beadles, "A computer progran for approxinating system reliability", IEEE Transactions on Reliability, Vo!. R-19. pp. ól-60 (May 1970)
125. Neuner, G.E. and R.N. Miller, 'Resource allocation for maximum reliability", Proceedings of i96́ Annual Symposiun on Reliability, pp. $552-515$ (January 1966).
126. Proschan, F., 'Redundancy for reiiabilizy improvement", in Statistiこa引 Theory of Reliablity (ed. M. Jelen), Vadison, The Univeäsity of oflzonsm Feress, pF. $55 . .0$ (1964).
127. Proschar, F.. and T.it. Bray, "Optimum redundancy under multiple constraints': Operations Research, Vol. 13, pp. 800-814 (September-October 1965).
128. Rudd, D.F., "Reliability thenry in chemical system design", IGEC Fundamental, Vol. 1, No. 2, pp. 138-143 (May 1962).
129. Sasaki, M., "A simplified mehtod of obtaining highest system reliability", Proceedings of the Eighth National Symmosium on Reliability and Quality Control, pp. 489-502 (1962).
130. Sasaki, M., "An easy allotment method achieving maximum system reliability", Proceedings of the Vinth National Symposium on Reliability and Quality Control pp. 109-124 (1963).
131. Selman, V., and N.T. Grisamore, "Optimum svstem analysis by linear progranming", 1966 Processing Annual Symposium on Reliability, American Society for Quality Control, pp. 696-703 (1966)
152. Sharma, J., and K.V. Venkateswaran, "A direct method for maximizing the system reliability", IEEE Transactions on Reliability, Vol. R-20, No. 4, pp. 256-259 (November 1971)
133. Shershin, A.-C., 'Mathematical optimization techniques for the simultaneous apportionments of reliability and maintainability", Operations Research, Vol. 18, No. 1, pp. 95-106 (JanuaryFebruary 1370).
134. Shetty, Hi.V.K., and D.P. Sengupta, "Reliability optimization using SLUMT IEEE Transactions on Reliability, Vol. R-24, No. 1, pu. 30-81 (Apri1 1075).
135. Tillmar, F.A., "Integer programming solutions to constrained reliability optimization problens', Transactions of Twentieth Annual Technical Conference, American Society for Quality Control, paper number 66-174, pp.676693 (1966).
136. Tillman, F.A., C.H. Lie, ard C.L. Hwang, "Analysis of pseudo-reilability of a combat tank systen and its optimal design', IEEE Transactions on Reliability, Vol. R-25, pp. 239-242 (1976).
137. Tiliman, F.A., and J.M. Liittschwager, "Integer programning formulazion of constrained reliability probiems", Management Science, Vo1. 13, No. 11, pp. 837-839 (July 1967).
158. Tillman, F.A., C.L. Hwang, L.T. Fan, and S.A. Balbale, "Systems reliability subject to multiple nonlinear constraints", IEEE Transactions on ReliabiijEy. vol. R-17. No. E, pp. 153-157 (September 1968)
159. Tilyman, F.i., 'Cptimization by integer programming of constrained reliability prociems with several modes of failure", IEEE Transactions on Reijabl!:こy, Vol. R-18, N0. 2. 2p. Ti-53 (May 1969).

14U. Tillmart, F.A., C.L. Hwang, L.T. Fan, and K.C. iai i " "Optimal reliability of a complex system", IEEE Trarsactions on Reliability. Vol. R-19, No. 3, pp. 95-100 (1970).
141. 'rebster, L.R., "Optimum system reliability and cost effectiveness", $\frac{\text { Proceedings of } 1967 \text { Annual Symposium on Reiliability, }}{(\text { January 1967). }}$. $189-500$
142. W' Webster, L.R., "Choosing optimum system configurations", Proceedings of $\frac{\text { the Tenth National Symposium on Reliability } G \text { Quality Control, Nashington, }}{\text { D.C., pp. } 345-359(1964) \text {. }}$
143. Woodhouse, C.F., "Optimal redundancy allccation by dynamic programming", IEEE Transactions on Reliability, Vol. R-21, No. I, pp. 60-62 (February 1972).
144. Lie, C.H., C.L. Hwang, and F. A. Tillman, "Availability of Maintained systems: a state-of-the-art survey" dIIE Transactions, (in press 197\%).

CHAPTER 3 OPTLMIZATION OF SYSTEM RETIABILITY

Optimization techniques have their inherent characteristics and sfecific swperiorities to solve general linear or nonlinear programing probiers. In this shapter, various optimization techniques are treated to
(1) maximize the system reliability by adding the redundant components in each specified subsystem,
(2) maximize the system reliability by choosing a suitable stage reliability in each specified subsystem, or
(3) minimize the "cost" of the system while satisfying the minimum rec̣urement of the system reliability.
(4) minimize the "cost" of a multi-function system while satisfying the uinimum requirement of each individual system reliability.
"Cose" conscraines of cost, weight, volume, or some combination of these tactors are imposed to a systen with series, parallel, or complex conEiguration. Each of the constraint functions is an increasing function of the component reiiability and/or the number of components used at each stage. Various "cost" Eunctions are used.
in the previcus chapter, references for oprimization technicues for systen reliability with redundancy have been revierved. The computarionai proceduies of the cptimization techniques, which have or have nct been applied in the optinization of system reiiability, will be described in this chaptez. These optimization techniques are:

1. heurisric approacn
2. dyanmic programming
3. the discrete maximun principle
4. the seq̣untial unconstrained minimization technique (SUMI)
5. the generalized reduced gradient method (GRC)
6. Method oE Lagrange multipliers and the Kuhn-Tucker conditions
7. the generalized Lagrangian functions method
8. geouetric programing
9. integer programning
10. others (a classical approach, parametric method, linear programning, and separable programming).

Anong these opzimization techniques, both GRG and the generalized Lagrangian functions method are very promising ones and have never been applied; heuristic approach and dynamic programming, having been successinily apolied for the redundancy allocation problems, will be cricicaliy reviewed, classified, and inodified, To cover a comprenensive discussion, the other optimization techniques will also be used to solve" various reliability optimization proolems. Before dealing with each speciミic optimzarion technique to system reliabiaity probiems, the iollowing assumptions are made:
(1). Each subsystem is considered co be essential for the overall operationai success of the mission, if ali the subsystems a=e operationally in series.
(2). All the subsystems in series, parallei, or complex configuration are s-indeperdent, also there ara statisticaily indepeṅent paraliel
redundant components in each subsystem. In parallel redundancy, all units have the same risk of failure (or success) regardless of whether or not they are spares or active.
(3). Before the requirement of linearization for some specific optimization techniques, if necessary, the constraints of "cos:" are not necessarily in linear forms.
(4). Good/bad is a sufficient description for each component, subsystem, and the whole system. In parallel case, unless being specified, only one component needs be good for the subsystam to be good, namely, it is generally 1-out-of m: G configuration. No assumption is made about the hazard rates of the components, except that it is reflected in the reliability of the components.
(3). Without the specific oprimization knowiedge of the mission requirements, realisric aecisions on redundancy, design change, and other astects of reliability improvement can not be reached. Tradeofis between oprimal redundancy components and "cost" measures can be considered only.
(б). So Ear as constraints are considered, each one is additive among subsystems.
(7). The redundant models are also based on the assumption that int dividual component or path failure has no effect on the operation of the surviving paths. Consider a simple parailel unit composed of two components, $A$ and $B$, each of which can fail in aither of two ways-oper failure or snort-circuit failure (diodes are a good example of elements which can fail in eitner mode). A short in
either or two elements will resule in unit failure; however, it is generally assumed chat individual path Eailure does not resul= in unit Eailure or the probability of a short-circuit failure is 0 .
(8). The connection nodes may spend some "cost", but are assumed periect with the reliability of one as long as the system functions gocd.
3.1 HEURISTIC METHODS IN OPTIMAL SYSTE RELIABILITY

## 1. Introduction

It is well-known that by using redundancy we can increase system reliability. Many techniques have been applied to obtain the solution of optimization problem, however, several heuristic approaches are very attractive for solving the redundancy allocation problems.

Four kinds of heuristic approaches are presented in this section. Sharma and Venkateswaran [1971] developed an intuitive procedure for allocating redundancy among subsystems. To improve the system reliability at each step of the algorithm, the procedure is to add a redundancy in the stage whicn has the nighest stage unreliability. The algorithrm was apelied for solving multistage system problems subject to multiple nonlinear constraints. In this approach, the constraints are never in active. Misra [1972] rhen introduced an approach for redundundancy optimization problen with muitipie linear constraints. In the process of solving a problem, the problem with rconstraints is decoupled into r-problems, each has one constraint. "Desirability factor', i.e., ratio of the percentage increase in the system reliability to the percentage increase of the corresponding cost, is introduced to determine a stage to which a redundancy is to be added. Aggarwal et al. [1975] improved SharmaVenkateswarn approach by introducing a relative increment in reliability versus decrement in slacks (the balance of the resources) as a criterion to select the stage to which a redundancy is to be added for solving series system problems with multiple nonlinear constraints. Aygarwal [1976] extenced the afproach to a problem of complex systems. Recently, Vakagaiva and Nakashima [1977] presented the fourth aporoach to solve a different type of series system (described later). In this approach a thorough consideration of. the balance between the objective funczion and the constraints is especialiy emphasized. A modried lakagawa-Vakashima approach for solving complex system problens is also presented.

The approaches are lllustrated by solvins ficur examples. The first example is a five-stage series system whth three non-linear constraints. The second one is a complex (non-series-parallel) system to which one linear constraint $1 s$ imposed. The third one is a four-stage series system with two linear cost constraints. The fourth one is more complex than a simple parallel redundancy problems. These examples are presented here. Example 1

This problern was presented oringinally by Tillman - Liitischiwager [1967], and used by Tillman et al. [1968], Sharma - Venkateswaran [19-1], and others for demonstrating many optimization techniques.

The five-stage problem is stated as
Slaximize

$$
\begin{equation*}
R_{s}={ }_{j=1}^{j}\left[1-\left(1-R_{j}\right)^{x_{j}}\right] \tag{1}
\end{equation*}
$$

subject $=0$

$$
\begin{align*}
& g_{1}=\sum_{j=1}^{5} p_{j}\left(x_{j}\right)^{2} \leq p \\
& g_{2}=\sum_{j=1}^{5} c_{j}\left(x_{j}-\exp \left(x_{j} / t\right)\right) \leq C \\
& g_{j}=\sum_{j=1}^{5} w_{j} x_{j} \exp \left(x_{j} / t\right) \leq W \tag{2}
\end{align*}
$$

where $x_{j} \geq 1, j=1,2, \ldots, 5$, are integers.
The conscants associated with the five-stage problem are

> Constants Assigned for Five-Stage Problem

i	R	${ }^{1}$	P	$c^{\text {c }}$	C	w:	iv
1	0.50	1		-		-	
2	0.55	$\therefore$		7		3	
3	0.90	$j$	110	5	1.5	3	200
$+$	0.05	1		9		0	
5	0.75			+		9	

## Example ?

Consider a non-series-parailel system shown in Fig. l [Aggarwal, 1975]. Let there be only one cost constraint and 20 units is the maximum permiscible cost. The data for the various subsystems are

$$
\begin{aligned}
& R_{1}=0.70, R_{2}=0.85, R_{3}=0.75, R_{4}=0.80, R_{5}=0.90 \\
& C_{1}=2, C_{2}=3, C_{3}=2, C_{4}=3, C_{5}=1
\end{aligned}
$$

The problem is
Minimize

$$
\begin{aligned}
Q_{s}= & Q_{1}^{\prime} Q_{3}^{\prime}+Q_{2}^{\prime} Q_{4}^{\prime}+Q_{1}^{\prime} Q_{4}^{\prime} Q_{5}^{\prime}+Q_{2}^{\prime} Q_{3}^{\prime} Q_{5}^{\prime}-Q_{1}^{\prime} Q_{2}^{\prime} Q_{3}^{\prime} Q_{4}^{\prime} \\
& -Q_{1}^{\prime} Q_{3}^{\prime} Q_{4}^{\prime} Q_{5}^{\prime}-Q_{1}^{\prime} Q_{2}^{\prime} Q_{3}^{\prime} Q_{5}^{\prime}-Q_{1}^{\prime} Q_{2}^{\prime} Q_{4}^{\prime} Q_{5}^{\prime}-Q_{2}^{\prime} Q_{3}^{\prime} Q_{4}^{\prime} Q_{5}^{\prime} \\
& +2 Q_{1}^{\prime} Q_{2}^{\prime} Q_{3}^{\prime} Q_{4}^{\prime} Q_{5}^{\prime}
\end{aligned}
$$

subject to

$$
\begin{equation*}
g=\sum_{j=1}^{5} c_{j} x_{j} \leq c \tag{i}
\end{equation*}
$$

Where $Q_{j}^{\prime}=\left(1-R_{j}\right)^{X_{j}}, x_{j} \geq 1, j=1,2, \ldots, 5$, are integers.


Fig. 1 A Bridge Structure

Examole 3
Consider an example of a series system of four stages. The component reliability, cost, and weight data are:
Stage, j
1
2
3
4

Component reliability, $\mathrm{R}_{\mathrm{j}}$
0.80
0.70
0.75
0.85

Cost, $c_{j}$
1.2
2.3
3.4
4.5

Weight, ${ }_{j}$
5
4
8 7

The system cost and weight are 56 and 120 , respectively.
The problem is
Maximize

$$
R_{s}=\prod_{j=1}^{4}\left[1-\left(1-R_{j}\right)^{x_{j}}\right]
$$

subject to

$$
\begin{aligned}
& g_{1}=\sum_{j=1}^{4} c_{j} x_{j} \leq 56 \\
& g_{2}=\sum_{j=1}^{4} w_{j} x_{j} \leq 120
\end{aligned}
$$

where $x_{j} \geq 1, j=1,2,3,4$, are integers.
Examnle 4
This example presented by Nakagawa-Nakashima [1977] is more complex than a simple parallel-series redundancy problem.

Consider the system composed of 3 stages operating in series. The system reliability is increased by choosing a more reliable component out of 4 candidates $a=$ stage $i$, adding redundant components in parallel at stages 2 and using 2-out-of- $\left(x_{3}+1\right): G$ configuration at stage 3 . The problem is

Maximize

$$
\begin{equation*}
R_{s}=\prod_{j=1}^{3} R_{j}^{\prime}\left(x_{j}\right) \tag{5}
\end{equation*}
$$

sujject io

$$
\begin{align*}
& y_{1}=4 \cdot \exp \left\{\frac{0.02}{1-R_{1}\left(x_{1}\right)}\right\}+5 x_{2}+2\left(x_{3}+1 j \leq 45\right. \\
& g_{2}=5+e^{x_{1} / 8}+3\left(x_{2}+e^{x_{2} / 4}\right)+5\left(x_{3}+1-e^{x_{3} / 4}\right) \leq 75 \\
& g_{3}=10+8 x_{2} \cdot e^{x_{2} / 4}-6 x_{3} \cdot e^{x_{3} / 4} \leq 240 \tag{6}
\end{align*}
$$

where

$$
\begin{aligned}
& R_{1}^{\prime}\left(x_{1}\right)=0.88,0.92,0.98,0.99 \text { for } x_{1}=1,2,3,4 \text { respectively } \\
& R_{2}^{\prime}\left(x_{2}\right)=1-(1-0.81)^{x_{2}} \\
& R_{j}^{\prime}\left(x_{j}\right)= \\
& x_{j=2}+1\binom{x_{j}+1}{k} 0.77^{k}(1-0.77)^{x_{j}+1-k}
\end{aligned}
$$

## Example 5

A muiti－iunction system is considered，whicn contains $\hat{N}$ distinct zom－ ponents and to increase the reliability of each，parallei or sandeby redundancy can be used．The problem is stated by Ushakov［9］as： Minimize

$$
C_{s}=\sum_{j=1}^{N} c_{j} x_{j}
$$

subject $=0$

$$
\begin{aligned}
& R_{s i}=\underset{j \in J}{i} R_{j}^{\prime}\left(x_{j}\right) \geq R_{s i, m i n} \quad i=1,2, \ldots, k \\
& x_{j} \geq 0, j=1,2, \ldots, N, \text { are integers. }
\end{aligned}
$$

where $J_{i}$ denotes the subset of components that ensure the execution of function i with the minimum requirement for the ith function reliailiity， $R_{i}, i=1,2, \ldots . k$.

The data associated with this example are：
Stage，： 1 こ j
Component relıa⿱亠䒑iliž，$R_{j}$
0.3
0.75
0.85
$R_{s 1, \min }=\bar{U} .9 .1$
Cost，こj j

2 Hewristic Method - Sharma - Venkateswaran's Approach

## Formulation of the Problem

In addition to the general assumptions made for the system reliability optimization problems of an $N$-stage in series with $x_{j}$ redundant components at stage $j$, the unreliability of one component at the $j$ th stage, $Q_{j}, j=1,2, \ldots, N$, should be small enough ( $\leq 0.5$ ) so that

$$
Q_{S}=1-\prod_{j=1}^{N}\left(1-Q_{j}^{x_{j}}\right)
$$

can be approximated to

$$
Q_{S}=\sum_{j=1}^{N} Q_{j}^{x}
$$

where $Q_{s}$ is the system unreliability. Therefore, the system reliability problem subject to nonlinear cost constraints can be formulated as Minimize

$$
\begin{equation*}
Q_{S}=\sum_{j=1}^{N} Q_{j}^{X_{j}} \tag{7}
\end{equation*}
$$

subject to

$$
\ddot{j}_{j=1}^{\|!} g_{i j}\left(x_{j}\right) \leq b_{i} \quad i=1,2, \ldots, r
$$

where $g_{i j}\left(x_{j}\right)$ is the resource $i$ consumed in stage $j$, and $b_{i}$ is the available resoluree for constraint $i$.

The ubjective is to reduce $0_{s}$ in successive steps. The procedure at each step is to add one redundant component to the stage with the highest $Q_{i}{ }^{K_{j}}$
in es. ( ij, if constraints in e.g. ( . S) are not violated.

Therefure, the constrajnts become active only in the neighorhood of the boundary of the feasible region. The sequential steps involved in solving the problem are as follows:

Step 1. Assign $x_{j}=1$ for $j=1,2, \ldots, N$. Because this is a cascade system, there must be at least one component in each stage and should not violate any constraints at all.

Step 2. Find the stage which has the highest unreliability. Add a redundant component to that stage.

Step 3. Check the constraints:
a) if any constraint is violated, go to Step 4.
b) if no constraint has been violated, go to Step 2.
c) if any constraint is exactly satisfied, stop.

The current $x_{j}$ 's are the optimum numbers of allocation.
Step 4. Remove the redundant component added in Step 2. The resulting number is the optimum allocation for that stage. Remove this stage from further consideraこion.

Step 5. It all stages have been removed from consideration, the current $x_{j}$ 's are the optimum solution. Otherwise, go to Step?

Vumerica! Examples
Example 1
The five-stage with three nonlinear constrairts problem shall be solved here. The objective of the problem (e.g. (1)) can be approximated by Mininize

$$
0_{5}=\left(1-R_{1}\right)^{x_{1}}-\left(1-R_{2}\right)^{x_{2}}+\left(1-R_{3}\right)^{x_{3}}+\left(1-R_{4}\right)^{x_{1}}-\left(1-R_{5}\right)^{x_{5}}
$$

where $\left(1-R_{1}\right)^{x_{1}},\left(1-R_{2}\right)^{x_{2}},\left(1-R_{3}\right)^{x_{3}},\left(1-R_{4}\right)^{x_{1}},\left(1-R_{5}\right)^{x_{5}}$ are
staje unrellabilities and are represented by $Q_{1}^{\prime}, Q_{2}^{\prime}, Q_{5}^{1}, Q_{1}^{1}, Q_{5}^{1}$, respectively.

The basic allocation $(1,1,1,1,1)$ is assigned to the system. The stage unreliabilities under this configuration are ( $0.20,0.15,0.10,0.35,0.25$ ) The resources consumed are $(12,75.1,48.3)$ which have not violated the constraints. Since stage 4 has the highest unreliability, i.e., $Q_{4}^{1}=0.35$, we add one redundancy to this stage to form the system configuration (1, 1, 1, 2, 1) and consume the resources $(24,35.4,60.8)$. Following the steps of the algorithm, we obtain the results presented in Table l. The optimum result is $\left(x_{1}, x_{2}, x_{3}, x_{4}, x_{5}\right)=(3,2,2,3,3)$ with the system reliability of $R_{s}=1-(0.008+0.0225+0.01+0.04288+0.01562)=0.90$.

It is worth noting that at the optimal configuration (3, 2, 2, 3, 5), no constraints are violated, $Q_{4}^{\prime}$ is already removed from further consideration, and $Q_{2}^{\prime}=0.0225$ is the highest unreliability, so a redundant component ma; be added to stage 2 to form a new system configuration (3, 3, 2, 3, 3) [Step 2]. However, constraint 3 is violated [Step Ja]; therefore, $x_{2}=2$ is the optimal one, and stage 2 is removed from further consideration [Step 4]. Go back to (j, 2, 2, 3, j) configuration. Similarly, following the steps of the algorithm, a redundancy may be added to stage $5\left(Q_{5}^{1}=0.015625\right.$, the largest unreilability among $Q_{1}^{\prime}, Q_{\frac{1}{3}}^{\prime}$, and $Q_{5}^{\prime}$ ) [Step 2]; however, constraint 3 is again violated [Step Ja], therefore, Step 5 is removed from further consideration [Step 4]. Similar procedures are applied to stage 3 and then to stage 1 , but constraint $j$ is violated in both cases as snown in Table 1. Therefore, the optimum allocation is (3, 2, 2, 3 , 5)

$$
\begin{gathered}
\text { Number of Components } \\
\text { in stage }
\end{gathered}
$$

Table i Results of Example 1 by Shama-Vonhateswaru's Motion

The constraint is violated
Stage (unreliability
Constraints

## Example 2

A solution for the complex (mon-series-parallel) system is presented.
The basja allocation (1, l, 1, l, 1) is again assigned to the syster. The stage unreliabjlities under this configuration are ( $0.30,0.15,0.25,0.20,0.10$ ) which consunles il cost units and obviously does not exceed the available resource. Since stage 1 has the highest unreliability, i.e., $Q_{1}^{\prime}=0.30$, we add one redundancy to this stage to form the new configuration (2, 1, 1, 1, 1) and check the consumed resource. Following the steps of the algorithm, we obtain the results which are sumarized in Table ?. The last row of Table 2 shows the cost 20 is consumed under the allocation of $(2,1,2,2,3)$. The system unreliability Efter substitutang (2, 1, 2, 2, 3) into eg. ( .3) is 0.0116 , herce the system reliability is 0.9884 .

## Example 3

The procedures to reacn the solution for this example are presented in Table 3 . Example 4

The results of this example are listed in Table 4.
Table 2 Results of Example 2 by Shama-Venkaleswaran's meibud

This is the stage to which a redundant component is lo be added. -
This indicates that ine stage has been removed fom further consideration
C The constraint is violated.
Table 3 kesults of Example 3 by Shman-Vonkateswaran's mothod

Table 4 Results of Fimmule 1 by Shamma-Venkate swar:m's sefhod

Number of Componeats in Stage			Stage Unreliability			(onstraints	
${ }^{\times}$	2	$\mathrm{x}_{3}$	${ }^{1} 1$	$Q_{2}^{1}$	013	$g_{1}(\bar{x})$	$y_{2}(\bar{x})$
1	1	1	0.12	0.19	(). $40711^{1}$	13.73	26.92
1	1	2	0.12	0. $19^{9}$	0.13 .137	15.73	33.74
1	2	2	0.12	0.0 .361	$0.154 .37^{0}$	20.73	40.93
]	$?$	3	$0.12{ }^{\text {a }}$	0.0361	0.04027	22.93	48.27
2	2	3	$0.08{ }^{\circ}$	0.0301	(1.04027	23.15	18.42
3	2	3	0.02	0.0 .361	$0.04027^{\text {a }}$	28.87	48.59
3	2	1	0.02	$0.0 .361^{\text {i }}$	(1.0114	30.87	56.59
3	3	4	$0.02{ }^{\text {b }}$	0.0069	0.0114	35.87	60.63
1	3	1				$54.55^{\circ}$	60. 082
3	3	5	$0.02^{1}$	0.0069	0.0114	37.88	70.32
3	1	5	-			12.88	$76.39^{\text {c }}$
3	3	6				30.88	$78.91{ }^{\text {c }}$


$g_{1}(\bar{x})$	$\mathrm{r}_{2}(\bar{x})$	$g_{3}(\bar{\lambda})$
13.7\%	26.92	27.98
15.7 .3	33.74	10.06
20.73	40.93	56.16
22.93	48.27	71.18
23.15	18.42	74.48
28.87	48.59	74.18
30.87	56.59	101.01
35.87	60.6 .3	126.0 .1
$54.55^{\circ}$	0.0 .82	126.0.1
37.89	70. 32	10.5 .51
12.88	$76.39^{\text {c }}$	$201.68{ }^{\circ}$
36.8S	$78.91^{\circ}$	$222.11^{\prime}$

3 Heuristic Method - Aggarwal's Approach

## Formulation of the Problem

Sharma-Venkateswaran's heuristic approacin consists of adding redundancy to the stage where the stage unreliability is so far the highest. The metnod is applicable to problems with any number of general constraints. The method may not yield an optimum solution if the stages have components of similar reliability but quite different cost. Aggarwal et al. then proposed an aiternate algorithm using a new criterion for selecting the stage where redundancy is to be added. In certain cases of Sharma-Venkataswaran's approach, slacks (balance of.resources) prevent the addition of only one component to the particular stage having the lowest reliability but these slacks permit the addition of more than one component to other stage having higher reliability. The net increase in reliability for the latter might be more than that for the former.

This heuristic approach is based on the concept that a component is added to the stage where its addition produces the greatest ratio "increment increases in reliability" to the "product of decrements in slacks". This ratio is defined by

$$
\begin{equation*}
F\left(x_{j}\right)=\frac{\Delta\left(1-R_{j}\right)^{x_{j}}}{i \stackrel{3}{=}=1 \operatorname{gg}_{i j}\left(x_{j}\right)} \tag{9}
\end{equation*}
$$

where

$$
\Delta\left(1-R_{j}\right)^{x_{j}}=\left(1-R_{j}\right)^{x_{j}}-\left(1-R_{j}\right)^{x_{j}+1}=R_{j}\left(1-R_{j}\right)^{x_{j}}
$$

and

$$
\Delta g_{i j}\left(x_{j}\right)=g_{i j}\left(x_{j}-1\right)-g_{i j}\left(x_{j}\right)
$$

$F_{j}\left(x_{j}\right)$ is a function of $j$ as well as $x_{j}$; hence in the conputation, it keeps changing even for Elxed $j$. In the case $\cap f$ linear こonszanints, hovever, all
$F_{j}\left(x_{j}\right)$ can be evaluated by using recursive relacion

$$
\begin{equation*}
F_{j}\left(x_{j}+1\right)=Q_{j} F_{j}\left(x_{j}\right) \tag{10}
\end{equation*}
$$

The computational procedure is
Step 1. Let $\bar{x}=\left(x_{1}, x_{2}, \ldots, x_{\hat{N}}\right)=(1,1, \ldots, 1)$.
Step 2. a) Calculate $F_{j}\left(x_{j}\right)$ for all $j$ using (.9).
b) Select the stage having the highest $F_{j}\left(x_{j}\right)$. t redundant component is proposed to add to that stage.

Step 3. Check to see if the constraints are violated.
a) If the solution is still Eeasible, adc one zedundant component to the stage having the hagliest $F_{j}\left(x_{j}\right)$. Modify the value of $x_{j}$ and hence $F_{j}\left(X_{j}\right)$ and go to Step 2.
b) If at least one constraint is exactly satisfied; the current value of $\bar{x}$ is an optimal solution.
c) If at least one constraint is violated, cancel the proposed addition of the redundant comporent; remove that stage irom further consideration and repeat step 2. When all the stages are excluded from further consideration, the current values of $\vec{x}$ are the optimal solution.

Step 1. Calculate the system reliability, $R_{s}$, for the optimum $\mathbb{x}^{*}$.

## .Vumerical Examples

Examole 1 To obtain the selection factors, $\Delta_{i j}\left(x_{j}\right), i=1,2, \overrightarrow{3}, \ldots$, are:

$$
\begin{aligned}
& \Delta g_{1 j}\left(x_{j}\right)=p_{j}\left(x_{j}+1\right)^{2}-p_{j}\left(x_{j}\right)^{2} \\
& \left.\Delta g_{2 j}\left(x_{j}\right)=c_{j}\left\{\left(x_{j}+1\right)+\exp \left[\left(x_{j}+1\right) / 4\right]\right\}-c_{j}\left[x_{j}-\exp x_{j} / 4\right)\right] \\
& \Delta g_{j j}\left(x_{j}\right)=w_{j}\left(x_{j}+1\right) \exp \left[\left(x_{j}+1\right) / 4\right]-w_{j} x_{j} \exp \left(x_{j} / 4\right)
\end{aligned}
$$

and the selection Eactors are:

$$
F_{j}\left(X_{j}\right)=\frac{R_{j} Q_{i}^{x_{j}}}{i={ }_{i}^{=} \Delta \Delta g_{i j}\left(x_{j}\right)}, \quad j=1,2, \ldots, j
$$

Starting with $\bar{x}=(1,1,1,1,1)$ and add one component to a stage
at a time as shown in Table 5 . The stage selection factors of ( $1,1,1,1,1$ ) are $(0.000396,0.000138,0.000091,0.000128,0.000316)$. The resources consumed are $(12,73.09,48.79)$ which have not violated the constraints. Since stage 1 has the highest stage selection factor, i.e., $F_{1}\left(x_{1}\right)=0.000396$, we add one redundancy to this stage to form the system configuration (2, 1, 1 , $1,1)$, and check the consumed resources (15, 82.64, 62.88). Foliowing steps of the computational procedures, the final optimum rezuit is ottained as $\left(x_{1}, x_{2}, x_{3}, x_{4}, x_{5}\right)=(\overline{3}, 2,2,3,3)$. The optimum system reliability is 0.9045 .

Example 2
This example, solved by dggarwal's approach, shows that the Shamma-Venkateswaran's approach will not always give an optimum solution.

The allocation of redundancy at each subsystem is started at $\bar{x}=(1,1$, $1,1,1)$. The stage selection factors of this conifiguration are (0.02649, $0.01753,0.02759,0.01068,0.00533$ ) and the resource consumed is 12 . Since subsystem 3 has the highest stage selection factor, i.e., $F_{j}\left(x_{j}\right)=0.02759$, we add one redundancy to this stage to form the system configuration (1, 1 , 2, i, 1) and to consume 13 units cost. Following the computational procedures, the final optimum result is with the system configuration of $x_{1}, x_{2}, x_{3}$, $\left.x_{4}, x_{5}\right)=(5,1,2,2,1)$ as shown in Table 6 . The optimum system reliabilizy is 0.091. It is noted that this problem solved by Snarma - Yenkateswaran's
Tabicer Results of lixample I hy Aggatwal's Mothod

constraint
Tible 6 Results of Example 2 by Aggarwal's Method
$\begin{array}{ll}F_{5}\left(x_{5}\right) & g(\bar{x}) \\ 0.00533 & 11 \\ 0.00478 & 13 \\ 0.00048 & 16 \\ 0.00033 & 18 \\ 0.00009 & 20\end{array}$
$F_{4}\left(x_{4}\right)$
0.01068
$0.01149^{a}$
0.00230
0.00180
0.00092
Stage Selection Factor
This is the stage to which a redundant component is to be added
$=$
b This indicates that the stage has been reboved from further consideration
anpecach glves the solution of the sysiem ronifguration of $(2,2,2,2,3$, and system reliability of 0.9854 whach is nci am opimal solution.

Example 3
Since this example cortains linear constraints, $211 F_{j}\left(x_{j}\right)$ car. be evaluated by using recursive relation of e.g. (10). This equation
makes it more convenient to find the stage selection factors from which we decie
the stage to add a redundancy. The sumarized results is shom in Table - .
Table 7 Results uf Example 3 hy Aggarmal's Method

Number of Components			
in Siage			
$x_{1}$	$x_{2}$	$x_{3}$	$x_{4}$
1	1	1	1
2	1	1	1
3	1	1	1
3	2	1	1
3	2	2	1
4	2	2	1
4	5	5	4
5	5	5	4
5	6	5	4

a This is the stage to which a redumdant component is to be added
b This indicated that the stage has been removed from further cons

+ Heuristic Method - Mista's Approach


## Formulation si che Euoblem

The approach is for the solution of the redundancy problem with miltiple linear constraints. Basically, the solution to an r-constraint problem is obtained successively from the solution of $r$-unconstrained problems. At each step, an active constraint is picked out, and then the maxinurn gradient concept (explained later) is used to find a closer point. The actual computational procedure is presented in the following E steps.

Step 1. Within the feasible solution domain, the attainable reliability should be roughly estimated by the allocation of redundancy, stage by stage, until any constrainted resource is met.

Step 2. Using this estimate of system reliability, $R_{s}$, find the individual optimum allocations with respect to each "cost" constraint by

$$
\begin{equation*}
x_{j}=\frac{\log \left(1-R_{s}^{a_{i}}\right)}{\log Q_{j}} \tag{1.}
\end{equation*}
$$

where

$$
a_{j}=\frac{a_{i} / 2 n Q_{i}}{\sum_{j=1}^{N} c_{j} / \ln Q_{j}} \quad, j=1,2, \ldots, N
$$

Usually a different system configuration is obtained for each constraint.

Step 3. From these allocations choose the highest system reliability as the reference reliability index for comparison. Other allocations rill be lying on a lower reliability plane. To each allocation
having lower system reliability, add one conponent to the stage which has the highest desirability factor defined by

$$
\begin{equation*}
F_{j}=\frac{\Delta R_{s} / R_{s}}{c_{j} \nu_{j}} \quad, j=1,2, \ldots, N . \tag{12}
\end{equation*}
$$

Step t. Now, each allocation is moved to a higher system reliability point, except the reference reliability index. Then
(a). go to Step 3 , if none of these allocations give the same system reliability within the domain of feasible solutions (the constraints are not viclated if "moved" to a higher reliability point).
(b). go to Step 3, if all allocations give the same system reliability and no constraint is violated by changing to a higher reliability point. Otherwise, go to Step 5 (a).

Step 5.
(a). Stop, the common allocation is the optimum one.
(b). If a common reliability point is not available, the allocation with the highest reliability will provide a near optimum point.

## A. Numerical Example

Example 3

T'o find a suboptimal system reliability which does not violate any of the cost or weight constraint, an enmeration method is used (see Table 3). The systen reiiability, $R_{s}$, is 0.9957 [Step 1$]$. Using this system reliability in eq. ( 11), the optimum allocations with respect to cost constrajnt and weight constraint are obtained as (5, 5, 4, 3) and (1,6,4, 3), respectively [Step 2].

Table 8 Suboptimum Results of Example $\Xi$ by ar Enumeration Method

Stage ?	Stage 2	Stage 5	Stage 4	Cos=	We=si
1	1	1	1	12.4	21
2	1	1	1	12. 6	29
2	2	1	1	14.9	55
2	2	2	1	18.5	41
2	2	2	2	22.8	$\therefore 8$
5	2	2	2	24.0	5.5
5	3	2	2	26.5	57
5	3	5	2	29.7	65
5	5	5	5	54.2	-
4	5	5	5	55.4	-
2	A	5	3	58.7	8.
4	4	4	5	41.1	89
4	4	4	4	45.6	96
5	4	4	4	46.8	101
5	5	4	4	49.1	105
5	5	5	4	52.5	115
5	5	5	5	5-.0	220

Now we can construct Table 9 in the following. The reliability of system configuration of $(5,5,4,3)$ and $(4,6,4,3)$ are 0.9900 and 0.990t, respectively. Since 0.9900 is smaller than 0.9904 , we then add one more redundancy to a stage of the system (5, 5, 4, 3). Since the desirability factors, $F_{j}$, for each stage are ( $0.0139,0.0356,0.0386$, 0.0310 ), and 0.0386 is the largest, one redundancy is added to stage 3. The system reliability for (5, 5, 5, 3) is 0.9929. [Step 3]

This reliability is better than the system reliability (0.9904) of $(1,6,4,3) .(5,5,5,3)$ and $(4,6,4,3)$ are obviously not giving same system reliability and if we move to a higher reliability point the constraints are not violated. [Step ta]. We, therefore, add one component to a stage of $(4,6,4,3)$. Since the desirability factors, $F_{j}$, for each stage are now ( $0.0287,0.0270,0.0382,0.0399$ ), and 0.0399 is the largest, we add one redundancy to stage 4 . The resulting system reisability for ( $4,6,4,4$ ) is $0.993 j$ [Step 3]. This reliability then is compared with 0.9929 . ( $5,5,5,3)$ and $(4,6,4,4)$ are still not giving same systen reliability and if move to a nigher reliability point the constraints are not violated [Step 4a]. We, therefore, ade one component to a stage of $(\mathbf{3}, \mathbf{j}, \mathbf{3}, \mathbf{3})$. Following the iterative procedures, finally the common silocation $(5,5,5,4)$ is obtained. The consumed cose resource and weight resource are 54.8 and 117.0 respectively. Since a redundancy add to any stage wi!l exceed the available resources, (5, 6, 5, 4) is the optimum ailocation $2 f$ the system which gives the system reliability 0.9975 [Sten 5a].

Thble 9 Results of Example 3 by Misra's Method
5. Heuristic Kethod - Ushakov's Approach [3]

## Formulation of the problem

Suppose that the system consists of $n$ distinct elements and that, to increase the reliability of each of them, we can use an arbitrary type of stand-by. Let $\mathbb{R}_{j}^{\prime}\left(X_{j}\right)$ denote the probability of failure-free operation of element $j$ when $X_{j}-I$ stand-by elements are used to ensure its operability, let $c_{j}$ denote the cost of a single element of type $j$ and let $J_{i}$ denote the subset of system elements that ensure execution of function i with given probability $P_{\text {si, min }}(i=1, \ldots, k)$. With this notation, we can formulate the EoIlowing problem:

Find mia $\sum_{j-1}^{n} c_{j} \tilde{i}_{j}$ under the condition $\pi_{j \in J_{i}} R_{j}^{\prime}\left(X_{j}\right) \geq R_{s i, \min }(i=1, \ldots, k)$, where $X_{j}$ is a natural number $(j=1, \ldots, n)$.

The computational procedura can be stated as.

1. We solve $k$ probiems of finding min $\bar{i}_{j J_{i}} c_{j} X_{j}$ under the condition $\overline{J E J}_{i} R_{j}^{\prime}\left(i_{j}\right) \geq P_{s i, m i n}(i=1, \ldots, k)$. For problem $i$, we find the corresponding optimum values $X_{I}^{i}, \ldots, x_{n}^{i}$.
2. For element $i$, we find the greatest value, that $i s, X_{j}^{*}=m a x X_{j}^{i}$.
3. For each subset of elements $j_{i}$, we find a smaller subset (which we denore by $\underset{i}{ } \mathrm{i}_{\mathrm{i}} \times$ ) that is necessary oniy for executing Eunction i. We denote by $\mathrm{J}_{\mathrm{i}}$ the remaining portion of the subset $\mathrm{J}_{i}$.
4. For each subset $J_{i}^{*}$, we find the value of $\underset{j \in J_{i}^{*}}{\bar{i}} R_{j}^{!}\left(X_{j}^{*}\right)=R_{i}^{*}$. IE $j_{i}^{*}$ is empey, that is, if Eunction i is executed with an independent group of elements, te caice $R_{i}^{*}=1$.
5. For each set $J_{i}$, we calculare $\underset{i}{* *}=R_{s i, m i n} / R_{i}^{*}$, which is a reçirement on the probability of failure-fres operation of the elements belonging to subset $\underset{i}{\text { J**. }}$
 the condition $\prod_{j=J \star *} R_{j}^{\prime}\left(X_{j}\right) \geq R_{i}^{* *}(i=1, \ldots, k)$. We find ${ }^{i}$ the values of $X \underset{j}{*}$.
6. For the solution we take the values of $\mathrm{m}_{\mathrm{j}}^{\mathrm{j}}$ for $\mathrm{j} \equiv \mathrm{J} \underset{\mathrm{i}}{\mathrm{i}}$ found in inem 2,
 in order to lower, if possibie, the superiluousiy high reiiabilizy in corservation of the given requirements on the probability of execution of the individual functiuns.

## A Numerical Example

## Example 5

Following the computational procedure to odeain
(1) $X_{1}^{\prime}=2$
$x_{2}^{\prime}=3$
$x_{1}^{2}=3$
$x_{3}^{2}=2$
(2) $X_{1}^{*}=3$
$X_{\underline{2}}^{*}=3$
$x_{3}^{2}=2$
(3) $\mathrm{JH*}=\{1,2\}$

$$
\mathrm{J}_{\underline{2} *}^{*}=\{1,3\}
$$

$$
J_{i}=\{3\}
$$

$$
J_{2}^{*}=\{2\}
$$

(4) $R_{1}^{*}=1-(1-0.85)^{2}=0.9775$

$$
R_{2}^{*}=1-(1-0.75)^{2}=0.9844
$$

(5) $R_{1}^{*} *=0.94 / 0.9775=0.9616$

$$
\mathrm{R}_{2}^{* *}=0.96 / 0.9844=0.9752
$$

(6) $\mathrm{X}_{1}^{*} *=3$

$$
\begin{aligned}
& X_{2}^{*} *=3 \\
& X_{3}^{* *}=2
\end{aligned}
$$

(7) Since both the configuration ( $\left.X_{1}^{* *}, X_{2}^{* *}, X_{3}^{* *}\right)=(3,3,2)$ and $\left(X_{1}, X_{2}, X_{3}\right.$ )
$=(3,3,2)$ satisfy the reliability constraints and the former one costs only 23 which is Jess than 26 spent by the second one. Therefore the optimal solution is (3, 3, 2)

### 6.1 Fo:mulation of the Problem

In the previous three approaches, it is assumed that the component unreliability at each stage, $Q_{j}, j=1,2, \ldots, n$ is small so that the objective function can be approximated. However, no approximation on the objective function shall be made in Nakagawa-Nakashima's approach.

We state again the general nonlinear optimization problem (Problem $\lambda$ ) for an N -stage series system as

## Problem A

Maximize

$$
R_{s}=\prod_{j=1}^{N} R_{j}^{\prime}\left(x_{j}\right)
$$

subject to

$$
\begin{array}{ll}
\sum_{j=1}^{N} g_{i j}\left(x_{j}\right) \leq b_{i} & , i=1,2, \ldots, n \\
1 \leq x_{j} \leq \bar{x}_{j} & , j=1,2, \ldots, N
\end{array}
$$

where, $\bar{x}_{j}$ is the maximum number of components used at stage $j$, and all $x_{i}$ 's are integers.

Basing on the definitions of

$$
\Delta f_{j}\left(x_{j}\right)= \begin{cases}2 n R_{j}^{\prime}\left(x_{j}\right) & , \text { for } x_{j}=1  \tag{1,5}\\ \ell \cap R_{j}^{\prime}\left(x_{j}\right)-2 R_{n}^{\prime}\left(x_{j}-1\right) & , \text { for } x_{j}>1\end{cases}
$$

anc

$$
\Delta g_{i j}\left(x_{j}\right)= \begin{cases}g_{i j}\left(x_{j}\right) & \text { for } x_{j}=1  \tag{14}\\ g_{i j}\left(x_{j}\right)-g_{i j}\left(x_{j}-1\right) & , \text { for } x_{j}>1\end{cases}
$$

We transform Problem A to Problem 3 as follows:

$$
\begin{aligned}
\ell n R_{S} & =\ell n \prod_{j=1}^{N} R_{j}^{\prime}\left(x_{j}\right) \\
& =\sum_{j=1}^{N} \ell n R_{j}^{\prime}\left(x_{j}\right)
\end{aligned}
$$

Basing on the definition in eq. (13)

$$
\begin{aligned}
& \sum_{j=1}^{N} \ln x_{j}=1, \\
\sum_{j=1}^{\prime}(1) & =\sum_{j=1}^{N} \Delta f_{j}(x), \\
\text { if } 1<x_{j} \leq \bar{x}_{j}(1)= & \sum_{j=1}^{N} \Delta g_{i j}\left(x_{j}\right) \\
\sum_{j=1}^{N} 2 n R_{j}^{\prime}\left(x_{j}\right) & =\sum_{j=1}^{N}\left\{\left[2 n R_{j}^{\prime}\left(\bar{x}_{j}\right)-2 n R_{j}^{\prime}\left(\bar{x}_{j}-1\right)\right]+\left[2 n R_{j}^{\prime}\left(\bar{x}_{j}-1\right)_{j}\right.\right. \\
& \left.\left.-2 n R_{j}^{\prime}\left(\bar{x}_{j}-2\right)\right]+\ldots+\left[2 n R_{j}^{\prime}(2)-2 n R_{j}^{\prime}(1)\right]+2 n R_{j}^{\prime}(1)\right\} \\
& =\sum_{j=1}^{V} \sum_{j=1}^{j} \Delta f_{j}\left(x_{j}\right)
\end{aligned}
$$

$$
\sum_{j=1}^{N} g_{i j}\left(x_{j}\right)=\sum_{j=1}^{N}\left\{\left[g_{i j}\left(\bar{x}_{j}\right)-g_{i j}\left(\bar{x}_{\underline{i}}-1\right)\right]+\left[g_{i j}\left(\bar{x}_{j}-1\right)-\right.\right.
$$

$$
\left.g_{i j}\left(\bar{x}_{j}-2\right)\right]+\ldots+\left[g_{i j}(2)-g_{i j}(1)\right]-
$$

$$
\left.\left[g_{i j}(1)\right]\right\}
$$

$$
=\sum_{j=1}^{V} \sum_{x_{i}=1}^{\bar{x}_{j}} \Delta g_{i j}\left(x_{j}\right)
$$

Vaximize

$$
2 n R_{i}=\ddot{i}_{j=1}^{N} \quad \sum_{j}^{\bar{x}}=1 \quad \Delta f_{j}\left(x_{j}\right)
$$

subject to

$$
\begin{array}{ll}
\sum_{j=1}^{N} \sum_{x_{j}=1}^{\bar{x}_{j}} \Delta g_{i j}\left(x_{j}\right) \leq b_{i} & , i=1,2, \ldots, r \\
1 \leq x_{j} \leq \bar{x}_{j} & , j=1,2, \ldots, N
\end{array}
$$

where, $\bar{x}_{j}$ is the maximum number of components for stage $i$, and all $x_{j}$ 's are integers.

Since $\mathrm{R}_{\mathrm{j}}\left(\mathrm{x}_{\mathrm{j}}\right)$ and $\mathrm{g}_{\mathrm{ij}}\left(\mathrm{x}_{\mathrm{j}}\right)$ are monotoric increasing functions in $\mathrm{x}_{\mathrm{j}}$
for $j=1,2, \ldots, N$, and $i=1,2, \ldots, r$,
then

$$
\Delta E_{j}\left(x_{j}\right) \geq 0, \quad \text { for all } j \text { and } x_{j},
$$

and

$$
\Delta g_{i j}\left(x_{j}\right) \geq 0, \quad \text { for all } i, j, \text { and } x_{j}
$$

The computational procedure for solving Problem B is stated as foliturs.
Step 1. Set the Eirst current solution as

$$
x^{c}=\left(x_{1}^{c}, x_{2}^{c}, \ldots, x_{N}^{c}\right)=(1,1, \ldots, 1)
$$

Step 2. Calculate $b_{i}^{c}$ for all i, where

$$
\begin{equation*}
b_{i}^{c}=b_{i}-\sum_{j=1}^{N} \sum_{x_{j}=1}^{x_{j}^{c}} \Delta g_{i j}\left(x_{j}\right) \tag{15}
\end{equation*}
$$

Step 3. Calculate $\Delta x_{j}$ for all $j$, where

$$
\Delta x_{j} \equiv \min _{i}\left\{b_{i}^{c} / \Delta g_{i j}\left(x_{j}^{c}+1\right)\right\}
$$

Step 4. Let $L_{+1}=\left\{j \mid \Delta x_{j} \geq 1\right\}$
If $L_{+1}$ is empty, stop. An optimal solution is obtained. Otherwise go to step 5.

Step 5. Search over $m$ such that $S_{m}=\max _{j \in L}\left\{S_{j}\right\}$, where

$$
\begin{equation*}
S_{j} \equiv \Delta f_{j}\left(x_{j}^{c}+1\right) \cdot\left[(1-\alpha) \cdot \min _{l \varepsilon L_{+1}}\left\{\Delta x_{2}\right\}+\alpha \Delta x_{j}\right] \tag{16}
\end{equation*}
$$

Step 6. If $x_{m}^{c}=\bar{x}_{m}$, then $x_{m}^{c}$ is the optimal number used in stage $m$, exclude this stage and go to step 3 . If $x_{m}^{C}<\bar{x}_{m}$, then set $x_{m}^{c}=x_{m}^{c}+1$ and go to step 3 .

The above procedure is for a given balancing coefficient " $\alpha$ ". Optimal solutions for a set of " $\alpha$ " (probably $\alpha=0,0.1, \ldots, 0.9,1.0$, $1 / a=0.9,0.5,0.3)$ should be obtained. The best solution among the solutions for the given set of " $\alpha$ 's" is the optimal solution.

### 6.2 Numerical Examples

## Examole 1

The problem, after transiomation, is formed as follows.
Maximize

$$
2 \pi R R_{s} \sum_{j=1}^{j} \sum_{x_{j}=i}^{\vec{x}_{j}} \Delta \dot{i}_{j}\left(x_{j}\right)
$$

subject to

$$
\begin{aligned}
& \sum_{j=1}^{j} x_{j}^{\bar{x}_{j}} \Delta g_{1 j}\left(x_{j}\right) \leq P \\
& \sum_{j=1}^{5} \quad x_{j=1}^{\bar{x}} \Delta g_{2 j}\left(x_{j}\right) \leq C \\
& \sum_{j=1}^{5} \quad x_{j}^{\sum_{j}} \bar{x}_{j} \Delta g_{3 j}\left(x_{j}\right) \leq W \\
& 1 \leq x_{j} \leq \bar{x}_{j}
\end{aligned}
$$

where, $x_{j}$ 's are integers, $\Delta f_{j}\left(x_{j}\right)$ and $\Delta g_{i j}\left(x_{j}\right)$ are given in (15) and (14) Set the first current solution as $x^{c}=\left(x_{1}^{c}, x_{2}^{c}, x_{3}^{c}, x_{4}^{c}, x_{5}^{c}\right)=(1,1,1,1,1)$ [Step 1]. The current amounts of the resource available ( $b_{1}^{c}, b_{2}^{c}, b_{3}^{c}$ ) are calculated by eq (15) and are (98, 101.91, 151.21) [Step 2]. Then the quantities obtained from the constraints at the current solution, $\left(\Delta x_{1}, \Delta x_{2}, \Delta x_{3}, \Delta x_{4}, \Delta x_{5}\right)$, are calculated to be (10.67, 9.39, 9.35, 8.17, 8.39) [Step 3]. Since $\Delta x_{j}, j=1,2,3,4,5$, are greater than 1 , then $L_{+1}=\{1,2,3,4,5\}$ which means the redurdancy to any stage will not violate the constraints [Step 1]. We can find the stage sensititiries, $\left(S_{1}, S_{2}, S_{3}, S_{4}, S_{5}\right)$, to be (1.717, $1.227,0.857,2.451,1.847$ ), if $\alpha=0.50$. Since stage + shows the most sensirive effect, i.e., $S_{4}=2.451$, we should add one redundancy to this stage [Ster 5]. Following the steps of the algorithm, we obtain the results as presented in Table 12 . The last system configuration in Table 12 is $(3,2,2,3, j)$ and ali the $\Delta x_{j}, j=i, 2,5,4,5$, are less than 1 . This means that it is impossible to add any more redurdancy to any stage, and $(3,2,2,3, \overrightarrow{3})$ is the optimum solution. This is the sane solution obtained by Snarna - Venkateswiran's approach and by Aggarwal et al.'s approach.

> Table 10 Results of lixample 1 by Nakagawa-Vahahima's Approach
> "This is the stage 20 which a redundant component is to be added.
> ${ }^{1}$ since $L_{+1}$ - $\phi$, stop the procedure.

This example is presented in Nakagawa-Nakashima's paper. The results are sumnarized in Table 11. The optimal solution is $\left(x_{1}, x_{2}, x_{3}\right)=(3,3,5)$. The resources consumed are $37.83,70.32$, and 211.8 for $g_{1}, g_{2}$, and $g_{3}$ respectively.
Table 11 Results of Fixample 4 by Nakagawa-Nakashima's Approach
Number of components
in stage
6.j Modifleatjon of Nakagawa - Nakashima's approach for complex system optimization

Nakagawa - Nakashima's approach can only solve series-system problems. For a complex system, e.g. Example 2, the problem does not have the objective function in the form of Problem A. Therefore, the problem cannot be transformed into Problem B.

To solve the problem of a complex configuration, $\Delta f_{j}\left(x_{j}\right)$ will be rederined as follows:

$$
\begin{align*}
\Delta f_{j}\left(x_{j}\right)= & Q_{s}\left(Q_{i}^{\prime}, \ldots,\left(Q_{j}^{\prime}=Q_{j}^{x_{j}}\right), \ldots, Q_{k}^{\prime}\right)-Q_{s}\left(Q_{1}^{\prime}, \ldots,\left(Q_{j}^{\prime}=\right.\right. \\
& \left.\left.Q_{j}^{x_{j}^{+1}}\right), \ldots, Q_{k}^{\prime}\right) \\
& =\frac{\partial Q_{s}}{\partial Q_{j}^{\prime}}\left(Q_{j}^{x_{j}}-Q_{j}^{x_{j}^{-1}}\right) \\
= & \left(1-Q_{j}\right) Q_{j}^{x_{j}} \frac{\partial Q_{s}}{\partial Q_{j}^{\prime}} \\
= & R_{j} Q_{j}{ }_{j} \frac{\partial Q_{s}}{\partial Q_{j}^{\prime}} \tag{1}
\end{align*}
$$

As $\Delta f_{j}\left(X_{j}\right)$ is defined, we can follow the same computational procedures presentec in Section 3.2 tc obtain the optimal solution.

Examole 2
To solve this example, we have to use eq. (A) to determine $\mathrm{i}_{\mathrm{i}}\left(x_{j}\right)$.
In eq. $(t), \frac{\partial Q_{S}}{\partial Q_{!}}, j=1,2, \ldots, 5$, for this exantla are given by
$\frac{\partial Q_{5}}{\partial Q_{1}^{\prime}}=Q_{3}^{\prime}+Q_{4}^{\prime} Q_{5}^{\prime}-Q_{2}^{\prime} Q_{3}^{\prime} Q_{4}^{\prime}-Q_{3}^{\prime} Q_{4}^{\prime} Q_{5}^{\prime}-Q_{2}^{\prime} Q_{3}^{\prime} Q_{5}^{\prime}-Q_{2}^{\prime} Q_{4}^{\prime} Q_{5}^{\prime}+2 Q_{2}^{\prime} Q_{3}^{\prime} Q_{4}^{\prime} Q_{5}^{\prime}$
$\frac{\partial Q_{s}}{\partial Q_{2}^{\prime}}=Q_{4}^{\prime}+Q_{3}^{\prime} Q_{5}^{\prime}-Q_{1}^{\prime} Q_{3}^{\prime} Q_{5}^{\prime}-Q_{1}^{\prime} Q_{3}^{\prime} Q_{4}^{\prime}-Q_{1}^{\prime} Q_{4}^{\prime} Q_{5}^{\prime}-Q_{3}^{\prime} Q_{4}^{\prime} R_{5}^{\prime}+2 Q_{1}^{\prime} Q_{3}^{\prime} Q_{4}^{\prime} Q_{5}^{\prime}$
$\frac{\partial Q_{s}}{\partial Q_{j}^{\prime}}=Q_{1}^{\prime}+Q_{2}^{\prime} Q_{5}^{\prime}-Q_{1}^{\prime} Q_{2}^{\prime} Q_{4}^{\prime}-Q_{1}^{\prime} Q_{4}^{\prime} Q_{5}^{\prime}-Q_{1}^{\prime} Q_{2}^{\prime} Q_{5}^{\prime}-Q_{2}^{\prime} Q_{4}^{\prime} Q_{5}^{\prime}+2 Q_{1}^{\prime} Q_{2}^{\prime} Q_{4}^{\prime} Q_{5}^{\prime}$
$\frac{\partial Q_{s}}{\partial Q_{4}}=Q_{2}^{\prime}+Q_{1}^{\prime} Q_{5}^{\prime}-Q_{1}^{\prime} Q_{2}^{\prime} Q_{3}^{\prime}-Q_{1}^{\prime} Q_{2}^{\prime} Q_{5}^{\prime}-Q_{1}^{\prime} Q_{2}^{\prime} Q_{3}^{\prime}-Q_{2}^{\prime} Q_{3}^{\prime} Q_{5}^{\prime}+2 Q_{1}^{\prime} Q_{2}^{\prime} Q_{5}^{\prime} Q_{5}^{\prime}$
$\frac{\partial O_{S}}{\partial Q_{5}^{\prime}}=Q_{1}^{\prime} Q_{4}^{\prime}+Q_{2}^{\prime} Q_{3}^{\prime}-Q_{1}^{\prime} Q_{3}^{\prime} Q_{4}^{\prime}-Q_{1}^{\prime} Q_{2}^{\prime} Q_{3}^{\prime}-Q_{1}^{\prime} Q_{2}^{\prime} Q_{4}^{\prime}-Q_{2}^{\prime} Q_{3}^{\prime} Q_{4}^{\prime}+2 Q_{1}^{\prime} Q_{2}^{\prime} O_{3}^{\prime} Q_{4}^{\prime}$

The proceeding to obtain the optimal result is presented in Table 12. The optimal result is $\left(x_{1}, x_{2}, x_{3}, x_{4}, x_{5}\right)=(3,1,2,2,1)$. The system reliability is 0.9914 . The resource, 20, is totally consumed.

$$
\text { Table } 12 \text { Result: of Example } 2 \text { by the Modified Nakagawa-Nakashima's Approach }
$$

$$
\therefore \begin{array}{lll}
\bar{\Sigma} & \infty & \vdots \\
\vdots & 0 & \vdots \\
0 & 0 & 0
\end{array}
$$

$$
\begin{array}{lllll}
x_{0}^{L} & 0 & 0 & 0 \\
< & \dot{j} & \sim & r
\end{array}
$$

$$
\begin{array}{ccccc}
x_{0}^{\sigma} & 0 & m & m & \vdots \\
< & m & m & \vdots \\
\end{array}
$$

$$
\begin{array}{lllll}
x & \curvearrowleft & \ddots & \ddots & \vdots \\
< & - & \cdots & \sim & -
\end{array}
$$

$$
\begin{array}{llll}
x & n & 0 & 0 \\
\times & m & \sim & -
\end{array}
$$

$$
u=n+N^{\prime}=
$$

[^1]
## REFERENCES

1. Aggarwal, K. K., "Redundancy optimization in general systems", IEEE Transactions on Reliability, Vol. R-25, No. 5, pp. 330-332 (December 1976).
2. Aggarwal, K. K., J. S. Gupta, and K. B. Misra, "A new heuristic criterion for solving a redundancy optimization problem", IEEF Tiansactions on Reliability, Vol. R-24, No. 1, pp. 86-87 (^pril 1975).
3. Misra, K. B., "A simple approach for constrained redundancy optimization problems", IEEE Transactions on Reliability, Vol. R-21, No. 1, pp. 30-34 (Feb. 1972).
4. Nakagawa, Y., and K. Nakashima, "A heuristic method for determining optimal reliability allocation", IEEE Transactions on Reliability, (August 1977).
5. Sharma, J., and K. V. Venkateswaran, "A direct method for maximizing the system reliability", IEEE Transactions on Reliability, Vol. R-20, No. 4, pp. 256-259 (November 1971).
6. Tillman, F. A., and J. M. Liittschwager, "Integer progranming formulation of constrained reliability problems", Management Science, Vol. 13, No. 11, pp. 887-899 (Juiy 1967).
7. Tillman, F. ^., "Integer programing solutions to constrained reliability optimization probiems", Transactions of Twentieth Annual Technical Conference, American Society for Quality Control, paper number 66-174, pp. 676-693 (1966).
8. Ushakov, I. A., "A heuristic method of optimization of the redundancy of multifunction systems". IZV. AN SSSR, Tekhnicheskaya Kibernetika (Engineering Cybernetics) Vol. 10, No. 4, pp. 612-613 (1972).
3.2 UYAAMLC PROGRGWAING APPLIED TO OPTIMLL SYSTEMS RELIABILITY
9. Introduetion

Dynanic programming is based on the so-called "princıple of optimality" [1-3] and employs the techniques or invariant imbedding. The problem is ushaily structured as an $\hat{v}$-stage sequential decision problem so as to apply a dinamic programming approach for its solution. Bellman has shown that apolying a dynamic programming approach will readily yield an exact solution to a system allocation proble:n. The basic characteristic of the approach is that in the computational procedure an $N$-variable decisior proolem is solved by a sequential solutions of $N$ single-variable problems.

Various papers have presented the application of dynamic programming to a variety of problems. Probiems treated in these papers can be classizied into the following examples.

Example 1
The basic approach is illustrated by an example [Rudd, 1962] which is to locate the redundancy at each stage of a series system so that the ne: system profit will be maximized. [17]

Consider an $V$ stage mixed system shown in Fig. 1 having ( $\left.x_{j}-1\right)$ parallel redundancies $i t$ each stage; the system reliability is

$$
\begin{equation*}
R_{s}=\stackrel{V}{j=1}\left(I-\left(1-R_{j}\right)^{X}\right) \tag{b}
\end{equation*}
$$

Let us assume that $P$ is the profit obtained when the system operites successfullv. The system reliability, $R_{s}$, is the Eraction of the trials that are successtul and hence the expected profit for the system is PR ${ }_{s}$. Suppose that the costs $C_{j}$ of the redundant components oi the $j$ th. staze are the construction cost (suitably distributed over the life of the process) and the operating cost. The total cost of a system with redundancies is then


$$
j^{\stackrel{\rightharpoonup}{L}} C_{j} x_{j}
$$

The net profit ${ }_{p}$ p or the entire sustem is the profit less the total cost, that is

$$
\begin{equation*}
N_{p}=F R_{s}-{ }_{j=1}^{\sum \sum} C_{j} x_{j} \tag{2}
\end{equation*}
$$

The optimal parallel redundancy configuration then is the one to find $x_{j}, j=1, \ldots, N$, which maximizes the net system profit.

In this example, no constraints are imposed to the problem.
Consider a three stage process. The profit associated with the Einal product is $P=10$ unit. The cost of each of the redundant components, $C_{j}$, the reliability of each of the components, $R_{j}$, are given as

	$R_{j}$	$C_{j}$
process 3	$0.33 j$	0.20
process 2	0.500	1.0
process 1	0.750	1.0

## Exaniple ?

Given a system reliability requirement $R_{s, ~ m i n, ~ t h e ~ p r o b l e m ~ i s ~ t o ~}^{\text {s }}$ determine a least-cost allocation of an $V$-stage series system that yields $R_{s} \geq R_{s, m i n}$. The example is from Kettelle [i962]. As an example, consider the following four-stage system with a system reliability requirement of $R_{s, \min }=0.99$ and total cost less than $b_{1}=61[10]$ :

Stage	4	$j$	2	1
$C_{j}$	1.2	$2 . j$	3.1	1.3
$R_{j}$	0.8	0.7	0.75	0.85

The problem is
Hax172こe

$$
R_{s}=\sum_{j=1}^{N}\left[1-\left(i-R_{j}\right)^{X_{j}}\right]
$$

subject to

$$
g_{1}=\sum_{j=1}^{y} C_{j} x_{j} \leq b_{1}
$$

and

$$
R_{s} \geq R_{s, \text { min }}
$$

## Example 3

Consider the problem originally presented by Tillman-Liittschwager [1967], but the second constraint in the original problem is excluded. The five-stage problem is stated as

Maximize

$$
R_{s}={ }_{j=1}^{5}\left[1-\left(1-R_{j}\right)^{x}{ }^{x}\right]
$$

subject to

$$
\begin{aligned}
& g_{1}=\sum_{j=1}^{\sum} P_{j}\left(x_{j}\right)^{2} \leq P \\
& g_{2}=\sum_{j=1}^{\sum} \quad w_{j} x_{j} \exp \left(x_{j} / t\right) \leq W
\end{aligned}
$$

where $x_{j} \geq 1, j=1,2, \ldots, N$, are integers.
The constants associated with this problem are:

$j$	$R_{j}$	$P_{j}$	$P$	$w_{j}$	$w$
1	0.30	1		7	
2	0.85	2		8	
3	0.90	$j$	110	8	200
4	0.65	4		6	
$j$	0.75	5		9	

Example 4
Let $a_{j}$ represent the design alternatives available for the $j$ th stage with a specified inherent component reliability, and $R_{j}\left(x_{j}, a_{j}\right)$ denote the known reliability function of the $j$ th stage when $x_{j}$ identical components of design alternative $a_{j}$ are used. For: an N-stage series system, the problem,

Maximize

$$
R_{x}=\prod_{j=1}^{i} R_{j}^{\prime}\left(x_{j}, a_{j}\right)
$$

subject t

$$
\begin{aligned}
& g_{1}=\sum_{j=1}^{V} g_{1 j}\left(x_{j}, a_{j}\right) \leq C \\
& g_{2}=\sum_{j=1}^{N} g_{2 j}\left(x_{j}, a_{j}\right) \leq W
\end{aligned}
$$

where

$$
x_{j} \geq 1, a_{j} \geq 1, j=1,2, \ldots, N \text { are all integers. }
$$

## Example 5

Consider a five stage problem with three nonlinear constraints [Tillman Liittschwager, 1967]:

Maximize

$$
R_{s}=\underset{\substack{=1}}{j}\left[1-\left(1-R_{j}\right)^{x_{j}}\right]
$$

subject to

$$
\begin{aligned}
& s_{1}=\sum_{j=1}^{N} v_{j}\left(x_{j}\right)^{2} \leq P \\
& g_{2}=\sum_{j=1}^{N} c_{j}\left(x_{j}+\exp \left(x_{j / 4}\right)\right) \leq C \\
& s_{j}=\sum_{j=1}^{N} w_{j} x_{j} \exp \left(x_{j / 4}\right) \leq i
\end{aligned}
$$

where $\quad x_{j}, j=1,2, \ldots, N$, are integers.

The objective function $R_{s}$ can be approximated by
$R_{5}=1-\left[\left(1-R_{1}\right)^{x_{1}}+\left(1-R_{2}\right)^{x_{2}}+\left(1-R_{3}\right)^{x_{3}}+\left(1-R_{4}\right)^{x_{4}}+\left(1-R_{5}\right)^{x_{5}}\right]$,
where $\left(1-R_{1}\right)^{x_{1}},\left(1-R_{2}\right)^{x_{2}},\left(1-R_{3}\right)^{x_{3}},\left(1-R_{4}\right)^{x_{4}}$, and $\left(1-R_{5}\right)^{x_{5}}$
are stage unreliabilities and are represented by $Q_{1}^{\prime}, Q_{2}^{\prime}, Q_{3}^{\prime}, Q_{4}^{\prime}$, and $Q_{5}^{\prime}$, respectively.

The constants associated with the five-stage problem are given as CONSTANTS ASSIGNED FOR FIVE-STAGE PROGRAM

	$R_{j}$	$P_{j}$	$P$	$c_{j}$	$C$	$W_{j}$	$W$
1	0.80	1		7		7	
2	0.35	2		7		8	
3	0.90	3	110	5	175	8	200
4	0.65	4		9		6	
5	0.75	2		4		9	

Since by dymamic programing approach the number of constraints will result in the so-called dimensionality difficulty, three different approaches have been used for solving the problems. They are classified in Table 1.

A basic plain dynamic programming approach is used for a proolem without constraints or with a single constraint. Whenever there are constraints in a problem, the computation required for solving the problem increases exponentially. The second method in Table 1 was criginally introduced by

Table 1 Classification of Approaches

Methods	Application to Examples	References
Basic dynamic programming   approach	Examples land 2	$1-4,6,7$   $11,12,13$,   $14,15,17$
Dynamic programming approach   using Lagrange Multipliers	Examples 3, 4, and 5	$4,7,8,14$
Dynamic programming approach   using the concept of dom-   inating sequerice	Examples 2, 3, 4, and 5	$9,10,16$

Bellman [1958] where Lagrange multipiier was used when two or more constraints were considered in a problem. By introducing the Lagrange multiplier; the dimensionality of the problem coming from the constraint is reduced.

If three constraints are considered in a problem, then two Lagrange multipliers have to be introduced, which gives us another problem for finding out the two optimal Lagrange multipliers. Therefore, the third approach is suggested which utilizes the concept of dominating sequence (see Table l). Kettelle [1962] may be the first one to introduce the concept of dominating sequence to solve a single linear constraint problem. The approach is applicable to a 3-nonlinear-constraints problem. To use this approach we have to find both the upper bound and the lower bound of the number of components used at each stage to reduce the length of the dominating sequence. The detailed discussions with examples are shown in the following sections.
2. Bast byramic Programming Approach

Example 1
The basic dynamic programming is used ir. solving Example 1 which is described in the Introduction section.

For the one-stage process, the optimal design is determined for the single decision variable, $x_{1}$, by the solution of

$$
\mathrm{F}_{1}\left(\mathrm{v}_{2}\right)=\max _{\mathrm{x}_{1}}\left\{\mathrm{P} \mathrm{v}_{1}-C_{1} x_{1}\right\}
$$

for a spectrum of $v_{2}$ values, where $v_{2}=\underset{\substack{ \\j=v+1}}{2} R_{s j}$ is the probability that all upstream stages work, $v_{1}=\because_{2} R_{s l}=v_{2}\left[1-\left(1-R_{1}\right)^{x_{1}}\right]$, and $R_{s, N+1}=v_{N+1}=1 . R_{s j}$ is the reliability of the $j$ th stage with $x_{j}$ parallel components, and $R_{j}$ is the reliability of each component.

For the two-stage process, the optimal design is obtained by

$$
\dot{i}_{2}\left(v_{3}\right)=\max _{x_{2}}\left\{\dot{r}_{1}\left(v_{2}\right)-c_{2} x_{2}\right\}
$$

and for the $j$-stage process, the recursive functional equation is

$$
\begin{equation*}
f_{j}\left(v_{j+1}\right)=\max _{x_{j}}\left\{{\underset{j}{j-1}}\left(v_{j}\right)-c_{j} x_{j}\right\} \tag{1}
\end{equation*}
$$

Now, if the optimal design for the subsystem including the stages, $N-1, N-2, \ldots$ and 1 , is known, then stage $N$ can be designed optimally solving the maximum problem for the single decision variable $x$....e.,

$$
\begin{equation*}
f_{N}\left(v_{V+1}\right)=\max _{X_{N}}\left\{\dot{I}_{N-1}\left(v_{N}\right)-C_{N} x_{V}\right\} \tag{כ}
\end{equation*}
$$

Substituting the constants into the equations, the recursive dynainic programming algorithins are

$$
\begin{align*}
& f_{1}\left(v_{2}\right)=\max _{x_{1}}\left\{10 v_{1}-1.0 x_{1}\right\}  \tag{6}\\
& f_{2}\left(v_{3}\right)=\max _{x_{2}}\left\{f_{1}\left(r_{2}-1 \cdot n x_{2}\right\}\right. \tag{}
\end{align*}
$$

$$
\begin{equation*}
f_{3}\left(v_{4}\right)=\max _{x_{3}}\left\{E_{2}\left(v_{3}\right)-0.20 x_{3}\right\} \tag{8}
\end{equation*}
$$

where

$$
\begin{align*}
& v_{1}=v_{2}\left\{1-\left(1-R_{1}\right)^{x_{1}}\right\}  \tag{9}\\
& v_{2}=v_{3}\left\{1-\left(1-R_{2}\right)^{x_{2}}\right\}  \tag{10}\\
& v_{3}=v_{4}\left\{1-\left(1-R_{3}\right)^{x_{3}}\right\}  \tag{11}\\
& v_{4}=1.0
\end{align*}
$$

The first maximum problem (Stage 1 ) is solved for the optimal $x_{1}$ for a spectrum of $v_{2}$ values. Since $v_{2}$ is the probability that all upstream stages work, $\mathrm{V}_{2}$ takes a value between 0 and 1 . Equations (6) and (9) are employed in a systematic search for $x_{1}$ which maximizes $\left\{10 v_{1}-1.0 x_{1}\right\}$ for an assigned $r_{2}$ value. Any one-dimensional search technique can be used; however, since $x_{1}$ usually takes a small integer value, a simple exhaust search is carried out and the results are presented in Table la. The optimal returns, $f_{1}\left(v_{2}\right)$, and the optimal parallel components, $x_{1}$, for $v_{2}$ $=1.0,0.9, \ldots, 0.1$ are presented in Table 2 and Fig. 2. Usually oniy Table 2 is presented as a dynamic programming table and detailed calculation presented in Table 1 is omicted.

Similarly equations (7) and (10) are employed in the systematic search for $x_{2}$ which maximizes $\left\{f_{1}\left(v_{2}\right)-C_{2} x_{2}\right\}$ for each value of $v_{3}$. The results are presented in Table ib, and the optimal results in Table 2 and Fig. 2. In the process of calculation, the value of $f_{1}\left(v_{2}\right)$ is obtained by interpolation. For example, $v_{2}$ is given as 0.88 from equation (10) for $v_{3}=1.0$ and $M_{2}$ $=3$. The value of $f_{1}\left(v_{2}\right)$ for $v_{2}=0.88$, which is used ir equation ( $\overline{1}$ ), is detexmined by intervolation of $f_{1}(0.9)$ and $f_{1}(0.8)$ obtained in stage 1 optimization. Equations (8) and (11) are used in search of $x_{3}$ to maximize $\sum_{2} f_{2}\left(v_{3}\right)-C_{3} x_{3}$; for $S_{f}=1.0$, since $\because y+1$ is always 1 . The results are presented in Table lc, Table 2 and Fig. 2.

Starting with the three-stage process, its optimal system profit is $f_{3}=1.32$ units with the corresponding optimal values of $x_{3}=T$ and $v_{3}=0.94$. Entering stage 2 at $v_{3}=0.94$ gives $x_{2}=3$ and $v_{2}=0.32$, and entering stage 1 and $y_{2}=0.82$ gives $x_{1}=2$ and $v_{1}=0.77$. Thus the optimal parallal design consists of seven parallel components for stage 3 , three parallel components for stage 2 , and two parallel components for stage 1 . This gives rise to the system reliability of 0.77 at a profit of 1.32 units. Without parallel redundancy the system has $p \prod_{j=3}^{1} R_{j}-\sum_{j=3}^{1} C_{j} x_{j}=10(0.535 \times 0.50 \times 0.75)-$ $(0.20-1.0+1.0)=-0.95$ profit.

Table la. Results of Stage 1

$\mathrm{v}_{2}$	$\mathrm{x}_{1}$	$v_{1}$	$\mathrm{Pv} \mathrm{V}_{1}-\mathrm{C}_{1} \mathrm{X}_{1}$	$f_{1}\left(v_{2}\right)$
1.0	0	0.00	0.00	
1.0	1	0.75	6.50	
1.0	2	0.94	7.38	*
1.0	3	0.98	6.84	
1.0	4	1.00	5.96	
0.9	0	0.00	0.00	
0.9	1	0.63	5.75	
0.9	2	0.84	0.44	*
0.9	3	0.89	3. 36	
0.9	4	0.90	4.96	
0.8	0	0.00	0.00	
0.8	1	0.60	5.00	
0.8	2	0.75	5.50	*
0.8	3	0.79	4.88	
0.8	4	0.80	3.97	
0.7	0	0.00	0.00	
0.7	1	0.53	4.25	
0.7	2	0.56	4.56	*
0.7	3	0.69	3.89	
0.7	4	0.70	2.97	
0.6	0	0.00	0.00	
0.6	1	0.45	3.50	
0.6	2	0.56	3.63	*
0.6	3	0.59	2.91	
0.6	4	0.60	1.98	
0.5	0	0.00	0.00	
0.5	1	0.38	2.75	*
0.5	2	10.47	2.69	
0.5	3	0.49	1.92	
0.4	0	0.00	0.00	
0.4	1	0.30	2.00	*
0.4	2	0.38	1.75	
0.4	3	0.39	0.94	
0.3	0	0.00	0.00	
0.3	1	0.23	1.25	*
0.3	2	0.28	0.81	
0.3	3	0.30	-0.05	
0.2	0	0.00	0.00	
0.2	1	0.15	0.50	*
0.2	2	0.19	-0.13	
0.2	3	0. 20	-1.03	
0.1	0	0.00	0.00	*
0.1	1	0.07	-0.25	
0.1	2	0.09	-1.06	


${ }^{3} 3$	$x_{2}$	$\mathrm{v}_{2}$	$f_{1}\left(v_{2}\right)$	$\mathrm{C}_{2} \mathrm{X}_{2}$	$\mathrm{f}_{1}\left(\mathrm{v}_{2}\right)-\mathrm{C}_{2} \mathrm{x}_{2}$	$E_{2}\left(v_{3}\right)$
1.0	0	0.00	-0.00	0.00	0.00	
1.0	1	0.50	2.75	1.00	1.75	
1.0	2	0.75	5.03	2.00	3.03	
1.0	3	0.88	6. 20	3.00	3. 20	*
1.0	4	0.94	6.79	4.00	2.97	
1.0	5	0.97	7.08	5.00	2.03	
0.9	0	0.00	-0.00	0.00	0.00	
0.9	1	0.45	2.38	1.00	1.58	
0.9	2	0.63	4.3 .3	2.00	2.3 .3	
0.9	3	0.79	5.38	3.00	2.38	*
0.9	4	0.84	5.91	4.00	1.91	
0.9	5	0.37	6.17	5.00	1.17	
0.8	0	0.00	-0.00	0.00	0.00	
0.8	1	0.40	2.00	1.00	1.00	
0.8	2	0.00	3.63	2.10	1.03	*
0.8	3	0.70	4.50	3.00	1.36	
0.8	4	0.75	5.03	4.00	1.03	
0.7	0	0.00	-10.00	0.00	$1) .00$	
0.7	1	0.35	1.63	1.00	0.63	
0.7	2	0.53	2.97	2.00	0.97	*
0.7	3	0.61	3.74	3.00	0.74	
0.7	4	0.60	4.15	4.00	0.15	
0.5	0	0.00	-0.00	0.00	0.00	
0.6	1	0.30	1. 25	1.00	0.25	
0.5	2	0.15	2.38	2.00	0.58	*
0.6	j	0.53	2.97	3.00	-0.03	
0.5	4	0.56	$こ .30$	4.00	-0.70	
0.5	0	0.00	-0.00	0.00	0.00	*
0.5	1	0.25	0.88	1.00	-0.13	
0.5	2	0.33	1.31	2.00	-0.19	
0.4	0	0.00	-0.00	0.00	0.00	*
0.4	-	0.20	0.50	1.00	-0.50	
0.4	$?$	1). 30	1.25	2.00	-0.75	
0.3	0	0.00	-0.00	0.00	0.00	*
0.3	1	0.15	0.25	1.00	-0.75	
0.3	$?$	0.23	0.69	2.00	-1.31	
0.2	0	0.00	-0.00	0.00	0.00	*
0.2	1	0.10	0.00	1.00	-1.00	
0.2	2	0.15	0.25	2.00	-1.75	
0.1	0	0.00	-0.00	0.00	0.00	*
0.1	1	0.05	-0.00	1.00	-1.00	
0.1	2	0.07	-0.00	2.00	-2.00	

Table lc. Results of stage 3 (and stage 2 and stage 1)

$v_{4}$	$x_{3}$	$v_{3}$	$f_{2}\left(v_{3}\right)$	$C_{3} x_{3}$	$f_{2}\left(v_{3}\right)-C_{3} x_{3}$	$f_{3}\left(v_{4}\right)$
1.0	0	0.00	-0.00	0.00	0.00	
1.0	1	0.33	0.00	0.20	-0.20	
1.0	2	0.56	0.21	0.40	-0.19	
1.0	3	0.70	0.99	0.60	0.39	
1.0	4	0.80	1.64	0.80	0.84	
1.0	5	0.87	2.14	1.00	1.14	
1.0	6	0.91	2.48	1.20	1.28	
1.0	7	0.94	2.72	1.40	1.32	$*$
1.0	8	0.96	2.88	1.60	1.28	$*$
1.0	9	0.97	2.99	1.80	1.19	

Table 2. The Dynamic Prograning Table
stage 3 (and stage 2 and stage 1)

$v_{4}$	$f_{3}\left(v_{4}\right)$	$x_{3}$	$v_{3}$	$f_{2}\left(v_{3}\right)$
1.0	1.32	7	0.94	2.72
	stage 2	(and stage 1)		
$v_{3}$	$f_{2}\left(v_{3}\right)$	$x_{2}$	$v_{2}$	$\tilde{f}_{1}\left(v_{2}\right)$
1.0	3.20	3	0.83	6.20
0.9	2.38	3	0.79	5.38
0.8	1.63	2	0.60	3.63
0.7	0.97	2	0.53	2.97
0.6	0.38	2	0.45	2.38
0.5	0.	0	0.	0.
0.4	0.	0	0.	0.
0.3	0.	0	0.	0.
0.2	0.	0	0.	0.
0.1	0.	0	0.	0.

$$
\text { stage } 1
$$

$v_{2}$	$F_{1}\left(v_{2}\right)$	$x_{1}$
1.0	7.38	2
0.9	6.44	2
0.8	5.50	2
0.7	4.56	2
0.6	3.63	2
0.5	2.75	1
0.4	2.00	1
0.3	1.25	1
0.2	0.50	1
0.1	0.	0



Fig. 2 Results for Examble .

The problem with single constraint of Example ? ir the Introduction to this chapter is considered.

The recursive formula of the problem in the basic dynamic programming algorithm then is formulated:

$$
\begin{aligned}
& f_{1}(b)=x_{1}^{2} \leq x_{1} \leq x_{1}^{u}\left[R_{1}^{\prime}\left(x_{1}\right)\right] \\
& f_{2}(b)=x_{2}^{2} \leq x_{2} \leq x_{2}^{u} \quad\left[R_{2}^{\prime}\left(x_{2}\right) f_{1}\left(b-g_{12}\left(x_{2}\right)\right)\right] \\
& \vdots \\
& f_{N}(b)=\max ^{\max _{N}^{2} \leq x_{N} \leq x_{N}^{u} \quad\left[R_{N}^{\prime}\left(x_{N}\right) f_{N-1}\left(b-g_{1 N}\left(x_{N} j\right)\right]\right.}
\end{aligned}
$$

where

$$
\mathbb{R}_{j}^{\prime}\left(x_{j}\right)=1-\left(1-R_{j}\right)^{x_{j}}, j=1,2, \ldots, \dot{.}
$$

$x_{j}^{2}, j=1,2, \ldots, N$, is the minimum integer number used at each stage. I: 1s usually that $x_{j}^{2}=1, j=1,2, \ldots, V$ if no restriction on the minimum system reliability is imposed to the problem. $x_{j}^{u}, j=i, 2, \ldots, \lambda$, is the


This example has been solved by kettelle [1962] by dynamic programmng algorithm using the concept of dominating sequence. Now, it is solved by the basic dymamic programning approach.

Since the goal of system reliability is 0.99 , the minimum reliability at each stage at least is also 0.99. It is required to determine the minimum number of components, $x_{j}^{2}$, used at each stage to attain the stage reliability goal of 9.99 . Since the component reliability is 0.35 at stage 1 , ごwo components in parallei (one redundancy) give the stage reliability of $0.9-15$, and three components in parallel (two redundancies) give the sage reliabilizy
of 0.9966 which is greater than 0.99 . Therefore, three components are the minimum to be used at stage 1 . Similarly, the minimum requirement for stages 2,3 and 4 are determined to be $\left(x_{2}^{2}, x_{3}^{2}, x_{4}^{2}\right)=(4,4,3)$, respectively.

Since the maximum of $R_{S}$ over the feasible region will depend upon the number of stages, $N$, and the available resource, $b_{l}$, we denote by $f_{N}\left(b_{1}\right)$ the maximum of $R_{N}$. That is,

$$
\begin{equation*}
f_{N}\left(b_{1}\right)=x_{N}, x_{N-1}, \ldots, x_{1}\left[{ }_{j=N}^{1} R_{j}^{\prime}\left(x_{j}\right)\right] \tag{13}
\end{equation*}
$$

where $x_{j}, j=1,2, \ldots, N$ are positive integers satisfying the constraint:

$$
\begin{equation*}
\sum_{j=1}^{N} g_{1 j}\left(x_{j}\right) \leq b_{1} \tag{14}
\end{equation*}
$$

For the one-stage process, the optimal design is determined for the single decision variable, $x_{1}$, by the solution of

$$
\begin{equation*}
f_{1}(b)=x_{1}^{2} \leq x_{1} \leq x_{1}^{u} R_{1}^{\prime}\left(x_{1}\right) \tag{13}
\end{equation*}
$$

where, $x_{1}^{2}=3$, and the upper bound used in stage 1 , $x_{1}^{u}$, is restricted by the cost constraint. The first maximum problem (Stage 1) is solved for the optimal $x_{1}$ for a spectrum of $b$ values. The spectrum of $b$ is determined from the consumed resource 39.9 , of basic aliocation $\left(x_{1}, x_{3}, x_{2}, x_{1}\right)=$ $(3,4,4,3)$, to the total available resource, 61.0. Thus, for each value of b between 39.9 and 61.0, we will find an optinal allocation for $x_{1}$ when all the upstream stage allocation are fixed by ( $x_{4}, x_{3}, x_{2}$ ) $=(5,4,4)$. The optimal allocation for $x_{1}$ is shown in Table 3a. All possible b values should be searched exhaustively to find the optimal $x_{1}$. Since $\left(x_{1}, x_{3}, x_{2}\right)$ are fixed, optimal $x_{1}$ is for $b$ in the region, $30.90 \leq b<14.40$, which gives $f_{1}(b)=0.9: 68$. For $b$ in the region of
$4.40 \leq b<45.90$, the optimal $x_{1}$ becomes $\rightarrow$ and ${\underset{1}{1}}^{(b)}$ is 0.9796. Similarly, $x_{1}=j$ for $48.90 \leq b<53.40$, and $f_{1}(b)$ is i). $9800 ; x_{1}=6$ for $53.40 \leq b<57.90$ and $f_{1}(b)$ is 0.9801 ; and $x_{1}=7$ for $57.90 \leq 0 \leq 61.00$ and $F_{1}(b)$ is 0.0802 .

For all possible $b$ we have searched the optima! $x_{1}^{\prime}$ s when stages 1,3 , and 2 are fixed at $x_{4}^{2}, x_{3}^{2}, x_{2}^{2}$. The next step is to search for the optimal combinations of Stage 2 and Stage 1 when Stage 4 and Stage 3 are fixed at the minimum required components, $x_{4}^{\ell}$, and $x_{3}^{2}$. It is still necessary to consider all possible b between 39.90 and 61.0. For convenience, the aaximazation will be carried out for b from 40.0 to 61.0 with a discrete spectrum. The difference between every two near searching point is one. Table ja then is used to construct Table 3 b .

In Table 3b, $\left(x_{4}, x_{3}\right)=(3,4)$ is always fixed. An optimal $\left(x_{2}, x_{1}\right)$ is searched for the maximum system reliability for the corresponding value of $b$ given. For example, if $b=40$, from Table $3 a, x_{1}$ could be 3 ; with $\left(x_{i}, x_{3}, x_{1}\right)=(j, 4, j)$, the optimal $x_{2}$ is 4 ; then the system reliability of $\left(x_{1}, x_{3}, x_{2}, x_{1}\right)=(3,4,4,3)$ is 0.9768 . Similariv, when $b=41,42$, and $4 \tilde{3}$, the optimal allocation for $\left(x_{2}, x_{1}\right)$ are $(4, j)$. When $b$ is increased to 44 , from Tabie $3 a, x_{1}$ is still 3 , but $x_{2}$ can be 4 or 3 , althouyh $x_{2}=5$ gives the greaier system reliability of 0.9797 . Therefore, $f_{2}(41)=0.9707$. When $b$ is increased to 4 , then from Table $j a, x_{1}$ can be either $j$ or 4 . When $x_{1}=3$, we search for the optimal $x_{2}$ to be 5 and $R_{s}=0.9-90^{-}$; when $x_{1}=4$, we search for the optimal $x_{2}$ to be $t$ and $R_{s}=0.9796$, the optimal allocation for $b=45$ are $\left(x_{4}, x_{3}, x_{2}, x_{1}\right)=(3,4,5,3)$. The computational results presented in Table $3 b$ are carried out similarly. For another example, for $b=54$, from Table $3 \mathrm{a}, x_{1}$ can be $3,4,5$, or 6 as $\left(x_{4}, x_{3}\right)$ is Eixed as $(3, f)$. For $x_{1}=3$, the maximum system reliability is obtained when $x_{2}=3$. Similarly for $x_{1}=1$, the maximum system reliability is given $\neq x_{2}=5$; for $x_{1}=5$ at $x_{2}=5$; for $x_{1}=6$ at $x_{2}=4$. The optimum resul:
for $b=54, f_{2}(54)$, is the maximum system reliability among ( $x_{2}, x_{1}$ )
$=(8,3),(6,4),(5,5)$, and $(4,6)$, which is $R_{s}=0.9832$ and $\left(x_{2}^{*}, x_{1}^{*}\right)$
$=(6,4)$. Usually the computational results for stage 2 (and stage 1)
presented in Table $3 b$ are not presented and only the dynamic programming table of Table 4 is presented.

Similarly, we can construct Table $3 c$ for all possible $b$ values and for fixed $x_{4}=3$. For each $b$ value, a systematic search procedure is carried out by looking back the optimal allocation of $\left(x_{2}, x_{1}\right)$ shown in Table 4 for stage 2. For example, when $b=52$ is of interest, from Table 4 , the optima: allocation of $\left(x_{2}, x_{1}\right)$, for $b \leq 52$ are:
b

$$
40
$$

$$
+1
$$

$$
42
$$

$$
43
$$

$$
44
$$

$$
45
$$

$$
46
$$

$$
47
$$

$$
48
$$

$$
49
$$

$$
50
$$

$$
51
$$

$$
52
$$

$$
\begin{array}{cc}
\text { optimum } \\
\left(x_{2}\right. & \left.x_{1}\right) \\
4 & 3 \\
4 & 3 \\
4 & 3 \\
4 & 3 \\
5 & 3 \\
5 & 3 \\
5 & 3 \\
6 & 3 \\
5 & 4 \\
5 & 4 \\
5 & 4 \\
5 & 4 \\
6 & 4
\end{array}
$$

Therefore, the optimal allocation for $\left(x_{2}, x_{1}\right)$ can oniy be one of the following: $(4, j),(5,3),(5,3),(5,4),(6,4)$. Since $x_{4}$ is fixed, for $\left(x_{2}, x_{1}\right)$
$=(4, j)$ we find the optimal $i x_{j}=$ with system reliability, $R_{s}=0.9048$; for $\left(x_{2}, x_{1}\right)=(5,3)$, the optimal is $x_{3}=$, and $R_{s}=0.9875$; for $\left(x_{2}, x_{1}\right)$ $=(6,3)$ the optimal is $x_{3}=6$, and $R_{s}=0.9877$; for $\left(x_{2}, x_{1}\right)=(5,4)$, the optimal is $x_{3}=3$ and $R_{s}=0.9881$; and for $\left(x_{2}, x_{1}\right)=(6,4)$ the optimal is $x_{3}=+$ and $R_{s}=0.9832$. Among these system reliabilities, 0.9881 is the largest one, hence the allocation of $\left(x_{4}, x_{3}, x_{2}, x_{1}\right)=(3,5,5,4)$ is the optimal one for $b=52$. The optimum results for Stage 3 (and Stage 2 and Stage 1) are presented in Table 4 .

$$
\text { Finally we can construct Table } 3 d \text { for } b=6: \text {, which is the total }
$$

allowable resource. For $b=61$, from Table 4 for Stage j, all the ovtimal allocation of $\left(x_{3}, x_{2}, x_{1}\right)$ for $b \leq 61$ 2.e: $(4,4,3),(5,4,3),(6,4,3)$, $(5,5,5),(6,5,3),(5,5,4),(6,5,4),(7,5,4),(6,6,4),(7,6,4)$, and $(8,6,4)$. For each allocation, the optimum $x_{4}$ (the maximum allowable $x_{4}$ to give the maximum system reliability) is calculated. Among all these system reliabilities the optimal system reliability for this problem as shown in Table $3 d$ is $\left(x_{4}, x_{3}, x_{2}, x_{1}\right)=(5,7,6,4)$ which gives the largest systen reliability, $R_{s}=0.99871$. The dynamic programming tabie for this problem is given in Table 4.

Table $3 a$ The dynamic programming table of Example 2 for Stage 1

$b$	$x_{4}^{\ell}$	$x_{3}^{\ell}$	$x_{2}^{\ell}$	$x_{1}$	$R_{S}$	$f_{1}(b)$
$39.90-44.39$	3	4	4	3	0.9768	$*$
$44.40-48.89$	3	4	4	4	0.9796	$*$
$48.90-53.39$	3	4	4	5	0.9800	$*$
$53.40-57.89$	3	4	4	6	0.9807	$*$
$57.90-61.00$	3	4	4	7	0.9802	$*$

Table 3 b Computational results of Example 2 for Stage 2 (and Stage 1 )

b

$\mathrm{R}_{\mathrm{s}}$
$\mathrm{F}_{2}(\mathrm{~b})$

55

56

3	4	8
3	4	7
3	4	5
3	4	4

3
4
5
6
0.9806
0.9834
0.9829
0.9801
0.9806
0.9834
0.9836
0.9801
0.9806
0.9834
0.9836
0.9830

58
3

59

60

3	4	9	3	0.9806
3	4	3	4	0.9835
3	4	7	5	0.9838
3	4	5	6	0.9830
3	4	4	7	0.9802
3	4	10	3	0.9806
3	4	8	4	0.9835
3	4	7	5	0.9838
3	4	6	6	0.9837
3	4	4	7	0.9802

Table 3 C Computational cesulis of Example 2 for Stage (and Stage 2 and Stage 1;
b

3	4	4	3	0.9768	*
3	4	4	3	0.9768	*
3	4	4	3	0.9768	*
3	5	4	3	0.9824	*
5 3	$\begin{aligned} & 5 \\ & 4 \end{aligned}$	$\begin{aligned} & 4 \\ & 5 \end{aligned}$	$\begin{aligned} & j \\ & j \end{aligned}$	$\begin{aligned} & 0.9824 \\ & 0.9797 \end{aligned}$	-
3	$\begin{aligned} & 6 \\ & 4 \end{aligned}$	$\begin{aligned} & 4 \\ & 5 \end{aligned}$	$\begin{aligned} & 3 \\ & 3 \end{aligned}$	$\begin{aligned} & 0.9841 \\ & 0.9797 \end{aligned}$	*
3 3	$\begin{aligned} & 6 \\ & 5 \end{aligned}$	$\begin{aligned} & 4 \\ & 3 \end{aligned}$	$\begin{aligned} & 3 \\ & 3 \end{aligned}$	$\begin{aligned} & 0.9841 \\ & 0.9853 \end{aligned}$	*
3 3 3	$\begin{aligned} & 7 \\ & 5 \\ & 4 \end{aligned}$	$\begin{aligned} & 4 \\ & 5 \\ & 6 \end{aligned}$	$\begin{aligned} & 3 \\ & 3 \\ & 3 \end{aligned}$	$\begin{aligned} & 0.9846 \\ & 0.9853 \\ & 0.9804 \end{aligned}$	*
3 3 3	$\begin{aligned} & 7 \\ & 6 \\ & 4 \\ & 4 \end{aligned}$	$\begin{aligned} & 4 \\ & 5 \\ & 6 \\ & 5 \end{aligned}$	$\begin{aligned} & 3 \\ & 3 \\ & 3 \\ & 4 \end{aligned}$	$\begin{aligned} & 0.9846 \\ & 0.9870 \\ & 0.9804 \\ & 0.9825 \end{aligned}$	*


3	7	4
3	6	5
3	5	6
3	1	5

0.9846
0.9870
0.9860
0.9825

3	8	4	3
3	0	5	3
3	5	6	3
3	4	5	4

$0.984^{7}$
0.9870
0.9860
0.9825

3	8
3	7
3	5
3	5

0.9847
0.9875
0.9860
0.9881

52
3
3
3
3
3

9	4	$j$
7	$j$	$j$
0	6	3
5	5	4
1	6	4

0.9848
0.9875
0.98:-7
0. 983 !
$0.985=$

8	${ }_{6}$	$\cdots$	$\stackrel{u}{\square}$	び	$\sim_{4}^{4}$	$\stackrel{\sim}{\square}$	$\sim$	$\bigcirc$
w ur	Ca ca cu ca ua	いいいいいい	WWいいいい	Wいいいい	Wucuma	wasmerat	Wumum	$+^{*}$
■ّ		いのcos号灾	fの¢cor	＋のソ06：	$\stackrel{\square}{\circ}$	$\infty \bigcirc$	＋ののco	cix
ぶ	a．auのut	かのひのびか	ののuのひゅ	のavauts	フau゙のut	avound	のuのuf	$\mathrm{N}^{2}$
cous	uitfamut	cratamum	いやはいいい	urfteruch	fucum	Afamus	－¢ Wway	$\stackrel{*}{*}$
00	00000	－0000	00000	00000	00000．	－0．0．	－0．00．	
$\begin{array}{ll} i 0 & 0 \\ 0 & 0 \\ 0 & 0 \\ -1 & 0 \end{array}$								40
	＊	＊	＊	＊	＊	＊	＊	＋

b
$\begin{array}{llll}x_{1}^{2} & x_{3} & x_{2} & x_{1}\end{array}$

3	9	6	3	0.9884
3	9	5	4	0.9905
3	7	6	4	0.9910
3	5	6	5	0.9893
3	4	7	5	0.9838

61

3	13	4	3	0.9849
3	11	5	3	0.9871
3	10	6	3	0.9884
3	9	5	4	0.9905
3	8	6	4	0.9912
3	6	6	3	0.9910
3	4	7	5	0.9838

```
Table \(\overline{\text { id }}\) Computational results of Example 2 for Stage 4
(and Stage 3, Stage 2 and Stage 1)
```

$b$	$x_{4}$	$x_{3}$	$x_{2}$	$x_{1}$	$R_{S}$	$F_{4}(b)$
	20	4	4	3	0.9848	
	18	5	4	3	0.9904	
	16	6	4	3	0.9921	
	15	5	5	3	0.9933	
	14	7	4	3	0.9926	
	13	6	5	3	0.9951	
	11	5	5	4	0.99609	
	10	6	5	4	0.99779	
	8	7	5	4	0.99830	
	7	6	6	4	0.99851	
	3	7	6	4	0.99871	$*$
	3	8	6	4	0.99119	

Table 4 The dynamic programming table of Example?

Stage 4 (and Stage 3 , Stage 2 and Stage 1)
$\sigma$

$x_{4}$	$x_{3}$	$x_{2}$	$x_{1}$	$f_{4}(b)$
5	7	6	4	0.99871

Stage 3 (and stage 2 and stage 1 )

40	$j$	4	4	3	0.9768
41	3	4	4	3	0.9768
42	3	4	4	3	0.9768
43	$j$	5	4	3	0.9824
44	$j$	5	4	3	0.9824
45	3	6	4	3	0.9841
46	3	5	5	3	0.9853
47	3	5	5	3	0.9855
48	3	6	5	3	0.9870
49	3	6	5	3	0.9870
50	$j$	6	5	3	0.9870
51	3	5	5	4	0.9881
52	3	5	5	4	0.9881
53	3	6	5	4	0.9898
54	3	6	5	4	0.9898
55	3	7	5	4	0.9903
56	3	6	6	4	0.9905
57	3	6	6	4	0.9905
58	3	6	6	4	0.9905
59	3	7	6	4	0.9910
60	3	7	6	4	0.9910
61	3	3	6	4	0.9912

Stage 2 (and stage 1)
b

40	3	4	4	3	0.9768
41	3	4	4	3	0.9768
42	3	4	4	3	0.9768
43	3	4	4	3	0.9768
44	3	4	5	3	0.9797
45	3	4	5	3	0.9797
46	3	4	5	3	0.9797
47	3	4	6	3	0.9804
48	3	4	5	4	0.9825
49	3	4	5	4	0.9825
50	3	4	5	4	0.9825
51	3	4	5	4	0.9825
52	3	4	6	4	0.9832
53	3	4	6	4	0.9831
54	3	4	6	4	0.9831
55	3	4	7	4	0.9834
56	3	4	6	5	0.9836
57	3	4	6	5	0.9836
58	3	4	6	5	0.9836
59	3	4	6	5	0.9836
60	3	4	7	5	0.9838
61	3	4	7	5	0.9838

Tible $\downarrow$ (continued)
Stage 1

$b$	$x_{4}^{2}$	$x_{3}^{2}$	$x_{2}^{2}$	$x_{1}$	$f_{1}(b)$
$39.90-44.39$	3	4	4	3	0.9768
$44.40-48.39$	3	4	4	4	0.9796
$48.90-53.39$	3	4	4	5	0.9800
$53.40-57.39$	3	4	4	6	0.9807
$57.90-61.00$	3	4	4	7	0.9802

3. Dynamic Programing Approach Using Lagrange Multipliers

Formulation of the Problem
If multiple constraint functions are imposed to restrict the objective function, then the Lagrange multipliers may be introduced to eliminate some constraints and hence reduce the dimension of the problem.

In section 2, we have formulated the single constraint problem solved by the basic dynamic programming approach. Now, if the second constraint,

$$
\begin{equation*}
\sum_{j=1}^{N} g_{2 j}\left(x_{j}\right) \leq b_{2} \tag{15}
\end{equation*}
$$

is also imposed to the problem, we have to consider the sequence of functions defined by the relation

$$
\begin{equation*}
f_{1}\left(b_{1}, b_{2}\right)=\max _{1 \leq x_{1} \leq x_{1}^{(1} R_{1}^{\prime}\left(x_{1}\right)} \tag{17}
\end{equation*}
$$

$$
\begin{aligned}
& f_{2}\left(b_{1}, b_{2}\right)=\max _{1 \leq x_{2} \leq x_{2}}{ }^{u}\left[R_{2}^{\prime}\left(x_{2}\right) \cdot f_{1}\left(b_{1}-g_{12}\left(x_{2}\right), b_{2}-g_{22}\left(x_{2}\right)\right)\right] \\
& \cdot \\
& f_{i N}\left(b_{1}, b_{2}\right)= \max \\
& 1 \leq x_{N} \leq x_{N}^{u}
\end{aligned}
$$

where $x_{j}^{u} \quad, j=1,2, \ldots, N$ is the minimum integer between $\left(x_{j}^{u}\right)^{1}$ and $\left(x_{j}^{u}\right)^{2}$; and $\left(x_{j}^{u}\right)^{1}$ is the maximum integer satisfying

$$
\sum_{\substack{p=1 \\ p \neq j}}^{N} g_{1 p}(1)+g_{i j}\left(x_{j}\right) \leq b_{1}
$$

and $\left(x_{j}^{u}\right)^{2}$ is the maximum integer satisfying

$$
\sum_{\substack{p=1 \\ p \neq j}}^{N} g_{2 p}(1)+g_{2 j}\left(x_{j}\right) \leq b_{2}
$$

The recursive formula for a two-cunscraints problem is basically following the same approach as those for a one-constraint problem. Although the formula is simple and very straightforward, it involves sequences of functions of two variables which will require a large memory capacity and are quite time-consuming. Therefore, it is not very desirable from the computational standpoint.

An alternative method to solve this problem is by introducing a Lagrange multiplier, $\lambda$, as a penalty term. The problem now is stated as Maximize

$$
\begin{equation*}
\prod_{j=1}^{N} R_{j}^{\prime}\left(x_{j}\right)\left[e^{-\lambda \sum_{j=1}^{N} g_{2 j}\left(x_{j}\right)}\right] \tag{18}
\end{equation*}
$$

subject to

$$
\sum_{j=1}^{N} g_{1 j}\left(x_{j}\right) \leq b_{1}
$$

The Lagrange multiplier, $\lambda$, is to be chosen so that the constraint in eq. (16) is as nearly as possible an equality. Now the problem becomes the sequence of functions of one variable which has the following recursive formula.

$$
\begin{aligned}
& f_{1}(b)=x_{1}^{2} \leq x_{1} \leq x_{1}^{u}\left[R_{1}^{\prime}\left(x_{1}\right) \exp \left(-\lambda g_{21}\left(x_{1}\right)\right]\right. \\
& \dot{I}_{2}(b)=x_{2}^{2} \leq x_{2} \leq x_{2}^{u}\left[R_{2}^{\prime}\left(x_{2}\right) f_{1}\left(b 1-g_{12}\left(x_{2}\right)\right) \exp \left(-\lambda g_{22}\left(x_{2}\right)\right)\right]
\end{aligned}
$$

.

$$
f_{N}(b)=\max _{\left.N \leq x_{N} \leq x_{N}^{U}\left[R_{N}^{\prime}\left(x_{N}\right) f_{N-1}\left(b_{1}-g_{1 N}\left(x_{N}\right)\right) \exp \left(-\lambda g_{2 N}\left(x_{N}\right)\right)\right]\right]}
$$

where

$$
R_{j}^{\prime}\left(x_{j}\right)=1-\left(1-R_{j}\right)^{x_{j}}, j=1,2, \ldots, N
$$

$x_{j}^{\ell}, i=1,2, \ldots, N, i s$ the minimum integer used at each stage and $x_{j}^{u}, j=1$,
$2, \ldots, N$, is the maximum integer used at each stage such that

$$
\sum_{\substack{p=1 \\ p \neq j}}^{N} g_{1 p}\left(x_{j}^{\ell}\right)+g_{1 j}\left(x_{j}\right) \leq b_{1}
$$

$\lambda$ is to be chosen so that $\sum_{j=1}^{N} g_{2 j}\left(x_{j}\right)$ is as close to $b_{2}$ as possible. For a fixed value of $\lambda$, the maximum system reliability is obtained; that is,

$$
R_{s}=f_{N}\left(b_{1}\right) \exp \left[-\lambda \sum_{j=1}^{N} g_{2 j}\left(x_{j}\right)\right]
$$

a one-dimensional search for $\lambda$ should be carried out to find the optimal solution for $R_{s}$.

A Numerical Examole
Example 3
To solve this example, we first find the lower bound of components to be used at each stage.

By an enumeration method as shown in Table 5, redundancies are allocated stage by stage until one of the constraints is exceeded. The basic system configuration for calculating the lower bound, is assumed to be the one before exceeding one of the constraints, i.e., $(3,3,3,2,2)$ for this numerical example. The system reliability corresponding to this configuration, $R_{s}(\bar{x})$, is 0.8125. This is not, however, an optimal solution. The optimal system reliability should be equal to or greater than this value. Therefore, we assume that the lower bound of stage reliability is 0.3125 and calculate the coresponding lower bound of stage components.

Table 5 The allocation of elements stage by stage until any one constraint is violated.


That is, for $j=1$,

$$
1-(1-0.80)^{x_{1}} \geq 0.8125
$$

which gives $x_{1} \geq 2.31$, say, $x_{1}^{\ell}=2$.
Similarly we obtain $x_{2}^{\ell}=2, x_{3}^{\ell}=1, x_{4}^{2}=3$, and $x_{5}^{\ell}=2$.
The recursive equations modified by using the Lagrange multiplier are

$$
\begin{aligned}
f_{1}(b)= & \max \left\{\left(1-Q_{1}^{x_{1}}\right) \exp \left[-\lambda\left(w_{1} x_{1} e^{x_{1} / 4}\right)\right]\right\} \\
& x_{1}^{2} \leq x_{1} \leq x_{1}^{u}
\end{aligned}
$$

$$
\begin{align*}
f_{2}(b)= & \max \left(1-Q_{2}^{x_{2}}\right) \exp \left[-\lambda\left(w_{2} x_{2} e^{x_{2} / 4}\right)\right] f_{1}\left(b-p_{2} x_{2}^{2}\right)  \tag{20}\\
& x_{2}^{\ell} \leq x_{2} \leq x_{2}^{u}
\end{align*}
$$

$$
\begin{align*}
f_{3}(b)= & \max \left(1-Q_{3}^{x_{3}}\right) \exp \left[-\lambda\left(w_{3} x_{3} e^{x_{3} / 4}\right)\right] f_{2}\left(b-p_{3} x_{3}^{2}\right)  \tag{21}\\
& x_{3}^{2} \leq x_{3} \leq x_{3}^{u}
\end{align*}
$$

$$
\begin{equation*}
f_{4}(b)=\max \left(1-Q_{4}^{x_{4}}\right) \exp \left[-\lambda\left(w_{4} x_{4} e^{x_{4} / 4}\right)\right] f_{3}\left(b-p_{4} x_{4}^{2}\right) \tag{22}
\end{equation*}
$$

$$
x_{4}^{\ell} \leq x_{4} \leq x_{4}^{u}
$$

$$
\begin{align*}
f_{5}(b)= & \max \left(1-Q_{5}^{x_{5}}\right) \exp \left[-\lambda\left(w_{5} x_{5} e^{x_{5} / 4} C\right] f_{4}\left(b-p_{5} x_{5}^{2}\right)\right.  \tag{23}\\
& x_{5}^{2} \leq x_{5} \leq x_{5}^{u}
\end{align*}
$$

where $Q_{j}=\left(1-R_{j}\right), j=1,2, \ldots, 5$.
The quantity $i$ is to be determined so that

$$
g_{2}=\sum_{j=1}^{N} w_{j} x_{j} \exp \left(x_{j / 4}\right) \approx W
$$

To solve this example, $\lambda$ should be assigned, say $\lambda=0.001$. Since the cbjective over the feasible region depends upon the number of stages, $\lambda$, the available resource, $b_{1}$, and the Lagrange multiplier, $\lambda$, we denote by $f_{y}\left(b_{1}\right)$ the maximization of the objective. That is

$$
f_{N}\left(b_{1}\right)=\max _{x_{N}, x_{N-1}, \ldots, x_{1}}^{\left[\prod_{j=N}^{1} R_{j}^{\prime}\left(x_{j}\right) \exp \left(-\lambda \sum_{j=1}^{n} g_{2 j}\left(x_{j}\right)\right]\right.}
$$

where $x_{j}, j=1,2, \ldots, N$ are posj.tive integers satisfying the constraint

$$
\sum_{j=1}^{n} g_{1 j}\left(x_{j}\right) \leq b_{1}
$$

For the one-stage process, the optimal design is determined for the single decision variable, $x_{1}$, by the solution of

$$
\mathrm{f}_{1}(\mathrm{~b})=\max _{x_{1}^{2} \leq x_{1} \leq x_{1}^{u}} R_{1}^{\prime}\left(x_{1}\right) \exp \left(-i g_{2 j}\left(x_{1}\right)\right)
$$

where, $x_{1}^{2}=2$, and the upper bound used in stage $1, x_{1}{ }^{u}$, is restricted $b^{\prime}$ the constraint. The spectrum oi b is deternined from the consumed resource, 59.0, for the basic allocation $\left(x_{5}^{2}, x_{4}^{2}, x_{3}^{2}, x_{2}^{2}, x_{1}^{2}\right)=(2,3,2,2,2)=0$ the total available resource, 110.0 . When $b$ increases, stage redundancy, $x_{1}-1$, stage reliability, $R_{1}^{\prime}\left(x_{1}\right)$, and stage cost, $g_{21}\left(x_{2}\right)$, will increase, but the penalty term, $\exp \left(-i g_{21}\left(x_{1}\right)\right)$ will decrease. Since $f_{i}(b)$ is a maximization of the product of $R_{1}^{\prime}\left(x_{1}\right)$ and $\exp \left(-\lambda g_{21}\left(x_{1}\right)\right), \dot{E}_{2}(b)$ is not a monotonic increasing function of $b$. In other words, the increasing in $b$ allows us to add more components in stage 1 out the configuration from these more redundancy may not give us a optimal return value. When the upstream stages are fixed by $\left(x_{5}^{2}, x_{4}^{2}, x_{j}^{2}, x_{2}^{2}\right)=(2,3,1,2)$, the optimal allocation for $x_{1}$ is obtained as shown in Table $6 a$. All possible $b$ values should be searched exhaustively to find the optimal $x_{1}$. Since $\left(x_{5}, x_{4}, x_{3}, x_{2}\right)$ are fixed, $x_{1}$ is 2 for $b$ in the region of $59.0 \leq j<64.0$ wich gives the functional value

and $\tilde{E}_{1}(b)$ is 0.67476 . For $b$ in the region of $71.0 \leq b<80.0$, we may allocate 4 components for $x_{1}$, but this gives the functional value of 0.65860 which is smaller than the functional value of 0.67476 as $x_{1}=3$. Therefore, $x_{1}=3$ is the optimal one for $71.0 \leq b<80.0$. Similarly, for $b \geq 80.0$, we may allocate $x_{1}=3,4,5,6$, or 7 ; however, $f_{1}(b)$, the optimum is at $x_{1}=3$. Therefore, the optimal is $x_{1}=3$ for $64.0 \leq b \leq 110$.

The results for stage 1 are presented in the dynamic programing table (Table 7, stage 1).

The next step is to search for the optimal combinations of stage 2 and stage 1 since $\left(x_{5}{ }^{\ell}, x_{4}^{\ell}, x_{3}{ }^{\ell}\right)=(2,3,1)$ is fixed. It is necessary to consider all possible b between 59.0 and 110.0 . For convenience, the maximization will be carried out for $b$ with a discrete spectrum. Since the cost of adding one more compoaent to the minimum required components of any stage will consume at least 5 cost units, the difference between two near searching point can be chosen as 5 . Table 7 (stage 1) then is used to construct Table 6 b .

$$
\text { In Table 6b, }\left(x_{5}^{\ell}, x_{4}^{2}, x_{3}^{\ell}\right)=(2,3,1) \text { is fixed. An optimal }\left(x_{2}, x_{1}\right)
$$

is searched for the maximun function value $\mathrm{f}_{2}(\mathrm{~b})$, for the corresponding value of b given. This procedeure is similar to one given in the basic dynamic programming algorithm. For example, if $b=84$, from Table 7 (stage 1) $x_{1}$ can be 2 or 3 . When $x_{1}=2$, we search for the optimal $x_{2}$ to be 2 , and the functional value is 0.66710 ; when $x_{1}=3$, we search for the optimal $x_{2}$ to be 2 and the functional value is 0.67476 . Since 0.67476 is greater than 0.66710 , the optimal allocation for $b=84$ is $\left(x_{5}^{2}, x_{4}^{2}, x_{3}^{2}, x_{2}, x_{1}\right)=(2,3,1,2,3)$. In Table 6b, when $\left(x_{5}^{2}, x_{4}^{2}, x_{3}^{2}\right)=$ $(2,3,1)$ is fixed, only two possible allocations exist for $x_{2}$ and $x_{1}$, namely, $\left(i_{2}, x_{1}\right)=(2, \therefore)$ or $(2,5)$, which are presented in the dynamic programing さable, Table - (stage 2). Similarly, we can construce

Table se for stage 3 (and stage 2 and stage 1 ) for all possible b values and for fixed $\left(x_{5}^{2}, x_{4}^{1},=(2,3)\right.$. For each $b$ value, a systematic search procedure is carried out by usirg the previously determined optimal ailocation of $\left(x_{2}, x_{1}\right)$ shown in Table 7 (stage 2). We can also construct Table $6 d$ for stage 4 (and stage3, stage 2 , and stage 1) for all possible b values and for fixed $x_{5}^{\ell}=2$.

Finally we can construct Table fe for $b=110$ which is the total allowable resource. For $b=110$, from Table 7 (stage 4), all the possible optimal allocations of $\left(x_{4}, x_{3}, x_{2}, x_{1}\right)$ for $b \leq 110$ are: $(3,1,2,2),(3,1,2,3)$, $(3,2,2,2)$, and $(3,2,2,3)$. For each allocation, the ortimum $x_{3}$ (the maximum allowable $x_{5}$ to give the maximum functional value) is calculated, and from all these possible function values we choose the largest one as the optimal one. As shown in Table 6e, $\left(x_{5}, x_{4}, x_{5}, x_{2}, x_{1}\right)=(3,3,2,2,3)$ gives

$$
f_{5}(b=110)=0.74610 \text {. The dynamic programming table for } \lambda=0.001
$$

is given in Table 7.
Table 8 shows that when $i=0.001$, we have $f_{5}(b=110)=0.74610$. Then the total consumed $g_{2}=\sum_{j=1}^{N} g_{2 j}\left(x_{j}\right)=192.5$. The system reiiability, $\mathrm{R}_{\mathrm{s}}$, is 0.9045 , which is given by

$$
f_{5}(b) / \exp \left(-\lambda \sum_{j=1}^{n} g_{2 j}\left(x_{j}\right)\right) .
$$

For searching the proper value of the Lagrange multiplier, $\lambda$, which shall spend a cost as close to 200 (but always less than 200) as possible (since $g_{2} \leq W$, where $W=200$ ), several values of $\lambda$ have been tried. For each value of $\lambda$, the procedures presented above are carried out and an optimum configuration is obtained. The results are summarized in Tables.

As $1=0.0001$, the optimal allocations are $\left(x_{5}, x_{4}, x_{5}, x_{2}, x_{1}\right)=$ $(4, j, 2, j, j)$, which give the system reliability, $R_{S}=0.9331$, and consume
$g_{1}=107$, and $g_{2}=257.6$, i.e., the second constraint is violated. For $\lambda=0.01$, the optimal allocations are $\left(x_{5}, x_{4}, x_{3}, x_{2}, x_{1}\right)=(2,3,1,2,2)$ which give the system reliability, $R_{s}=0.7578$, and consume $g_{1}=59$, and $g_{2}=127.5$. Now 127.5 is smaller than 200 and the solution is a feasible one. Howvever, we can increase the stage redundancies, and consume more resource to increase the system reliability. The one-dimensional search for $\lambda$ can be applied between 0.0001 and 0.01 . Table 8 gives the optimal solution: $0.0008 \leq \lambda \leq 0.0015,\left(x_{5}, x_{4}, x_{3}, x_{2}, x_{1}\right)=(3,3,2,2,3), g_{1}=83$, $g_{2}=192.5$, and $R_{s}=0.9045$.

Table ut Cilculated Resulits of Example 5 For Stage ? as, $=0.0010$.

$\dagger$	$\lambda_{5}{ }^{1}$	$x_{4}$	$x_{3}{ }^{8}$	$x_{2}^{\text {L }}$	$\mathrm{x}_{1}$	functional value
$55-6.5 .9$	2	5	1	2	2	0.66710
64-70.9	2	3	1	2	5	0.67476
71-79.9	2	$j$	1	2	3	0.67476
	2	3	1	2	4	0.65850
50.90.9	2	5	1	2	$j$	0.6.2-5
	2	3	1	2	4	0.55860
	2	5	1	2	5	0.62915
91-105.9	2	3	1	2	5	0.67476
	$=$	3	1	2	4	0.655 en
	2	$\overline{3}$	1	2	5	0.62915
	2	亏	1	2	6	0.60522
104-110	2	3	1	2	5	0.67476
	2	5	1	2	4	0.65860
	2	5	1	2	5	0.62915
	2	3	1	2	6	0.60522
	2	5	1	2	7	0.58209

Table 6 b Calculated Results of Example 3
for Stage 2 (and Stage 1) as
$\lambda=0.0010$

b	$x_{5}^{2}$	$x_{4}^{\ell}$	$\mathrm{x}^{2}$
59	2	3	1
64.	2	3	1
	2	3	1
69	2	3	1
	2	3	1
74	2	3	1
	2	3	1
79	2	3	1
	2	3	1
84	2	3	1
	2	3	1
89	2	3	1
	2	3	1
9.4	2	3	1
	2	3	1
$99-110$	2	3	1
	2	3	1


$x_{2}$	$x_{1}$	functional value	$f(b)$
2	2	0.66710	$*$
2	2	0.66710	$*$
2	3	0.67476	$*$
2	2	0.66710	$*$
2	3	0.67476	$*$
2	2	0.66710	$*$
2	3	0.67476	$*$
2	2	0.66710	$*$
2	3	0.67476	$*$
2	3	0.66710	$*$
2	2	0.67476	$*$
2	3	0.67476	$*$
2	2	0.66710	$*$
2	3	0.67476	$*$

Table 6 c Calculated Results of Example 3 for Stage 3 (and Stage 2 and Stage

1) as $\lambda=0.0010$

b	$x_{5}^{2}$	$x^{2}$
59	2	3
64	2	3
	2	3
69	2	3
	2	3
74	2	3
	2	3
79	2	3
	2	3
84	2	3
	2	3
89	2	3
	2	3
94	2	3
	2	3
99-110	2	3
	2	3


$x_{3}$	$\mathrm{x}_{2}$	$x_{1}$	functional value	$\mathrm{E}_{3}(\mathrm{~b})$
1	2	2	0.66710	*
1	2	2	0.66710	
1	2	3	0.67476	*
2	2	2	0.72208	*
1	2	3	0.67476	
2	2	2	0.72208	
2	2	3	0.73037	*
2	2	2	0.72208	
2	2	3	0.73037	*
2	2	2	0.72208	
2	2	3	0.73037	*
2	2	2	0.72203	
2	2	3	0.7305	$\stackrel{+}{*}$
2	2	2	0.72208	
2	2	3	0.75037	-
2	2	2	0.72208	
2	2	3	0.73037	*

Table 5 Calculated Results of Example $j$ for Stage 4 (and Stage 3, Stage 2 and Stage 1) as $\lambda=0.0010$

$x_{5}^{2}$	${ }_{4}$	$x_{3}$	$x_{2}$	${ }_{1}$	functional value	$\mathrm{f}_{4}(\mathrm{~b})$
2	3	1	2	2	0.66710	*
2	3	1	2	2	0.66710	
2	3	1	2	3	0.67476	*
2	3	1	2	2	0.66710	
2	3	1	2	3	0.67476	
2	3	2	2	2	0.72208	*
2	5	1	2	2	0.66710	
2	3	1	2	3	0.57476	
2	3	2	2	2	0.72208	
2	3	2	2	3	0.73037	*
2	3	1	2	2	0.66710	
2	3	1	2	3	0.67476	
2	3	2	2	2	0.72208	
2	3	2	2	3	0.73037	*

Table be Calc:rlated Results of Example 3 for Stage 5 (and Stage 4 , Stage 3 , Stage 2 and Stage 1) as $\lambda=0.001$

$b$	$x_{5}$	$x_{4}$	$x_{j}$	$x_{2}$	$x_{1}$	functional value	$f_{5}(b)$
110	3	3	1	2	2	0.68147	
	3	2	2	3	0.68929		
	3	2	2	3	0.75764	0.74610	

Table 7 The dynamic progranming table for Example 3 as $\lambda=0.0010$.

```
Stage 5 (and Stage 4, Stage 3, Stage 2 and Stage 1)
```

b	$x_{5}$	$x_{4}$	$x_{3}$	$x_{2}$	$x_{1}$	$\mathrm{f}_{5}(\mathrm{~b})$
110	3	3	2	2	3	0.74610
	Stage 4 (and Stage 3, Stage 2 and Stage 1)					
b	$x_{5}^{2}$	$\mathrm{x}_{4}$	$x_{3}$	$x_{2}$	${ }^{1}$	$\mathrm{f}_{4}(\mathrm{~b})$
59	2	3	1	2	2	0.66710
64	2	3	1	2	3	0.67476
69	2	3	2	2	2	0.72208
74-110	2	3	2	2	3	0.73037
Stage 3 (and Stage 2 and Stage 1)						
b	$x_{5}^{2}$	$\mathrm{x}_{4}^{2}$	$x_{3}$	$x_{2}$	$x_{1}$	$f_{j}(b)$
59	2	3	1	2	2	0.66710
54	2	3	1	2	3	0.67476
69	2	3	2	2	2	0.72208
74-110	2	3	2	2	3	0.73037

Stage 2 (and Stage 1)

$b$	$x_{5}^{2}$	$x_{4}^{2}$	$x_{3}^{2}$	$x_{2}$	$x_{1}$	$f_{2}(b)$
59	2	3	1	2	2	0.66710
$64-110$	2	3	1	2	3	0.67476

## Stage 1

$b$	$x_{5}^{2}$	$x_{4}^{2}$	$x_{3}^{2}$	$x_{2}^{2}$	$x_{1}$	$f_{1}(b)$
$56-63.9$	2	3	1	2	2	0.66710
$64-110$	2	3	1	2	3	0.67476

## Table 8 Optimum System Reliabilities for Various Values of Lagrange Multiplier

Lagrange Multiplier	Optimum System Configuration					Optimum System Reliability		
$\lambda$	$\mathrm{x}_{5}$	$\mathrm{x}_{4}$	$\mathrm{x}_{3}$	$x_{2}$	$x_{1}$	$\mathrm{R}_{\mathrm{s}}$	$\mathrm{g}_{1}$	$\mathrm{g}_{2}$
0.0001	4	3	2	3	3	0.9331	107	257.6
0.0002	4	3	2	3	3	0.9331	107	257.6
0.0004	4	3	2	3	3	0.9331	107	257.6
0.0006	3	3	2	3	3	0.9222	93	216.9
0.0008	3	3	2	2	3	0.9045	83	192.5
0.0015	3	3	2	2	3	0.9045	83	192.5
0.0016	3	3	2	2	2	0.8753	78	171.1
0.0040	2	3	2	2	2	0.8336	68	143.6
0.0060	2	3	1	2	2	0.7578	59	127.5
0.0080	2	3	1	2	2	0.7578	59	127.5
0.0100	2	3	1	2	2	0.7578	59	127.5

4 Dynamı Frogramming Approach Using the Concept of Dominating Sequence Formulation of the Problem

The number of computations required for maximizing the system reliability

$$
R_{s}=\prod_{j=1}^{N}\left[1-\left(1-R_{j}\right)^{x_{j}}\right]
$$

subject to

$$
g_{i}=\sum_{j=1}^{N} g_{i j}\left(x_{j}\right) \leq b_{i} \quad, i=1,2 \ldots r
$$

can be reduced by defining a condition of dominance for alternative system configurations.

A system configuration $\bar{x}^{\prime}$ is said to dominate another system configuration $\bar{x}$, if

$$
R_{s}\left(\bar{x}^{\prime}\right) \geq R_{s}(\bar{x}),
$$

and the inequality sign (<) holds in at least one of the following conditions

$$
\sum_{j=1}^{N} g_{i j}\left(\bar{x}_{j}^{\prime}\right) \leq \sum_{j=1}^{N} g_{i j}\left(\bar{x}_{j}\right) \quad, \quad i=1,2, \ldots, r
$$

This implies that the dominating system configuration has better system reliability and using less cost (resources). A sequence $S$ of redundancy allocations, satisfying the constraints in (5) and none of them being dominated by the others, is said to form a dominating sequence.

In the dynamic programming formulation, combinations of two stages are searched for a dominating sequence of configurations which is then combined with a third stage to vield another dominating sequence. A sequence ends whenever a constrant is violated. The final dominant configuration yielding the optimal system configuration is the last entry in the dominating sequence generated by the combination of the dominating sequence from
stage 1 , stage $2, \ldots$, stage $\mathrm{N}-1$, and stage N .
To reduce the length of the dominating sequence, the heuristic techniques used to determine the upper and lower bounds of $x_{j}, j=1,2, \ldots, N$ may be suggested.
i) Upper bound of $x_{j}, x_{j}{ }^{u}$ :

Each stage should have at least one component. If the upper bound of the $j$ th stage, $x_{j}{ }^{u}$, is to be determined, we let

$$
x_{k}=1, \quad k=1,2, \ldots, v, k \neq j
$$

$x_{j}{ }^{u}$ is the smallest integer number in the set $\left\{c_{1}, c_{2}, \ldots, c_{r}\right\}$, where $c_{\ell}=\max \left\{x_{j} \mid x_{j}\right.$ is integer, and $\left.g_{\ell k}\left(1, \ldots, 1, x_{j}, 1 \ldots, 1\right) \leq b_{\ell}\right\}$ for $\ell=1,2, \ldots, r$.
ii) Lower bound of $x_{j}, x_{j}^{2}$ :

Redundancies are allocated stage by stage until a constraint is met. If the reliability of the configuration $\bar{x}$, which is the last step of allocation, while not violating any constraint, is $R_{s}(\bar{x})$, then $N$ equations of the form $R_{s}(\bar{x}) \leq 1-\left(1-R_{j}\right)^{X_{j}}$ are solved for $x_{j}$, where $x_{j}{ }^{2}$ is the minimum integer numbers satisfying the above equations for $j=1,2, \ldots, N . \quad x_{j}{ }^{2}$ is the lower bound of components used at stage $j$.

Examole 5
To use the concept of dominating sequence to solve this example, we first find the upper and lower bounds of components used at each stage.
i) Uppere bound, $x_{j}{ }^{u}$ :

To find the upper bounds of components for the $j$ th stage, all the other stages are assumed to have one component. The upper bound of the first stage, $x_{1}{ }^{u}$, will be the largest integer number satisfying the following three constraints:

$$
\begin{aligned}
g_{1}= & 1 \cdot\left(x_{1}^{u}\right)^{2}+2 \cdot(1)^{2}+3 \cdot(1)^{2}+4 \cdot(1)^{2}+2 \cdot(1)^{2} \leq 110 \\
g_{2}= & 7 \cdot\left(x_{1}^{u}+\exp \left(x_{1}^{u} u\right)\right)+7 \cdot(1+\exp (1 / 4))+5 \cdot(1-\exp (1 / 4)) \\
& +9 \cdot(1+\exp (1 / 4))+1 \cdot(1-\exp (1 / 4)) \leq 1-5 \\
g_{3}= & 7: x_{1}^{u} \exp \left(x_{1}^{u / 4)+8 \cdot 1 \cdot \exp (1 / 4)-3 \cdot 1 \cdot \exp (1 / 4)}\right. \\
& +6 \cdot 1 \cdot \exp (1 / 4)+9 \cdot 1 \cdot \exp (1 / 4) \leq 200
\end{aligned}
$$

By plugging the integer number, $x_{1}^{u}=1,2, \ldots$ into $g_{1}, g_{2}, g_{3}$, when $x_{1}^{u}=0$, we have $g_{1}=47, g_{2}=137.34$, and $g_{3}=227.36$, that is, $g_{j}\left(x_{1}^{u}=6\right)$ is greater than 200. When $x_{1}{ }^{u}=5$, however, $g_{1}=36, g_{2}=91.44$, and $g_{j}=$ 161.59. None of the constraints is violated. Therefore, $x_{i}{ }^{4}$ is $j$. By similar procedures, the upper bounds of components for the other stayes are found to be all 5 .
ii) Lower bound, $x_{j}{ }^{2}$ :

By an enumeration method as shown in Table 9, redundancies are allocated stage by stage until one of the constraints is exceeded. The basic system configuration for calculating the lower bound, then, is assumed to be the one before the exceeding one of the constraints, i.e., (3, 3, 3, 2, 2) for this numerical example.

The system reliability corresponding to this configuration of (j, $\bar{j}$, $3,2,2), R_{s}(\bar{x})$, is 0.8121 .

Table 9 The allocation of elements stage by stage until any one constraint is violated.

1	2	$\begin{gathered} \text { stages } \\ j \end{gathered}$	4	5	$\sum_{j=1}^{5} g_{1 j}$	$\begin{aligned} & \text { Resources used } \\ & \qquad \sum_{j=1}^{5} g_{2 j} \end{aligned}$	$\sum_{j=1}^{3} g_{3 j}$
1	1	1	1	1	12	73.09	48.79
2	1	1	1	1	15	82.64	62.88
$\begin{aligned} & \bar{\circ} \\ & \underset{\sim}{2} \end{aligned}$	2	1	1	1	21	92.19	78.99
$\begin{aligned} & \text { تِ } \\ & { }_{0}^{0} \end{aligned}$	2	2	1	1	30	99.01	95.10
$\begin{aligned} & \text { Z } \\ & \stackrel{~ 2}{\approx} \end{aligned}$	2	2	2	1	42	111.29	107.18
$\stackrel{\text { 可 }}{\bar{y}} 2$	2	2	2	2	48	116.75	125.30
3	2	2	2	2	53	127.03	146.67
3	3	2	2	2	63	138.31	171.11
3	3	3	2	2	78	141.65	195.53
3	3	3	3	2	98	157.87	213.36

This is, however, not an optimal solution. The optimal system reliability should be equal to or greater than this value. Therefore, we assume that the lower bound of stage reliability is 0.8124 , and calculate the corresponding lower bound of stage components.

That is, for $j=1$,

$$
1-(1-0.80)^{x_{1}} \geq 0.8124
$$

gives $x_{1} \geq 2.31$, say $x_{1}^{2}=2$. Similarly we obtain $x_{2}^{2}=2, x_{3}^{2}=1, x_{4}^{2}=3$, and $x_{5}{ }^{2}=2$.

The optimum components at each stage will then lie between the lower and upper bounds of that stage.

To solve this example, the first step in the computational procedures is to set up a matrix for the combination of stage 1 and stage 2 (see Table qa). In Table ga, the number of components, stage unreliability, $g_{1}, g_{2}$, and $g_{j}$ for stage 1 and stage 2 are presented as the rows above the matrix and column left of the matrix, respectively. The starting number of components used for each stage is the lower bound of the stage, and the ending point, the upper bound. It is easier to consider unreliabilities than reliabilities, although it involves an approximation.

Each entry of the matrix in Table 9 a is a vector, which shows the system unreliabilities, $g_{1}, g_{2}$, and $g_{j}$ which are results of the combination of stage 1 and stage 2 . The system unreliability is approximated by the addition of the unreliabilites of stage 1 and stage $2, i \neq$ both $R_{1}$ and $R_{2}$ are near unity, namely, $R_{1}$ and $R_{2} \geq 0 . j$,

$$
\begin{aligned}
Q^{\prime} & =1-\left(1-\left(1-R_{1}\right)^{x_{1}}\right)\left(1-\left(1-R_{2}\right)^{x_{2}}\right) \\
& =\left(1-R_{1}\right)^{x_{1}}+\left(1-R_{2}\right)^{x_{2}}
\end{aligned}
$$

where $\left(1-R_{1}\right)^{x_{1}}$ and $\left(1-R_{2}\right)^{x_{2}}$ are the unreliabilities of stage 1 and stage 2 , respectively.

The dominating sequence for the system combining stage 1 with stage 2 is obtained by eliminating entries of the matrix which are dominated by others. The eliminating procedures are:
(1) Any cost of the entries in the matrix exceeds the constrained available resource, then the entry is eliminated. For example, the entries of $\left(x_{1}, x_{2}\right)=(5,4),(4,5)$, and $(5,5)$ are eliminated, because all $g_{j}^{\prime} s$ of the entries exceed 200.
(2) The dominating sequence will then be determined as follows:
a. Consider the entry having the highest reliability (i.e., the lowest unreliability), which is always one term of the dominating sequence no matter what costs the term has. In Table 10a, this entry is $\left(x_{1}, x_{2}\right)=(t, 4)$, which has the highest reliability, $1-0.0021=0.9979$. Compare costs of all the other entries with costs of this entry. Eliminate all entries which have lower reliability and higher cost. In table 9a, the highest entry is $\left(x_{1}, x_{2}\right)=(4,4)$, which has reliability $0.9979, g_{1}=48, g_{2}=94.04$, and $g_{j}=163.08$. Comparing with $\left(x_{1}, x_{2}\right)=(4,4)$, the entry $\left(x_{1}, x_{2}\right)=(3,5)$, which has reliability $1-0.0081=0.9919, g_{1}=59, g_{2}=95.17$, and $g_{j}=183.60$, is eliminated, because the latter one is less reliable and requires higher costs for $g_{1}, g_{2}$, and $g_{j}$. That is, entry (4, 4) dominates entry (3, 5).
b. Choose the next higher reliability (lower unreliability), i. e., entry $(5,3)$. Compare the costs of all other entries which have lower reliability than entry (5, 3). However, no entry is dominated by (5, 3).
c. Next, entries $(\overline{3}, 4)$ and $(2, \bar{j})$ are eliminated by
comparing with entry $(4,3)$; entry $(2,4)$ and (5, 2) are eliminated by comparing with entry $(3, \overline{3})$; and entry $(2,3)$ is eliminated by comparing with $(3,2)$. Finally the dominating sequence of $(1),(2),(\overline{3}),(4),(5),(6)$, and
(7) is obtained which is the system composing of stage 1 and stage 2.

The dominating sequence for the combination of stage : and stage 2 from Table 9a will be the new row entry above the matrix in Table 10a. The number of components, stage unreliabilities, $g_{1}, g_{2}$, and $g_{j}$ of stage $j$ will be the column left to the matrix of Table 9 b . Similar procedures are now carried out to eliminate the entries of this matrix whose costs exceed the constraint, i.e., $(4-4,4) ;(4-4,3) ;(5-3,4) ;(5-5,3)$; (4-3, 4). The dominating sequence is then determined. (5 - $\mathbf{3}, 2$ ) and (4-2,4) are elimináted by comparing (3-5,3); (4-4, !) anci (5-j,

1) by $(4-3,2) ;(4-2,5),(3-2,4)$ and $(3-2,3)$ by $(3-3,2)$; $(4-3,1)$ by $(4-2,2) ;(3-3,1)$ and $(2-2,4)$ by $(3-2,2)$; and $(4-2,1)$ by $(2-2,3)$. The dominating sequence is ( $2-2,1),(j-2,1)$, $(2-2,2),(2-2,3),(3-2,2),(4-2,2),(3-5,2),(4-3,2)$, $(3-3,3)(4-4,2),(3-5,4)$, and $(4-3,3)$.

The dominating sequence obtained for system composed by stages 1, 2, and 3 then forms the row entries above the matrix of Table 10 c . Stage 4 is combined with stages 1 - 2 - 3 to form a system, and its dominating sequence is obtained from Table 9c. This dominating sequence for the system composing stages $1,2,3$, and 4 is used to combine with stage 5 to get the last dominating sequence as shown in Table IOd. In Table lod, a dominating sequence is obtained, and the optimal one his the system configuration of $(3,2,2,3,3)$ which has the highest reliability, $1-0.0990=0.9010$.

Tabie 10 © Computational results of Example $\because$ for Stage 1 and Stage 2


Table loc computational results of Example 5 for Stage 1-2-3 and Stage 4

Number of components used	2-2-1	3-2-1	2-2-2	2-2-3	3-2-2	4-2-2	3-3-2	4-3-2	3-3-3	4-4-2	3-3-4	4-3-3
Stage unreliability	0.1625	0.1305	0.0725	0.0635	0.0405	0.0341	0.0214	0.0150	0.0124	0.0121	0.0115	0.0060
$\mathrm{g}_{1}$ used	15	20	24	39	29	36	39	46	54	60	75	61
$\mathrm{g}_{2}$ used	62.50	72.76	69.32	76.66	79.59	90.80	89.86	101.07	97.20	112.28	105.20	103.41
$\mathrm{g}_{3}$ used	59.73	81.10	75.84	100.27	97.21	128.86	121.64	153.29	146.07	189.46	182.24	177.72
$x_{4}^{2}=3^{-}$	(1)	(2)	(3)	(4)	(5)	(6)	(7)	(8)	(10)			
0.0429	0.2054	0.1734	0.1154	0.1064	0.0834	0.0770	0.0643	0.0579	0.0553	0.0550	0.0544	0.0489
36	51	56	60	75	65	72	75	82	90	96	111	97
46.05	108.55	118.81	115.37	122.71	126.64	136.85	135.91	147.12	103.55	158.33	118.81	154.45
38.10	97.83	119.20	113.94	138.37	135.31	166.96	159.74	191.39	184.17	227.56	220.34	215.82
$x_{4}^{u}=4$					(9)	(11)	(12)					
0.0150	0.1775	0.1455	0.0875	0.0785	0.0555	0.0491	0.0364	0.0300	0.0274	0.0271	0.0265	0.0210
6.4	79	84	88	103	93	100	103	110	118	124	139	125
60.47	122.97	133.23	129.79	137.13	140.06	151.27	150.33	161.54	157.67	172.75	165.67	168.88
65.23	124.96	146.33	141.07	165.50	162.44	194.09	186.87	218.52	2!1.30	254.69	247.47	242.95

Table $10 d$ Computational results of Example 5 for Stage 1-2-3-4 and Stage 5

NHaber of componciats u.i.d	2-2-1-3	3-2-1-3	2-2-2-3	2-2-3-3	3-2-2-3	4-2-2-3	3-3-2-3	4-3-2-3	3-2-2-4	3-3-3-3	4-2-2-4	3-3-2-4
Stage umreliability	0.2054	0.1734	0.1154	0.1064	0.0834	0.0770	0.0643	0.0579	0.0555	0.0553	0.0491	0.0364
$E_{1}$ used	51	56	60	75	65	72	75	82	93	90	100	103
$\bigcirc$ used	108.55	118.81	115.37	122.71	126.64	136.85	135.91	147.12	140.06	108.55	151.27	150.35
$\mathrm{b}_{3}$ used	97.83	119.20	113.94	138.37	135.31	166.96	159.74	191.39	102.44	184.17	194.09	180.87
$x_{5}^{2}=2$	(1)	(2)	(4)	(5)	(6)		(8)		(10)			
0.0025	0.2679	0.2359	0.1779	0.1689	0.1459	0.1395	0.1268	0.1204	0.1180	0.1178	0.1116	0.0989
8	59	64	68	83	73	80	83	90	101	98	103	111
14.59	123.14	133.40	129.90	137.30	141.23	151.44	150.50	161.71	154.65	123.14	105.86	104.92
29.68	127.51	148.88	143.62	168.05	164.99	196.64	189.42	221.07	192.12	213.85	223.77	210.55
$x_{5}^{\prime 1}=3$	(3)		(7)	(9)	(11)*							
0.0156	0.2210	0.1890	0.1310	0.1220	0.0990	0.0926	0.0799	0.0735	0.0711	0.0709	0.0047	0.0520
18	69	74	78	93	83	90	93	100	111	108	118	121
20.46	129.01	139.27	135.83	143.17	147.10	157.31	156.47	167.58	160.52	129.09	171.73	170.79
57.16	154.99	176.36	171.10	195.53	192.47	224.12	216.90	248.55	219.60	241.33	251.25	244.03

## REFERENCES

1. Bellman, R., Dynamic Programrning, Princeton, N.J.: Princeton University Press (1957).
2. Bellman, R., and S. E. Dreyfus, Applicd Dynamic Programming, Princeton, N.J.: Princeton University Press (1962).
3. Bellman, R., Modern Analytic and Computational Methods in Science and Mathematics, N.Y.: Elsevier Publishing Co. (1968).
4. Bellman, R. E., and S. E. Dreyfus, "Dynamic programming and reliability of multicomponent devices", Operations Research, Vol. 6, pp. 200-206 (March-April 1958).
5. Black, G., and F. Proschan, "On optimal redundancy", Operations Research, Vol. 7, pp. 581-588 (1959).
6. Burton, R. M., and G. T. Howard, "Optimal system reliability for a mixed series and parallel structure", Journal of Mathematical Analysis and Applications, Vol. 28, pp. 370-382 (1969).
7. Fyffe, D. E., W. W. Hines, and N. K. Lee, "System reliability allocation and a computational algorithm", IEEE Transactions on Reliability, Vol. R-17, No. 2, pp. 64-69 (June 1968).
8. Hadley, G., Nonlinear and Dynamic Programming, Reading, Mass: Addison-Nesley (196.4).
9. Jensen, P. A., "Optimization of series-parallel-series networks", Operations Research, Vol. 18, pp. 471-482 (May-June 1970).
10. Kettelle, J. D., "Least-cost allocation of reliability investment", Operations Research, Vol. 10, pp. 249-265 (March-April 1967).
11. Kulshrestha, D. K., and M. C. Gupta, "Use of dynamic programming for reliability engineers, IEEE Transactions on Reliability, Vol. R-22, pp. 240-241 (Oct. 1973).
12. Lambert, B. K., A. G. Walvekar, and J. P. Hirmas, "Optimal redundancy and availability allocation in multistage systems", IfEEE Transactions on Reliability, Vol. R-20, No. 3, rp. 182-185 (August 1971).
13. Liittschwager, J. M., "Dynamic programming in the solution of a multistage reliability problem' , Journal of Industrial Engineering, Vol. 15-16, pp. 168-175 (1964-1965) .
14. Messinger, M., and Shooman, H., "Technique for optimum spares allocation: a tutorial review", IEEE Transactions on Reliability, Vol. K-19, pp. 156-166 (Novenber 1970).
15. Nemhauser, G. L., Introduction to Dynamic Programming, N.Y.: Wiley (1967).
16. Proschan, F., and T. A. Bray, "Optimuin redundancy under multiple constraints", Operations Research, Vol. 13, pp. 800-814 (September-October 1965).
17. Rudd, D. F., "Reliability theory in chemical system design", IGEC Fundamental, Vol. 1, No. 2, pp. 138-143 (May 1962).
18. Shershin, A. C., "Mathematical optimization techniques for the simultaneous apportionments of reliability and maintainability", Operations Research, Vol. 18, No. 1, pp. 95-106 (January-February 1970).
19. Woodhouse, C. F., "Optimal redundancy allocation by dynamic programming", IEEE Transactions on Reliability, Vol. R-21, No. 1, pp. 60-62 (February 1972).
3.3 THE DISCRETE MAXIMUM PRINCIPLE APPLIED TO OPTIMUN SYSTEM RELIABILITY 1. Introduction

A simple computational procedure based on the discrete maximum principle has been developed for maximizing reliability of multistage parallel systems subject to multiple nonlinear constraints [1]. It appears that the procedure can be applied to a variety of optimization problems with separable and multiple constaints functions.
2. Statement of the Problem and the Computational Procedure

The problem of maximizing the reliability of an N-stage series system with redundant units in parallel (see Fig. 1) subject to multiple linear and nonlinear separable constraints can be stated as follows:

Maximize

$$
\begin{equation*}
R_{s}=\prod_{n-1}^{N}\left(1-\left(1-R^{n}\right)^{\theta^{n}}\right) \tag{1}
\end{equation*}
$$

subject to

$$
\begin{equation*}
\sum_{n=1}^{N} g_{i}^{n}\left(g^{n}\right) \leq b_{i}, \quad i=1,2, \ldots, s, \tag{2}
\end{equation*}
$$

where

[^2]
lig. 1. A mixed system with $N$-stages in series where components are in parallel at each stage.
\[

$$
\begin{aligned}
R_{s}= & \text { the system reliability, } \\
\text { IN }= & \text { the total number of stages, } \\
R^{n}= & \text { the reliability of one element at the nth stage, } \\
\theta^{n}= & \text { the number of elements at the } n \text {th stage, where }\left(\theta^{n}-1\right) \\
& \text { is the number of recuncant units, } \\
g_{i}^{n}\left(\theta^{n}\right)= & \text { the function representing the amount of the ith resource } \\
& \text { consumed at the nth stage as a function of } \theta^{n}, \\
s= & \text { the number of constraints, } \\
D_{i}= & \text { the total amount of the } i t h \text { resource available. }
\end{aligned}
$$
\]

Let

$$
\begin{aligned}
x_{i}^{n}= & \text { the } i \text { th resource corresponding to the } i t h \text { constraint, which is } \\
& \text { consumed in the first } n \text { stages, } i=1,2, \ldots \text {, s. }
\end{aligned}
$$

Then, the performance equations for this N-stage system may be writこen as

$$
\begin{align*}
x_{i}^{n}=x_{i}^{n-1}+g_{i}^{n}\left(\theta^{n}\right), \quad & n  \tag{3}\\
& =1,2, \ldots, N, \\
i & =1,2, \ldots, s,
\end{align*}
$$

$$
\begin{equation*}
x_{i}^{0}=0, \tag{3a}
\end{equation*}
$$

$$
\begin{equation*}
x_{i}^{N} \leq b_{i} \tag{3b}
\end{equation*}
$$

By defining

$$
\begin{align*}
& x_{s+1}^{n}=x_{s+1}^{n-1}+2 r\left(1-\left(1-R^{n}\right)^{\theta^{n}}\right), \quad n=1,2, \ldots, i,  \tag{4}\\
& x_{s+1}^{0}=0,
\end{align*}
$$

the objective function to be optimized can be written as

$$
\begin{align*}
S & =\ln R_{S} \\
& =x_{S+1}^{N} \\
& =\sum_{i=1}^{S+1} c_{i} x_{i}^{N} \tag{5}
\end{align*}
$$

where

$$
\begin{aligned}
c_{i} & =0, \quad i=1,2, \ldots, s, \\
c_{s+1} & =1 .
\end{aligned}
$$

The Hamiltonian and the adjoint variables of the system cam be defined as

$$
\begin{align*}
& H^{n}=\sum_{i=1}^{s+1} z_{i}^{n} x_{i}^{n} \\
& =\sum_{i=1}^{s} z_{i}^{n}\left(x_{i}^{n-1}+g_{i}^{n}\left(\theta^{n}\right)\right)+z_{s+1}^{n}\left(x_{s+1}^{n-1}+2 n\left(i-\left(1-R^{n}\right)^{\theta^{n}}\right),\right.  \tag{7}\\
& n=1,2, \cdots \cdots, \quad 1, \\
& z_{i}^{n-1}=\frac{\partial H^{n}}{\partial x_{i}^{n-1}}=z_{i}^{n}, \quad n=1,2, \cdots, \quad, \quad M,  \tag{8}\\
& i=1,2, \ldots . \quad s, s+i, \\
& z_{s+1}^{N}=c_{s+1}=1 . \tag{9}
\end{align*}
$$

Equations (8) and (9) yield

$$
\begin{equation*}
z_{s+1}^{n}=1, \quad n=1,2, \ldots, N \tag{20}
\end{equation*}
$$

Assuming that the non-trivial and unique Hamiltonian and adjoint variabies of the system exist, the stational necessary condition for local optimality can be obtained as (see Appendix $L$ of Ref. 2)

$$
\begin{equation*}
\frac{\partial H^{n}}{\partial \theta^{n}}=0=\sum_{i=1}^{s} z_{i}^{n} \frac{\partial \varepsilon_{i}^{n}\left(\theta^{n}\right)}{\partial \theta^{n}}+\frac{-\left(1-R^{n}\right)^{n} \ell n\left(1-R^{n}\right)}{1-\left(1-R^{n}\right)^{\theta^{n}}} . \tag{II}
\end{equation*}
$$

In employing this condition in determining the optimal condition of the system, we assume its existence. In reality, $\theta^{n}, n=1,2, \ldots$, , $n$, are positive integers. We, however, assume that $\theta^{n}$ are continuous variables.

Now we assume that one of the constraints, say the fth constraint given by equation (2) or equivalently by equation (3), is active and the rest are free. This means the end condition cor-esponding to the jth constraint is fixed and the rest of them are free. Then, we have

$$
\begin{align*}
z_{i}^{N}=c_{i}=0, \quad & i  \tag{12}\\
& =1,2, \ldots, s, \\
& \neq j .
\end{align*}
$$

From equations (8) and (12), we obtain

$$
\begin{array}{ll}
z_{i}^{n}=0, & i=1,2, \ldots, s, \\
& i \neq j, \\
n & =1,2, \cdots, i n .
\end{array}
$$

Therefore, equation (21) reduces to

$$
\begin{equation*}
z_{j}^{n} \frac{\partial \xi_{j}^{n}\left(\theta^{n}\right)}{\partial \theta^{n}}-\frac{\left(1-R^{n}\right)^{\theta^{n}} l n\left(1-p_{1}^{n}\right)}{1-\left(1-R^{n}\right)^{\beta^{n}}}=0 . \tag{13}
\end{equation*}
$$

The procedure for solving the problem may be described in the foliowing steps. Step 1. Assuming a value for $e^{l}$ in equation (13), we obtain $z_{j}^{l}$. Furthermore, equation (8) gives

$$
z_{i}^{i}=z_{i}^{n}, \quad n=2, \cdot, \quad, \text { ir. }
$$

Step 2. We find $\theta^{n}, n=2,3$, . . , IT, from equation (13) by lisirg the values of $z_{j}^{n}$ obtained.
Step 3. We compute $x_{i}^{N}$, $i=1,2, \ldots$, s, from equation (3).
Sted 4. One of the following conditions will occur.
a) If $x_{i}^{N}<b_{i}$ for $a l l i=1,2, \ldots$, $s$, then we assume a higher value for $\theta^{1}$ and reutrn to step 1 . b) If $x_{j}^{N}>b_{j}$ anc $x_{i}^{N}<b_{i}$ for $i \neq j, i=1,2, \ldots, \quad s$, we assume a smaller value for $g^{l}$ anc retura to step I. c) If $x_{k}^{I I}>b_{k}, x \neq j$ and $x_{i}^{I I}<b_{i}$, $i=l, 2, j, s, i \neq k$, where $j$ is the active constraint, then we go to step 5. d) If $x_{j}^{N}=b_{j}$, and $x_{i}^{N}<b_{i}$, $i=i, 2, \ldots$, , $i \neq j$, that is, the $f$ th constraint reaches its limit while nore of the other constraints are violated, we have a candidate for the optimal solution.

Step 5 . We replace constraint $j$ by constraint $k$. Accordingly we replace $j$ by $k$ in equation (13) and steps 1 and 2 and repeat the procedure given by step $I$ through step 4.

## 3. Example

Constraints of a system can be the total weight, the total cost, the total volume and so on. In gereral, such constraints are in nonlinear forms. As the number of units at each stage is increased, it requires the increased number of connecting equipment, and thus, the cost and weight may increase exponentially.

Let

$$
\begin{aligned}
& c^{n}=\text { cost per element at the nth stage, } \\
& w^{n}=\text { veight per element at the nth stage, } \\
& v^{n}=\text { rolume per element at the nth stage, } \\
& \theta^{n}=\text { number of elements in paraliel at the nih stage. }
\end{aligned}
$$

Therefore the following nonlinear constraints on the combination of weight and volume, cost, and veight are considered.
(1) The constraint which is imposed on the combination of weight and volume is

$$
\sum_{n=1}^{N} g_{1}^{n}\left(\theta^{n}\right)=\sum_{n=1}^{N} p^{n}\left(\theta^{n}\right)^{2} \leq p
$$

where $p^{n}=w^{n} v^{n}$ is the product of weight per unit and volume per unit at the nth stage.
(2) The cost constraint is

$$
\sum_{n=1}^{N} g_{2}^{n}\left(\theta^{n}\right)=\sum_{n=1}^{N} c^{n}\left(\theta^{n}+\operatorname{exn}\left(\theta^{n} / 4\right)\right) \leq c
$$

where $c^{n} \theta^{n}$ is the cost of units at the nth stage and $c^{n}(e)^{\theta^{n} / 4}$ is the additional cost for interconnecting parallel units (4).
(3) The weight constraint is

$$
\sum_{n=1}^{N} g_{3}^{n}\left(\theta^{n}\right)=\sum_{n=1}^{N} m^{n} \theta^{n} \exp \left(\theta^{n} / 4\right) \leq N
$$

where $w^{n} 9^{n}$ is the weight of the total units at the nth stage. This is increased by a factor $\exp \left(\theta^{n} / 4\right)$ due to the weight of the interconnecting links (4).

The problem is to maximize the system reliability subject to the abore constraints. State variables of the system are defined as follows:
$x_{1}^{n}=x_{1}^{n-1}+p^{n}\left(\theta^{n}\right)^{2}, \quad n=1,2, \cdots, N$,
$x_{1}^{0}=0$,
$x_{I}^{\ddot{i} \leq P, ~}$

$$
\begin{align*}
& x_{2}^{n}=x_{2}^{n-1}+c^{n}\left(\theta^{n}+(e)^{\theta^{n} / 4}\right), n=i, 2, \cdots, i,  \tag{15}\\
& x_{2}^{0}=0, \\
& x_{2}^{N} \leq c, \\
& x_{3}^{n}=x_{3}^{n-1}+w^{n} \theta^{n}(e)^{\theta^{n / 4}, \quad n=1,2, \cdots, N,}  \tag{16}\\
& x_{3}^{0}=0, \\
& x_{3}^{N} \leq N, \\
& x_{4}^{n}=x_{4}^{n-1}+\ln \left\{1-\left(1-R^{n}\right)^{\theta^{n}}\right\},  \tag{17}\\
& x_{4}^{0}=0 .
\end{align*}
$$

The objective function to be maximized is

$$
\begin{align*}
S & =\sum_{n=1}^{M} \ln \left(1-\left(1-R^{n}\right)^{\theta^{n}}\right) \\
& =\sum_{i=1}^{4} c_{i} x_{i}^{N}  \tag{18}\\
& =x_{L}^{N}
\end{align*}
$$

where

$$
\begin{aligned}
& c_{i}=0, \quad i=1,2,3, \\
& c_{4}=1 .
\end{aligned}
$$

The Hamiltonian and adjoint variables of the system are

$$
\begin{align*}
& i^{n}= \sum_{i=1}^{4} z_{i}^{n} x_{i}^{n} \\
&= z_{2}^{n}\left(x_{2}^{n-1}+p^{n}\left(a^{n}\right)^{2}\right)+ \\
& z_{2}^{n}\left\{x_{2}^{n-1}+e^{n}\left(0^{n}+(e)^{\theta^{n} / 4}\right) \vdots-z_{3}^{n}\left(x_{3}^{n-1}-i^{n} e^{n}\left(e e^{n}\right)\right.\right.  \tag{20}\\
&+z_{4}^{n}\left(x_{4}^{n-1}+2 n i 1-\left(1-a^{n}\right)^{\theta^{n}}\right), \quad(20) \\
& n=1,2,3, \ldots, N,
\end{align*}
$$

$$
\begin{align*}
& z_{i}^{n-1}=\frac{\partial H^{n}}{\partial x_{i}^{n-1}}=z_{i}^{n}, \quad i=1,2,3,4,  \tag{21}\\
& z_{4}^{N}=c_{4}=1 . \tag{22}
\end{align*}
$$

From equations (21) and (22), we obtain

$$
z_{4}^{n}=1, \quad n=1,2, \ldots, N .
$$

Differentiating equation (20) with respect to $\theta^{n}$ and equating to zero, we ootain

$$
\begin{align*}
\frac{\partial H^{n}}{\partial \theta^{n}} & =0 \\
& =2 z_{1}^{n} p^{n} \theta^{n}+z_{2^{n} c^{n}}\left(1+\frac{1}{4}(e)^{\theta^{n} / 4}\right) \\
& +z_{3^{n}}^{n}\left((e)^{\theta^{n} / 4}+\frac{1}{4} \theta^{n}(e)^{\theta^{n} / 4}\right)+\frac{-\left(1-R^{n}\right)^{\theta^{n}} 2 n\left(1-R^{n}\right)}{1-\left(1-R^{n}\right)^{\theta^{n}}} \tag{23}
\end{align*}
$$

Whenever the $j-t h$ constraint, represented $b y X_{j}^{N}$, is active, this has the effect of fixing its boundary value. Thus

$$
\begin{equation*}
z_{i}^{N}=c_{i}, \quad i \neq j \tag{24}
\end{equation*}
$$

Now, if the first constraint is the only one in active, we obtain the foilowing relations from equations (24), (21), and (29).

$$
z_{i}^{N}=c_{i}=0, \quad i=2,3,
$$

and

$$
\begin{aligned}
z_{i}^{n}=0, & n=1,2, \ldots, N \\
& i=2,3 .
\end{aligned}
$$

Consequently equation (23) can be written as

$$
\begin{equation*}
2 z_{1}^{n} p^{n} \theta^{n}=\frac{\left(U^{n}\right)^{\theta^{n}} 2 n U^{n}}{I-\left(U^{n}\right)^{\theta^{n}}}, \tag{25}
\end{equation*}
$$

where

$$
U^{n}=1-R^{n} .
$$

Rearranging the terms in equation (25), we have

$$
\begin{equation*}
z_{I}^{n}=\frac{1}{2 \underline{p}^{n} \partial^{n}} \frac{\left(U^{n}\right)^{\theta^{n}} \ell n U^{n}}{1-\left(U^{n}\right)^{\theta^{n}}}, \tag{26}
\end{equation*}
$$

and

$$
\begin{equation*}
\theta^{n}=\left(U^{n}\right)^{\theta^{n}}\left(\theta^{n}+\frac{\ell n U^{n}}{2 z_{1}^{n} p^{n}}\right) \tag{27}
\end{equation*}
$$

Letting

$$
A^{n}=\frac{2 n U^{n}}{2 z_{1}^{n} p^{n}}
$$

equation (27) becomes

$$
\theta^{n}=\left(U^{n}\right)^{\theta^{n}}\left(\theta^{n}+A^{n}\right),
$$

or

$$
\begin{equation*}
f\left(\theta^{n}\right)=\theta^{n}-\left(U^{n}\right)^{\theta^{n}}\left(\theta^{n}+A^{n}\right)=0 . \tag{28}
\end{equation*}
$$

This equation can be solved by Newton's method for $\theta^{\text {in }}$.
Similarly, if the second constraint is active and the rest of them. are free, we ootain the following relations.

$$
\begin{align*}
& z_{i}^{N}=c_{i}=0, \quad i=1,3, \\
& z_{i}^{n}=0, \quad n=1,2, \cdots, \cdots, \\
& i=1,3 \text {, } \\
& z_{2}^{n} c^{n}\left(1+\frac{1}{4}(e)^{\theta^{n} / 4}\right)=\frac{\left(U^{n}\right)^{\theta^{n}} \ell n U^{n}}{1-\left(U^{n}\right)^{\theta^{n}}}, \tag{29}
\end{align*}
$$

$$
\begin{equation*}
z_{2}^{n}=\frac{1}{c^{n}\left(1+\frac{1}{4}(e)^{\theta^{n} / 4}\right)}\left(\frac{\left(U^{n}\right)^{\theta^{n}} 2 n U^{n}}{1-\left(U^{n}\right)^{\theta^{n}}}\right), \tag{30}
\end{equation*}
$$

and

$$
\begin{equation*}
f\left(\theta^{n}\right)=\left(1+\frac{1}{4}(e)^{\theta^{n} / 4}\right)-\left(U^{n}\right)^{\theta^{n}}\left(\left(1+\frac{1}{4}(e)^{\theta^{n} / 4}\right)+\frac{2 n U^{n}}{z_{2}^{n} c^{n}}\right)=0 . \tag{31}
\end{equation*}
$$

This equation is well behaved and Newton's method can be employed to obtain $a^{n}$.

Similarly, if the third constraint is active and the rest of them are free we obtain the following relations.

$$
\begin{align*}
z_{i}^{N}=c_{i}=0, & i
\end{aligned}=1,2, \quad \begin{aligned}
n & =1,2, \cdots, N, \\
z_{i}^{n}=0, & =1,2, \\
i & =\frac{1}{z_{3^{W}}^{n}\left((e)^{\theta^{n}}(e)^{\theta^{n} / 4}\right)}=\frac{\left(U^{n}\right)^{\theta^{n}} 2 n U^{n}}{1-\left(U^{n}\right)^{\theta^{n}}}
\end{align*}
$$

$$
z_{3}^{n}=\frac{1}{n^{n}\left((e)^{\theta^{n} / 4}+\frac{1}{4} \theta^{n}(e)^{\theta^{n} / 4}\right)}\left(\frac{\left.\left(U^{n}\right)^{\theta^{n}} 2 n U^{n}\right)}{2-\left(U^{n}\right)^{\theta^{n}}}\right)
$$

$f\left(\theta^{n}\right)=(e)^{\theta^{n} / 4}\left(1+\frac{1}{4} \theta^{n}\right)-\left(u^{n}\right)^{\theta^{n}}\left((e)^{\theta^{n} / 4}\left(1+\frac{1}{4} \theta^{n}\right)+\frac{2 n U^{n}}{z_{3}^{n} \theta^{n}}\right)=0$.
This is again a well behaved equation and can be solved by Newton＇s method．

4．Numerical Results
A five stage problem was solved with the constants given in Taile 1. The optimum redundancy obtained is as follows．

$$
\begin{aligned}
& \theta^{2}=2.6000, \\
& \theta^{2}=2.2816 \\
& \theta^{3}=2.0075 \\
& \theta^{4}=2.6882, \\
& \theta^{5}=3.3981
\end{aligned}
$$

Since $\theta^{n}, n=1,2, \ldots$ ， 5 ，in reality，should be positive integers， we approximately octain

$$
\begin{aligned}
& \theta^{1}=3, \\
& \theta^{2}=2, \\
& \theta^{3}=2, \\
& \theta^{4}=3, \\
& \theta^{5}=3 .
\end{aligned}
$$

The number of recundant eiements at each stage can be ootained ju゙ sub－ さこacting one irom each oi the above itigures．

Table 1. Constants assigned for 5 stage problem.

n	$R^{n}$	$p^{n}$	P	$c^{n}$	C	$w^{n}$	W
1	.80	1		7		7	
2	.85	2		$\bar{\square}$		8	
3	.90	3	110	5	175	8	200
4	.65	4		9		6	
5	.75	2		4		9	

From the result we find that the total of the product of weight and volume is 83 with a slack of 27 units, the cost of the system is 146.12 with a slack of 28.88 units and the weight of the system is 192.48 with a slack of 7.52 units. This policy results in a system reliability of 0.9045 . A numerical simulation indicated that the above result is not significantly different from the true optimum.
5. Conclusion

A simple and practical computational procedure is presented for maximizing the reliability of a system under multiple nonlinear constraints. An example with three nonlinear constraints is solved in detail to illustrate the method. Problems with multiple linear constraints are special cases of the problems presented here.

The objective function given by equation (4), that is, the logarithm of the system reliability given by equation (1), and the functions representing the constraints given by equation (2) are separable Eunctions. Therefore, the present method may be applied, in general, to optimization of problems with separable objective and constraint functions.

In applying the above technique it is assumed that the optimal sequence of $\theta^{n}$ is obtained by using the recurrence relation given by equation (1 3) when only the $j$ th constraint is active. In the computational procedure only the necessary condition for local optimality is used to obtain the candidare for the optimal solution. Therefore, simulation is involved to assure numerically the sufficiency of the optimal solution. In spite of this shortaoming the present method appears to overcome some of the practical limitations of other methods used to solve this class of problems.

## REFERENCES

1. L.T. Fan, C.S. wang, F.A. Tillman, and C.L. Hwang, "Optimization of Systems Reliability", IEEE Transactions cn Reliability, vol. R-15, pp. 81-86 (1967).
2. L.T. Fan, and C.S. Wang, The Discrete Maximum Princiole - A Study of Multistage Systems Ontimization, Wiley, New York, 1964.
3. L.T. Fan, The Continuous Maximum Princiole - A Study of Complex Systems Ootimization, New York, Wiley, 1966.
4. F.A. Tillman, and J. Liittschwager, "Integer Programming Formulation of Constrained Reliaioility Problems," Maragement Science, vol. 13, po. 887-899 (1967).
3.4 SEQUENTTAL UNCONSTRAINED MINIMIZATION TECHNIQUE (SU:IT) APPLIED TO OPTIMAL SYSTEM RELIABILITY
5. Introduction

The problems considered in this section are optimization of system reliability of a complex system. The optimization method employed is the sequential unconstrained minimization technique (SUMT). This method is considered as one of the simplest and the most efficient methods for solving the constrained nonlinear programming problems.

The principle of the sequential unconstrained minimization technique (Sid.fT) is a transformation of a constrained minimization problem into a sequence of unconstrained minimization problems. This transformation enables us to use well developed unconstrained optimization techniques to solve the constrained problem without inventing a new technique for such a constrained optimization proulem. The method was first proposed by Carroll in 1959 [1,2] and further developed by Fiacco and McCormick [3,4,5,6,12]. In 1964, Fiacco and McCormick deve?oped a general algorithm based on SUMT, and in 1965, they proposed a method which is called SUMT without parameters. By using this method, the difficulty of choosing the penalty parameters can be avoided, although some difficulties still exist. There is a general computer program provided by HcCormick, Mylander and Fiacco cal.led "RAC Computer Program Implementing the Sequential U'nconstrained Minimization Technique for Nonlinear Programming," (IBM SHARE number 3139) [12]. In this computer program, the unconstrained minimization technique used is the second order gradient method.

Difficulties which arise from use of the second order gradient method as a unconstrained minimization technique in SUMT become predominant in a large size and/or very complex nonlinear problem. The difficulties arise particularly in taking correctly the first order and second orcer partia: derivatives of very complex nonlinear iunctions which most practical problems have. Therefore, a new algorithm which uses a much simpler direct search technicue is very
desirable.
For the above reason, a new technique of implementing SUMT with Hooke and Jeeves pattern search technique as its unconstrained minimization process is developed $[9,11]$. The procedures are presented in [9] in details. Hooke and Jeeves pattern search technique $[7,8]$ is different from the gradient method in the decision making process used to decide the direction of search. The direction of search in the gradient method is in the steepest decent direction while that of the Hooke and Jeeves pattern search technique is determined by direct comparison of the values of the objective function at two points separated from each other for a finite step. For this reason, when the pattern search is getting close to the boundary of some inequality constraints, it will frequently go out of the feasible region bounded by inequality constraints, and the search might be terminated at some point near the boundary which might not be the real constrained optimum. A heuristic programming technique developed by Paviani and Himmelblau [13] is used, which enables one io make turns at the pattern search near the boundary of constraints. The details of the method are described and a general FORTRAN-IV program together with detailed computer diagrams is presented in [9].

The optimization of the complex system reliability by using RAC SUMT computer program has been carried out in $[11,4]$, and by using LAI SUMT computer program in $[9,11]$. In this section, the same complex system problems but an improved cost function [15] for each component have been solved by using LAI SUMT program.
2. Formulation of the Problem

$$
\begin{aligned}
& \text { A system whose redundant units are not in a purely series configuration } \\
& \text { is considerably more difficult to optimize. One such example is shown in } \\
& \text { Fig. I. In the system, unit } 1 \text { is backed uo by parallel unit } 4 \text {. Thene }
\end{aligned}
$$



Fig. 1 A schamatic diagram of a complex system
are two equal paths, each of which has unit 2 in series with the stage formed by units 1 and 4. These two equal paths operate in parallel so that if at least one of them is good the output is assured. However, because unit 2 does not have a high degree of reliability, a third unit, unit 3 , is inserted into the circuit. Therefore, the following operations are possible: 2-1, 2-4, $3-1$, and $3-4$, and each operation has two equal paths.

In attempting to optimize the reliability of a system with such a configuration, a major difficulty is encountered in that the reliability expression is not a separable function and thus cannot be analyzed as a multistage process. Hence a different approach is used to solve this type of the problem where the reliability is obtained by Bayes' theorem, which utilizes conditional probabilities [16]. With this in mind a formula for the nonlinear system reliability, subject to some constraints is formulated. A nonlinear programming problem of optimizing the system reliability based on the model is then solved by the SUMT. This method appears to be one of the more efficient methods of solving constrained nonlinear optimization problems.

SYSTEM RELIABILITY USING CONDITONAL PROBABILITIES

In a complex system where the redundant units are not in a purely
parallel or series configuration the reliability can be evaluated by using Bayes' theorem of conditional probabilities.

In solving this problem, a simplified form of Bayes' probability thereom is used. The theorem states that if $A$ is an event that depends on one or two mutually exclusive events $B_{i}$ and $B_{j}$ of which one must necessarily occur, then the probability of the occurrence of $A$ is given by

$$
\begin{equation*}
P(A)=P\left(A, \text { given } B_{i}\right) \cdot P\left(B_{i}\right)+P\left(A, \text { given } B_{j}\right) \cdot P\left(B_{j}\right) \tag{1}
\end{equation*}
$$

Let $Q_{S}$ represent the probability of system failure, $R_{k}$ the probability that component $K$ is good, and $Q_{K}$ the probability that component $K$ is bad. Then we obtain the following expression for system unreliability,

$$
\begin{equation*}
Q_{s}=Q_{s} \text { (given } K \text { is good) } \cdot R_{k}+Q_{s} \text { (given } K \text { is bad) } Q_{k} \text {. } \tag{2}
\end{equation*}
$$

The corresponding system reliability $R_{s}$ is

$$
\begin{equation*}
R_{s}=1-Q_{s} \tag{j}
\end{equation*}
$$

To obtain the reliability of the system presented in Fig. 1 we select component 3 as the key component in (2), denoted by $k$. Thus we have the expression for system unreliability

$$
\begin{equation*}
Q_{s}=Q_{s}\left(\text { if } 3 \text { is good) } \cdot R_{3}+Q_{s} \text { (if } j \text { is bad) } Q_{j}\right. \tag{4}
\end{equation*}
$$

If component 3 is good, the system can fail if the stage formed by units 1 and + fails. Thus, the system's unreliability, given that unit $j$ is good, is

$$
Q_{s}(\text { if } 3 \text { is good })=\left[\left(1-R_{1}\right)\left(1-R_{4}\right)\right]^{2}
$$

If, on the other hand, unit 3 is bad the system's unreliability is

$$
\begin{equation*}
Q_{s}(\text { if } 3 \text { is bad })=\left\{1-R_{2}\left[1-\left(1-R_{1}\right)\left(1-R_{4}\right)\right]\right\}^{2} \tag{6}
\end{equation*}
$$

From (4) the unreliability of the system is

$$
\begin{align*}
Q_{S}= & {\left[\left(1-R_{1}\right)\left(1-R_{4}\right)\right]^{2} \cdot R_{3} } \\
& +\left\{1-R_{2}\left[1-\left(1-R_{1}\right)\left(1-R_{4}\right)\right]^{2} \cdot\left(1-R_{3}\right)\right. \tag{-}
\end{align*}
$$

The assumption is made that the reliability of the components are independent of each other. That is, for example, the reliability of component + would not be affected by the Eailure of component $i$. The system reliability is then given by (3).
3. Computational Procedures of SUMT

The general nonlinear programming problem with nonlinear inequality and/or equality constraints is to choose $x$ to
minimize $f(x)$
subject to

$$
\begin{aligned}
& g_{i}(x) \geq 0, i=1, \ldots, m \\
& h_{j}(x)=0, j=1, \ldots, \ell .
\end{aligned}
$$

The SUMT technique for solving (8) is based on minimizing the function

$$
\begin{equation*}
P\left(x, r_{u}\right)=f(x)+r_{u} \sum_{i=1}^{m}\left[g_{i}(x)\right]^{-1}+r_{u}^{-\frac{1}{2}} \sum_{j=1}^{\ell} h_{j}^{2}(x) \tag{9}
\end{equation*}
$$

over a strictly monotnic decreasing sequence $\left\{r_{u}\right\} . P\left(x, r_{u}\right)$ is minimized with respect to $x\left(r_{u}\right)$ for a given value of $r_{u}$. The sequence of values of $\left\{P\left(x, r_{u}\right)\right\}$ converges to the constrained optimum value of the original objective function, $f(x)$, as $\left\{r_{u}\right\} \rightarrow 0$. The essential requirement is the convexity of the P-function. Mathematical proof of the convergence of the method is given in [6].

The new algorithm for implementing SUMT by the Hooke and Jeeves pattern search and heuristic programming is summarized below $[9,11]$. Step 1 Select a starting point $x^{0}$, the initial value of the penalty coefficient $r^{0}$, the initial tolerance limit of the violation to constraints $B^{0}$, and the initial step-sizes $d^{0}$ needed in the searches.
Step 2 Go to step (3) if $x^{0}$ is feasible (viz., inside the region bounded by the inequality constraints). Otherwise select a feasible starting point by minimizing the total weight of violation. The total weight of violation, TGH, is defined by

$$
(T G H)^{2} \equiv \sum_{\tau \in T} g_{\tau}^{2}\left(x^{0}\right)+\sum_{S \in S} h_{s}^{2}\left(x^{0}\right)
$$

where $T \equiv\left\{t \mid g_{t}\left(x^{0}\right)<0\right\}, S \equiv\left\{s \mid h_{s}\left(x^{0}\right)=0\right\}$. TGH includes only the violated conseraints.

Step 3 Minimize $P$ in (9) by the Hooke and jeeves pattern search technique. Check after every move: if the move goes outside the feasible region, go to step 4; otherwise, after $x^{*}$ is reached for the current $r_{u}$, go the step 5 . Step 4 Move back to the near-feasible region and then return to step 3. The near-feasible region is defined as the region where all points satisfy the condition: $T G H<B$, where $B$ is the tolerance limit of violation; $B$ is sequentially decreased after every violation to the inequality constraints. Step 5 Check if the $X^{*}$ obtained in step 3 is feasible. If $x^{*}$ is feasibie, go the step 7; otherwise go to step 6.

Step 6 Move $x^{*}$ (in the infeasible region) hack into the feasible region along the direction toward the last optimum point; then go to step $\rightarrow$.

Step - Check if a stopping criterion such as

$$
\begin{equation*}
\left|\left|\frac{f\left(x^{*}\right)}{G\left(x^{*}, r_{u}\right)}\right|-1\right|<\varepsilon \tag{10}
\end{equation*}
$$

is satisfied. The solution is the optimal one if the criterion is satistied; otherwise, go to step 8. $G\left(x, r_{u}\right)$ in (9) is defined as [1].

$$
\begin{equation*}
G\left(x, r_{u}\right) \equiv f(x)-r_{u} \sum_{i=1}^{m}\left[g_{i}(x)\right]^{-1}-r_{u} \sum_{j=1}^{2} h_{j}^{2}(x) \tag{11}
\end{equation*}
$$

Step (8) Set $u-u+1 ; r_{u+1}-r_{u} /$, where $=$ is a constant greater than 1 ; and $d^{u+1}+d^{0} /(u+1)$. Return to step 3 .

The flow diagram of SUMT with Hooke and Jeeves pattern search technique is shown in Fig. 2. The detailed discussions about "procedure for selecting a feasible starting point from the infeasible initial point", "Computational procelure for minimizing $P\left(\bar{x}, r_{k}\right)$ function by the Hooke and Jeeves paごern search", "procedure for moving an infeasible point into the feasible on nearfeasible region bounded by inequality constraints", and "Procedure for moving


Fig. 2. Descriptive flow diagram for SuiT with Hooke and Jeeves Pattern Search.
the near-feasible k-th sub-optamum into the feasible region" are all referenced in Lai [11].
t. Numerical Examples

## Example 1

The problem of maximizing the reliability of the complex system given in Fig. l, and which is subject to a single constraint can be stated as follows by using (3) and (7).

Maximize the system reliability

$$
\begin{align*}
R_{S}= & 1-Q_{S} \\
= & 1-R_{3}\left[\left(1-R_{1}\right)\left(1-R_{4}\right)\right]^{2} \\
& -\left(1-R_{3}\right)\left\{1-R_{2}\left[1-\left(1-R_{1}\right)\left(1-R_{4}\right)\right]\right\}^{2} \tag{12}
\end{align*}
$$

subject to

$$
\begin{align*}
& C_{s}=\sum_{i} C_{i} \leq C,  \tag{13}\\
& R_{i} \geq R_{i, \text { min }} .
\end{align*}
$$

where

$$
\begin{equation*}
C_{i} \equiv k_{i} R_{i}^{\alpha_{i}} \tag{14}
\end{equation*}
$$

The constraint given by (13) can be interpreted as follows. $C_{i}$ can represent the weight, cost, or volume of each unit or component of the system, and the total weight, cost, or volume of the system must be less than $C$. The weight, cost, or volume of each unit or component of the system is a function of reliability that can be expressed by (14) where $K_{i}$ is a proportionality constant and $a_{i}$ the exponential factor that related $C_{i}$ and the reliability. That is, $K_{i}$ is the weight, cost, or volume of the component when $R \equiv:$ and $\mathbb{K}_{i} R_{i}{ }^{\alpha}$ is the reduced cost, weight, or volume when $R_{i}<1$. Usually $\alpha_{1}$ is less than one. The following values are assigned to the constants $k_{1}, k_{2}, k_{5}$, and $k_{1}$, the
constraint $C$ and the exponential constant $\alpha_{i}, 1=1,2,3,4$.

$$
\begin{array}{lll}
K_{1} \equiv 100, & K_{2} \equiv 100, & K_{3} \equiv 200, \\
C \equiv 800, & \alpha_{i} \equiv 150, \\
C & \equiv 0,6 & i=1,2,3,4 .
\end{array}
$$

The problem is formulated in SUMT format as follows.
Minimize

$$
\begin{aligned}
f(x) \equiv & -R_{s} \\
\equiv & -1+R_{3}\left[\left(1-R_{1}\right)\left(1-R_{4}\right)\right]^{2}+\left(1-R_{3}\right) \\
& +\left\{1-R_{2}\left[1-\left(1-\left(1-R_{1}\right)\left(1-R_{4}\right)\right]\right\}^{2}\right.
\end{aligned}
$$

subject to the constraints

$$
\begin{aligned}
& g_{1}(x) \equiv C-\left(2 K_{1} R_{1}^{\alpha} 1+2 K_{2} R_{2}^{\alpha_{2}}+K_{5} R_{3}^{\alpha}+2 K_{4} R_{4}^{\alpha}\right) \geq 0 \\
& g_{i+1}(x) \equiv\left(1-R_{i}\right) \geq 0, \quad i=1,2,3,4 \\
& g_{i+5}(x) \equiv R_{i}-R_{i, \min } \geq 0 \quad i=1,2,3,4 .
\end{aligned}
$$

The $P$ function of (9) is

$$
\begin{aligned}
P\left(x, r_{k}\right) \equiv-1 & +R_{3}\left[\left(1-R_{1}\right)\left(1-R_{4}\right)\right]^{2}+\left(1-R_{3}\right)\left\{1-R_{2}\left[1-\left(1-R_{1}\right)\left(1-R_{4}\right)\right]\right\}^{2} \\
& +r_{K}\left\{\frac{1}{C-\left(2 K_{1} 1-2 K_{2} R_{2}^{\alpha_{2}}+K_{3} R_{3}^{\alpha}+2 K_{4} R_{4}^{\alpha}\right)}+\sum_{i=1}^{4}\left(\frac{1}{1-R_{i}}+\frac{1}{R_{i}-R_{i, n}}\right.\right.
\end{aligned}
$$

The optimal solutions obtained from two sets of different starting components reliabilities, namely, $\left[R_{1}, R_{2}, R_{3}, R_{4},\right]=[0.7,0.7,0.7,0.7]$ and $\left[R_{1}, R_{2}, R_{3}, R_{4}\right]=[0.6,0.6,0.6,0.6]$, are presented in Table 1 together with the corresponding results obtained by RAC program [12]. The solutions are almost identical, that is, the optimal system reliability, $R_{s}$, of 0.999998 with the cost of 799.733 for the first set of starting components reliabilities, and the ontimal system reliability, $R_{s}$, of 0.999997 with the cost of 799.908 for the second set of starting components reliabilities are obtained. Recall

that the constraint on the cost is 800 . The optimal components reliabilities are almost the same for the both starting sets of the starting points. The stopping criterion for terminating the minimization of the $P$ Eunction at each $k$ iteration is that terminating when the number of cut-down step-size operations in the Hooke and Jeeves pattern search is 3 , and the final stopping criterion for terminating the problem is $\varepsilon=10^{-4}$. For the first set of starting points, it takes 12 iterations for $P$ functions, $k=12$, with totally 1192 f-functional values evaluated. And for the second set, 12 iterations for $P$ functions, $K=12$, with totally 1194 f-functional values evaluated.

Tables $2 a$ and $2 b$ present the iteration results converging to the optimal solution. Results given in these tables show that the system reliability, $R_{s}$, is monotonically increasing as iteration $k$ increases. The value of $P$ function approaches to that of $f$ function $\left(=-R_{s}\right)$ as the iteration proceeds. Thus the minimization of $P$ function will eventually lead us to the minimization of $f$ function.

The values of $r_{0}$ used in Tables $2 a$ and $2 b$ are determined by

$$
\begin{equation*}
f\left(x_{0}\right)=r_{0} \sum_{i} \frac{1}{g_{i}\left(x_{0}\right)} \tag{15}
\end{equation*}
$$

where $x_{0}$ is the initial point. The basis for this selection procedure is to render the value of the penalty of the constraints to be approximately the same order of magnitude as the value of the f-function at the starting point in the $P$-function formulation

$$
P\left(x_{0}, r_{0}\right)=f\left(x_{0}\right)+r_{0} \sum_{i} \frac{1}{g_{i}\left(x_{0}\right)}
$$

## Example 2

This example is to find the optimal component $\mathrm{r} \in$
minimize the cost of the system, i.e., [15].
dinimize

$$
C_{s}=\sum_{i=1}^{4} k_{i}\left[\tan \left(\frac{\pi}{2} R_{i}\right)\right]^{\alpha_{i}}
$$


［Etert at $\mathrm{H}_{\mathrm{i}}=0.6$ ，for ail i$]$

Iterajich	Fibe of f－viju： colcuiated at erch iteration	vajue of ${ }_{i}$ $\qquad$	$\mathrm{H}_{1}$	P\％	$\mathrm{K}_{3}$	$\mathrm{R}_{4}$	－${ }^{\text {P }}$	$\begin{gathered} -r \\ \left(=H_{s}\right) \end{gathered}$	Cost
0		$2.214 \times 10^{-2}$	0.6	0.6	0.6	0.6	0.66177	U．68óz	662.4
1	70	$2.215 \times 30^{-2}$	0.0280	0.7150	0．56s，	0.6175	0.677501	－． 924.367	683.298
2	68	5．935： $10^{-3}$	0.7900		0.6 cue	0.6750	0.88815	3.970493	753.431
3	59	1． $50.4 \times 10^{-3}$	0．8ifus	0.8700	0.7100	0.74833	0．9912166	C．991240	7706.253
4	84	3．1：5\％$\times 10^{-1 .}$	0．tiat．$=$	$0.91: 2 \%$	0.79 250	0.736450	0.986439	1．9306132	796.919
5	72	$8.51 .0 \times 10^{-5}$	0．904．0．y	0．9．a． 4.4	$0.70{ }^{174}$	0.722707	0.994712	1．997902	796.981
6	17．	$2.162 \times 10^{-5}$	0．914．， 6 ？	0.700158	0.750748	0.767252	0．997960	－．g9920\％	790゙． 889
7	$20 \%$	$5.05 \times 10^{-6}$	0.973033	0．9E6 765	0．7i 5331	0.693293	0.999216	．）．999\％40	790．831
8	129	$1.35: \times 10^{-6}$	0．9331：	0．peci\％	0.730188	0.683501	0.949691	$\cdots .99989,9$	759.273
9	1 i 0	$3.300 \times 10^{-7}$	u．gが行	$0.93-5$	0.7040 .7	$0.68 \% 10$	0.999873	$\therefore .949900$	749.501
10	85	8．．．16： $10^{-8}$	0.993559	$0.99 \% 503$	0.70 シัヘ์	0.685176	0.999952	1.999985	799．680
12	76	2．．．1：$\times 10^{-5}$	0．9．6c． 5	0.95720	$0.70: 590$	0.653211	0.993981	1．9y9994	799.730
$1 ?$	60	5．くて9 $\times 10^{-9}$	0.9976	$0.99861 \%$	0．702590	0.622837	0.999992	c．95ssy 7	799.903


	Tires of f-value calculated at each iteration	Value of $r_{k}$ $\qquad$	$\mathrm{H}_{1}$	$i_{2}$	${ }^{H}$	$\mathrm{R}_{4}$	-P	$\begin{aligned} & -1 \\ & \left(=R_{8}\right) \end{aligned}$	Cost
			0.7	0.7	0.7	0.7	0.7161	0.9540	726.6
1	68	$1.788 \times 10^{-2}$	0.610000	0.7 E00cr	0.610100	0.632500	0.726307	0.936015	625.130
2	100	$4.1471 \times 10^{-3}$	0.72 ézó	0.9100250	0.721250	0.783750	0.906109	0.992678	753.153
3	64	$1.118 \times 10^{-3}$	0.81505 .5	c. $3063 \leq 0$	0.191250	0.783750	0.967170	0.092673	190.670
4	149	$2.794 \times 10^{-4}$	$0.6 \% 31 ? 4$	$0.3<2<249$	0.761874	0.7418813	0.938529	C. 596.509	79\%
5	38	$6.986 \times 10^{-5}$	0.06124	0.9 ? 50.4	$0.76 .38 \%$	0.750843	0.991753	0.996927	\%98.6́m
6	126	$1.74 .7 \times 10^{-5}$	0.911057	C. 34.4523	0.710436	0.736226	0.297489	0.996211	799.432
7	232	$4.366 \times 10^{-6}$	0.9 ¢́éfy	0.20016	0.úgrasóo	0.715007	0.959295	-. 999699	759. 357
8	115	$1.092 \times 10^{-6}$	$0.98 こ 835$	- neriab	$0.05 \% 2$ \%	0.702855	0.929131	0.999911	799. 305
9	94	$2.729 \times 10^{-7}$	0.990263	0.93x ${ }^{\text {a }}$	0.685080	0.698569	0.9928914	0.999955	799.522
10	68	$6.822 \times 10^{-8}$	0.9959003	C. 5 cisil	0.691 .080	0.697069	0.999958	0.549936	749.593
11	69	$1.706 \times 10^{-8}$	0.99 о́2́з	0. 297206	0.682652	0.695640	0.993983	0.999994	799.568
12	69	$4.206 \times 10^{-9}$	0.997626	0999399	0.652652	0.694958	0.999993	C. 399998	759.733

subject to the constraints

$$
\begin{aligned}
& R_{s, \text { min }} \leq 1-R_{3}\left[\left(1-R_{1}\right)\left(1-R_{4}\right)\right]^{2}-\left(1-R_{3}\right)\left\{1-R_{2}\left[1-\left(1-R_{1}\right)\left(1-R_{4}\right)\right]\right\} \\
& R_{i, \min } \leq R_{i} \leq 1.0
\end{aligned}
$$

The numerical values of parameters are

$$
\begin{aligned}
& k_{1}=25 . \quad, k_{2}=25 . \quad, k_{3}=50 . \quad \text { for } i=1,2,3,4 . \\
& R_{i, \min }=0.50, \quad \alpha_{i}=1.0, \quad 37.5 \\
& R_{\text {s,min. }}=0.99
\end{aligned}
$$

The cost function suggested in (16) satisfies the following basic requirements, especially when the reliability of each component, $R_{i}$, is greater than 0.50.

1. Cost of a low reliability component is very low.
2. Cost of̃ a high reliability component is very high
3. Cost is a monotone increasing function of reliability.
4. Derivative of cost (with respect to reliability) is a monotone increasing function of reliability.

The problem is formulated in SUMT format as follows:

Minimize

$$
\begin{aligned}
f(x) & =C \\
& =\sum_{i=1}^{4} K_{i}\left[\tan \left(\frac{\pi}{2} R_{i}\right)\right]^{\alpha_{i}}
\end{aligned}
$$

subject to

$$
\begin{aligned}
& g_{1}(x)=1-R_{3}\left[\left(1-R_{1}\right)\left(1-R_{4}\right)\right]^{2}-\left(1-R_{3}\right)\left\{1-R_{2}\left[1-\left(1-R_{2}\right)\left(1-R_{1}\right)\right]\right\}^{2} \\
& -R_{x, \min .} \geq 0 \\
& g_{i+1}=R_{i}-R_{i}, \min . \quad, i=1,2, j, 4 \\
& g_{i-5}=1.0-R_{i} \geq 0 \quad, i=1,2,5,1
\end{aligned}
$$

The $P$ function for this problem is

$$
\begin{aligned}
P\left(x, r_{k}\right) & =f(x)+r_{k} \sum_{i} 1 / g_{i}(x) \\
& =\sum_{i=1}^{4} K_{i}\left[\tan \left(\frac{\pi}{2} R_{i}\right)\right]^{\alpha_{i}}+r_{k}\left\{\frac{1}{1-R_{j}\left[\left(1-R_{1}\right)\left(1-R_{4}\right)\right]^{2}-\left(1-R_{3}\right)}\right. \\
& =\left\{1-R_{2}\left[1-\left(1-R_{1}\right)\left(1-R_{4}\right)\right]\right\}^{2}-R_{s, \min .}^{4} \frac{1}{R_{1}-R_{i, \min } .} \\
& \left.+\sum_{i=1}^{4} \frac{1}{1.0-R_{i}}\right\}
\end{aligned}
$$

where $x$ is the row vector of $\left(R_{1}, R_{2}, R_{3}, R_{4}\right)$.
For this problem, the RAC program fails to satisfy the special requirement that the violable non-negativity constraints should never be violated during the search. The results obtained by applying the new developed program are presented in Tables $3,4 a$ and $4 b$.

The optimal solutions obtained from two sets of different starting components reliabilities, namely, $\left[R_{1}, R_{2}, R_{3}, R_{4}\right]=[c .6,0.6,0.6,0.6]$ and $\left[R_{1}, R_{2}, R_{3}, R_{4}\right]=[0.5,0.5,0.5,0.5]$ are presented in Table 3 . The solutions are almost identical, that is, the optimal minimum cost, $C$, of 394.806 with the system reliability, $R_{s}$, of 0.990311 for the first set of starting components reliabilities, and the optimal minimum cost, $C$, of 397.879 with the system reliability, $R_{s}$, of 0.990406 for the second set of starting components reliabilities are obtained. Recall that the constraint on the syster reliability is 0.99 . The optimal components reliabilities are almost the same for both starting sets. The stopping criterion for terminating minimization of the $P$ function at each iteration is that terminating when the number of cut-down step-size operations is 4. And the final stopping criterion for teminating the problem is $s=10^{-2}$. For the first set of starting points, it takes 10 iterations for $P$ functions, $k=10$, with totaliy
Table 3. Optimal Solution of the Cost Minimization Problem (Example 2)


Ixeration   k	Table 4a Compute   Times offevalue   calculated at   each iteration $\mathrm{r}_{k}$		art at $R_{i}=0.6$, for all $\left.i\right\}$				blein (Example 2)		
			$\mathrm{R}_{1}$	$\mathrm{R}_{2}$	$\mathrm{R}_{3}$	$\mathrm{R}_{4}$	P	$\left(=\begin{array}{l} f \\ \cos t) \end{array}\right.$	$\mathrm{R}_{\mathrm{s}}$
			0.6	0.6	0.6	0.6	596600	189.3	0.8862
0			0.88	0.88	0.88	0.88	1737000	720.8	0.993028
1	128	10000	0.879375	0.932500	0.890000	0.880000	1607460	848.322	0.999092
2	44	2000	0.879375	0.932500	0.890000	0.878750	322169	846.247	0.999085
3	60	400	0.880000	0.932500	0.887500	0.876250	65107.1	836.419	0.999060
4	68	80	0.878750	0.932500	0.873750	0.871250	13673.5	796.267	0.9989 .37
5	100	16	0.876250	0.930000	0.835000	0.848750	3325.04	696.863	0.998447
6	110	3.2	0.864375	0.920000	0.771875	0.809375	1156.76	568.441	0.9970269
7	143	0.64	0.849062	0.907500	0.710625	0.773125	637.137	477.356	0.994747
8	136	0.128	0.837187	0.898750	0.670625	0.750625	483.416	430.118	0.992646
9	128	0.0256	0.827500	0.893750	0.651875	0.743125	428.820	408.365	0.991314
10	218	0.00512	0.825758	0.886685	0.645749	0.739332	411.440	394.806	0.990311

Table $4 b$ Computer results of the cost function minimization problem (Example 2)
[Start at $\mathrm{R}_{\mathrm{i}}=0.5$, for all i ]

of f-value ulated at iteration	$\begin{gathered} \text { Value of } \\ r_{k} \end{gathered}$	$\mathrm{R}_{1}$	$\mathrm{R}_{2}$	$\mathrm{R}_{3}$	$\mathrm{R}_{4}$	P	$\begin{gathered} f \\ (=\cos t) \end{gathered}$	$\mathrm{R}_{\mathrm{s}}$
		0.5	0.5	0.5	0.5	$4 \times 10^{53}$	137.5	0.7997
		0.82	0.82	0.80	0.80	$5.483 \times 10^{7}$	441.3	0.990738
159	5000	0.878750	0.932500	0.890000	0.880000	$8.042 \times 10^{5}$	847.634	0.999089
68	1000	0.879375	0.932500	0.888750	0.878750	$1.615 \times 10^{5}$	842.903	0.999078
76	200	0.879375	0.932500	0.883750	0.870250	$3.297 \times 10^{4}$	826.498	0.999032
107	40	0.878750	0.931250	0.862500	0.863750	7225.49	760.683	0.998791
115	8	0.871875	0.926250	0.810000	0.833750	1994.90	640.217	0.997972
166	1.6	0.857500	0.914375	0.743750	0.792500	849.602	522.950	0. 996097
211	0.32	0.843125	0.903750	0.688125	0.761875	550.085	452.783	0.993768
303	0.064	0.828108	0.885363	0.673714	0.747464	467.303	406.040	0.991080
305	0.0128	0.834409	0.879062	0.667413	0.741103	429.843	397.879	0.990406
307	0.00256	0.834409	0.879062	0.667413	0.741163	404.272	397.879	0.990 .400
307	0.000512	0.834409	0.879062	0.667413	0.741163	399.158	397.879	0.990406

1135 f-functional values calculated, and for the second set, 11 iterations for $?$ functions, $k=11$, with totally 2124 f-functional values calculated.

Results given in Tables $4 a$ and $t h$ show that the cost of the system, $C$, is monotonically decreasing as iteration $k$ increases. The value of the $p$ function approaches to that of the $f$ function $(=C)$ as the iteration proceeds. Thus the minimization of the $P$ function will eventually lead us to the minimization of $f$ function.

Again, the values of $r_{0}$ are determined from eg. (15) as explained in Example 1.

It is worth noting that the starting points $R^{0}=\left[R_{1}, R_{2}, R_{3}, R_{4}\right]=$ $[0.6,0.6,0.6,0.6]$ and $R^{0}=\left[R_{1}, R_{2}, R_{3}, R_{4}\right]=[0.5,0.5,0.5,0.5]$ in Table ta and Table $4 b$ are in infeasible region. The system reliability given by $R^{0}=[0.6,0.6,0.6,0.6]$ is 0.8862 and by $R^{0}=[0.5,0.5,0.5,0.5]$ is 0.7997 , both of which are less than $R_{s, m i n}$, of 0.99 . Therefore, before the $P$-function minimization routine is started, a new feasible point is searched first. The point $[0.38,0.38,0.38,0.38]$ in the second row of Table 4 a is thus selected and is used as the feasible starting point to start the minimization procedure. Also, the point [0.82, $0.82,0.80,0.80$ ] is selected and used as feasible starting point for Table $4 b$.

## Example 3

To demonstrate the technique, the five-stage reliability problem is solved. The problem is

Maximize

$$
R_{S}=\prod_{j=1}^{5}\left[1-\left(1-R_{j}\right)^{x_{j}}\right]
$$

subject to

$$
\begin{aligned}
& g_{1}=\sum_{j=1}^{5} p_{j}\left(x_{j}\right)^{2} \leq p \\
& g_{2}=\prod_{j=1}^{5} c_{j}\left(x_{j}+\exp \left(x_{j} / 4\right)\right) \leq C \\
& g_{j}=\sum_{j=1}^{5} w_{j} x_{j} \exp \left(x_{j} / 4\right) \leq W
\end{aligned}
$$

where $x_{j} \geq 1, j=1,2, \ldots, 5$, are integers.
The constants associated with the five-stage problem are

$j$	$R_{j}$	$p_{j}$	$p$	$c_{j}$	$C$	$w_{j}$	$W$
1	0.80	1	-		7		
2	0.85	2		7		8	
3	0.90	3	110	5	175	8	200
4	0.65	+		9		6	
5	0.75	2		4	9		

The problem is formulated in SIMMT format as follows:
Manimize

$$
\begin{aligned}
Z & =f(x)=-R_{s} \\
& =-\underset{j=1}{j}\left[1-\left(1-R_{j}\right)^{x_{j}}\right]
\end{aligned}
$$

subject to

$$
\begin{aligned}
& g_{1}^{\prime}=P-\sum_{j=1}^{5} p_{j}\left(x_{j}\right)^{2} \geq 0 \\
& g_{2}^{\prime}=C-\sum_{j=1}^{5} c_{j}\left(x_{j}+\exp \left(x_{j} / 4\right)\right) \geq 0 \\
& g_{\frac{1}{\prime}}^{\prime}=W-\sum_{j=1}^{5} w_{j} x_{j} \exp \left(x_{j} / 4\right) \geq 0 \\
& g_{j}^{\prime}+3=x_{j}-1 \geq 0 \quad, \quad j=1,2, \ldots, 5 \\
& g_{9}^{\prime}=Z+1 \geq 0
\end{aligned}
$$

The $P$ function for this problem is

$$
\begin{aligned}
P\left(x, \gamma_{k}\right)= & f(x)+\gamma_{k_{i=1}}^{\sum_{i=1}^{9}} \frac{1}{g_{i}}(x) \\
= & -\prod_{j=1}^{5}\left[1-\left(1-R_{j}\right)^{x}\right]+\gamma_{k}\left[-\frac{1}{p-\sum_{j=1}^{5} p_{j}\left(x_{j}\right)^{2}}\right. \\
& +\frac{1}{C-\sum_{j=1}^{5} c_{j}\left(x_{j}+\exp \left(x_{j} / 4\right)\right)}+\frac{\sum_{j=1}^{5} w_{j} x_{j} \exp \left(x_{j} / 4\right)}{1} \\
& \left.+\sum_{j=1}^{5} \frac{1}{x_{j}-1}+\frac{1}{z+1}\right]
\end{aligned}
$$

where $x$ is the row vector of $\left(x_{1}, x_{2}, x_{3}, x_{4}, x_{5}\right)$, each of the components are assumed continuous variables.

The optimal solutions obtained from the starting components used at each stage, namely, $\left(x_{1}, x_{2}, x_{3}, x_{4}, x_{5}\right)=(2,2,2,2,3)$, are presented in Table 5. The stopping criterion for terminating the minimization of the ? function at each $k$ iteration is when the number of cut-

down step-size operations in the Hooke and Jeeves pattern search is 4 , and the final stopping criterion for terminating the problem is $\varepsilon=10^{-3}$. As shown in Table 5 it takes 8 iterations for $P$ functions, $k=8$, with totally 1600 f-functional values evaluated. The table also shows that the system reliability, $R_{s}$, monotonically increases after iteration 2 as iteration $k$ increases. The value of $P$ function approaches to that of $f$ function $\left(-R_{s}\right)$ as the iteration proceeds. Thus the minimization of $P$ function will eventually lead us to the minimization of $f$ function. Again. the values of $r_{0}$ are determined from eq. (15) as explained in Example 1.

The five-stage reliability problem solved by Lai's SUMT gives the optimal system configuration, $\left(x_{1}, x_{2}, x_{3}, x_{4}, x_{5}\right)=(2.691,2.323,2.047,3.521$, 2.809). The system reliability with this configuration is 0.9229 . However, all $x_{j}, j=1,2, \ldots, 5$, should be positive integers, therefore the rounding off procedure to the nearest integers is required. Two possible rounding off results may exist, namely,
(A) $\left(x_{1}, x_{2}, x_{3}, x_{4}, x_{5}\right)=(3,2,2,4,3)$, and
(B) $\left(x_{1}, x_{2}, x_{3}, x_{4}, x_{5}\right)=(3,2,2,3,3)$.

Configuration (A) gives higher system reliability than (B) (becalise of one more redundancy used at stage 4 ); but configuration (A) consumes 111 of $g_{i}$. Which is greater than the available resource, 110 . Therefore ( $A$ ) is not desirable. Under the configuration (B), we calculate $R_{s}=0.9045$, $g_{1}=8 \bar{j}, g_{2}=146.1$ and $g_{3}=194.5$. Configuration $(B)$ is the optimal components used at each stage.

## REFERENCES

1. Carroll, C. W., "An Operations Research Approach to the Economic Optimization of a Kraft Pulping Process," Ph.D. Dissertation, Institute of Paper Chemistry, Appletown, Wisc., 1959.
2. Carrol1, C. W., 'The Created Response Surface Technique for Optimizing Nonlinear Restrained Systems," Operations Research, 9, 169-184 (1961).
3. Fiacco, A. V., and G. P. McCormick, 'The Sequential Unconstrained Minimization Technique for Nonlinear Programming: A Primal-Dual Method," Management Sci., 10, 601-617 (1964).
4. Fiacco, A. V., and G. P. McCormick, "Computational Algorithm for the Sequential Unconstrained Minimization Technique for Nonlinear Programming,' Management Sci., 10, 601-617 (1964).
5. Fiacco, i. V., and G. P. McCormick, "Extension of SuMT for Nonlinear Programming: Equality Constraints and Extrapolation," Management Sci., 12 (11): 816-829 (1966).
6. Fiacco, A. V., and G. P. McCormick, Vonlinear Programming: Sequential Unconstrained Minimization Techniques, Wiley, New York, 1968.
7. Hooke, R., and T. A. Jeeves, Direct Search Solution of Numerical and Statistical Problems, J. Assoc. Compt. Mach., 8, 212 (1961).
8. Hwang, C. L., L. T. Fan, and S. Kumar, 'Hooke and Jeeves Pattern Search Solution to Optimal Production Planning Problems" Report No. 18, Institute for Systems Design and Optimization, Kansas State University, 1969.
9. Hwang, C. L., K. C. Lai, F. A. Tillman, L. T. Fan, "Optimization of System Reliability by the Sequential Unconstrained Minimization Technique", IEEE Trans. on Reliability, Vol. R-24, pp. 13ラ-135 (1975).
10. Hsu, F. T., L. T. Fan and C. L. Hwang, "Sequential Unconstrained Minimization Technique (SUMT) for Optimal Production Planning", paper summitted for publication, 1969.
11. Lai, K. C., "Optimization of Industrial Management Systems by the Sequential Unconstrained Minimization Technique", M.S. Report, Dept. of Industrial Engineering, Kansas State University, 1970.
12. McCormick, G. P., W. C. Mylander, III., and A. V. Fiacco, "RAC Computer Program implementing the Sequential Unconstrained Minimization Technique for Nonlinear Programming," SHARE Number 3189.

1j. Paviani, D. A., and D. M. Himmelblau, "Constrained Nonlinear Optjmization by Heuristic Programming", Operations Research, Vol. 17, pp. 5:2-882 (1969).
14. Tillman, F. A., C. L. Hwang, L. T. Fan and K. C. Lai, "Optimal Reliability of a Complex System," IEEE Trans. on Reliability, Vol. R-19, pp. 95-99 (1970).
15. Aggarwal, K. K., and J. S. Gupta, "On Minimizing the Cost of Reliability Systems', IEEE Trans. on Reliability, Vol. R-24, p. 205 (1975).
16. Bazovsky, I., Reliability Theory and Practice, Englewood Cliffs, N.J.: Prentice-Hali, (1961)
3. K GENERALIZED REDUCED GRADIENT METHOD (GRG) APPLIED TO OPTIMUM SYSTEM RELIABILITY

1. Introduction

The Generalized Reduced Gradient Method (GRG) was proposed by Abadie and Carpentier $[1,2]$. The method is a generalization of the Wolfe reduced gradient method $[8,9]$, which solves problems having a nonlinear objective function and linear equality constraints. It classifies the variables as dependent and independent ones, and substitutes into the objective function the expressions obtained from the linear equality constraints for the dependent variables, in terms of the independent variables. Thus the original problem reduces to an unconstrained one with reduced dimension. A variety of optimization techniques may now be used. Applying the same concept to a problem witn a set of nonlinear constraints, complications may be added, but it is possible by using numerical methods to obtain the solution.

The GRG has been studied extensivel $\because$ and $20 d e d$ in FCRTRAN by dbadie [3], Abadie and Guigou [4], and Guigou $[5,6]$. Three gererations of programs, namely, GRG 66, GRG 69, and GREG, have been developed. The improved code, GREG, is the outgrowth of the first two codes and promises to remain among the highly regarded nonlinear programming procedures.

The algorithm of the generalized reduced gradient method is presented in Appendix.
2. Numerical Examples

Example 1

The problem of maximizing the reliability of the complex system, given in Fig. 1 and which is subject to a single constraint, can be stated as follows (see Example 1 in the SUMT section)[7]

Maximize


Fig. 1 A schamatic diagram of a complex system

$$
\begin{aligned}
R_{s} & =1-Q_{S} \\
& =1-R_{3}\left\{\left(1-R_{1}\right)\left(1-R_{4}\right)\right]^{2}-\left(1-R_{3}\right)\left\{1-R_{2}\left[1-\left(1-R_{1}\right)\left(1-R_{4}\right)\right]\right\}^{2}
\end{aligned}
$$

subject to

$$
\begin{aligned}
& c_{s}=\sum_{i=1}^{4} c_{i} \leq C \\
& R_{i, \min } \leq R_{i} \leq 1.0
\end{aligned}
$$

where

$$
\begin{equation*}
c_{i}=K_{i}\left[\tan \left(\frac{\pi}{2} R_{i}\right)\right]_{i}^{a_{i}} \quad, i=1,2,3,4 \tag{10}
\end{equation*}
$$

The numerical values of parameters are

$$
\begin{aligned}
& k_{1}=25, \quad k_{2}=25, \quad k_{3}=50, \quad k_{4}=37.5, \\
& R_{i, \min }=0.50, \quad a_{i}=1.0, \quad \text { for } i=1,2,3,4 \\
& C=800 .
\end{aligned}
$$

We now apply the GREG computer code to solve this example. This probiem will be reformulated to

Maximize

$$
f_{0}(\bar{x})=1-R_{3}\left[\left(1-R_{1}\right)\left(1-R_{4}\right)\right]^{2}-\left(1-R_{3}\right)\left\{1-R_{2}\left[1-\left(1-R_{1}\right)\left(1-R_{4}\right)\right]\right\}^{2}
$$

subject to

$$
\begin{aligned}
& f_{1}(\bar{x})=\sum_{i=1}^{4} k_{i}\left[\tan \left(\frac{\pi}{2} R_{i}\right)\right]^{a_{i}}-300 \leq 0 \\
& R_{i, \min } \leq R_{i} \leq 1.0, \quad i=1,2,3,4
\end{aligned}
$$

Then, four external, user-supplied subroutines will be used in which PH1X defines the objective function, CPHI defines the constraint functions, JiCOB defines the gradient of the constraint functions, and GRADFl defines the gradient of the objective function.

By starting with the initial point of $\left[R_{1}, R_{2}, R_{3}, R_{4}\right]^{0}=[0.52,0.52,0.52,0.52]$,
the solutions are determined to be
$\left[R_{1}, R_{2}, R_{3}, R_{4}\right]^{*}=[0.902968,0.948525,0.813532,0.851429]$
with the maximum system reliability, $R_{s}$, of 0.9990396 and sotal consumed cost of 799.949076. By starting with the initial point of $\left[R_{1}, R_{2}, K_{3}, R_{4}\right]^{0}=[0.60,0.60$, $0.60,0.60]$, the solutions are determined to be $\left[R_{1}, R_{2}, R_{3}, R_{4}\right]^{*}=[0.896629$, $0.949567,0.830751,0.842901$ ] with the maximum system reliability, $R_{S}$ of 0.9990471 and total consumed cost of 799.999023 .

## Example 2

The numerical example of Example 1 is restated below. The objective is to find the optimal $R_{i}$ 's which minimize the system cost [10]

$$
c_{s}=\sum_{i=1}^{4} k_{i}\left[\tan \left(\frac{\pi}{2} R_{i}\right)\right]^{a_{i}}
$$

subject to the constraints

$$
\begin{aligned}
& R_{S, \min } \leq 1-R_{3}\left[\left(1-R_{1}\right)\left(1-R_{4}\right)\right]^{2}-\left(1-R_{3}\right)\left\{1-R_{2}\left[1-\left(1-R_{1}\right)\left(1-R_{4}\right)\right]\right\}^{2} \\
& R_{i, \text { min }} \leq R_{i} \leq 1.0 \quad, i=1,2,3,4
\end{aligned}
$$

The nunerical values of parameters are

$$
\begin{aligned}
& k_{1}=25, \quad k_{2}=25, \quad k_{3}=50, \quad k_{4}=37.5 \\
& R_{i, \min }=0.50, \quad a_{i}=1.0, \quad \text { for } i=1,2,3,4 \\
& R_{s, \min }=0.99
\end{aligned}
$$

The problem should also be reformulated as
Maximize

$$
f_{0}(\bar{x})=-\sum_{i=1}^{4} k_{i}\left[\tan \left(\frac{\pi}{2} R_{i}\right)\right]^{a_{i}}
$$

subject to

$$
\begin{aligned}
& f_{1}(\bar{x})=-0.01+R_{3}\left[\left(1-R_{1}\right)\left(1-R_{4}\right)\right]^{2}+\left(1-R_{3}\right)\left\{1-R_{2}\left[1-\left(1-R_{1}\right)\right.\right. \\
& \left.\left.\left(1-R_{4}\right)\right]\right\}^{2} \\
& R_{i, \text { min }} \leq R_{i} \leq 1.0 \quad, i=1,2,3,4
\end{aligned}
$$

Also, four external user-supplied subroutines, namely, PHIX, CPHI, JACOB, and GRADFI, will be used. By starting with the initial point of $\left[R_{1}, R_{2}, R_{3}, R_{4}\right]^{0}=$ $[0.52,0.52,0.52,0.52]$, the solutions are determined to be $\left[R_{1}, R_{2}, R_{3}, R_{4}\right]^{*}=$ [ $0.827672,0.891787,0.634234,0.732349$ ] with the minimum total cost of 396.85345 and the system reliability of 0.9904930 . By starting with the initial point of $\left[R_{1}, R_{2}, R_{3}\right.$, $\left.R_{4}\right]^{0}=[0.60,0.60,0.60,0.60]$, the solutions are determined to be $\left[R_{1}, R_{2}, R_{3}, R_{4}\right]^{*}=$ [ $0.829047,0.892711,0.638432,0.734509$ ] with the minimum total cost of 400.79110 and the system reliability of 0.9907858 .

## Example 3

To demonstrate the technique of GRG, the five-stage reliability problem is solved. The problem is

Maximize

$$
R_{s}=\prod_{j=1}^{5}\left[1-\left(1-R_{j}\right)^{x_{j}}\right]
$$

suvject to

$$
\begin{aligned}
& g_{1}=\sum_{j=1}^{5} p_{j}\left(x_{j}\right)^{2} \leq P \\
& g_{2}=\sum_{j=1}^{5} c_{j}\left(x_{j}+\exp \left(x_{j} / 4\right)\right) \leq C \\
& g_{3}=\sum_{j=1}^{5} w_{j} x_{j} \exp \left(x_{j} / 4\right) \leq W
\end{aligned}
$$

where $x_{j} \geq 1, j=1,2, \ldots, 5$, are integers.

The constants associated with the five stage problem are

$j$	$R_{j}$	$P_{j}$	$P$	$c_{j}$	$C$	$W_{j}$	$W$
1	0.80	1		7		7	
2	0.85	2		7		8	
3	0.90	3	110	5	175	8	200
4	0.65	4		9		6	
5	0.75	2		4		9	

It is noted that, in optimizing the system reliability, the decision variables, namely, the number of components used at eazh stage, are considered as continuous variables. The nearest integer numbers are assigned to them eventually.

We now apply the GREG computer code to solve this problem. The example will be reformulated as

Maximize

$$
f_{0}(\bar{x})=\sum_{j=1}^{5} \ln \left[1-\left(1-R_{j}\right)^{x_{j}}\right]
$$

subject to

$$
\begin{aligned}
& f_{1}(\bar{x})=\sum_{j=1}^{5} p_{j} \cdot x_{j}^{2}-110 \leq 0 \\
& f_{2}(\bar{x})=\sum_{j=1}^{5} c_{j}\left(x_{j}+\exp \left(x_{j} / 4\right)\right)-175 \leq 0 \\
& f_{3}(\bar{x})=\sum_{j=1}^{5} w_{j} \cdot x_{j} \exp \left(x_{j} / 4\right)-200 \leq 0
\end{aligned}
$$

Then, four external, user-supplied subroutines will be used in which PHIX defines the objective function, CPHI defines the constraint functions, JACOB defines the gradient of the constraint functions, and GRADFI defines the gradient of the objective function.

The five-stage reliability problem solved by GREG program gives the optimal system configuration, $\left(x_{1}, x_{2}, x_{3}, x_{4}, x_{5}\right)=(2.678,2.353,2.070,3.531,2.792)$. The system reliability with this configuration is 0.9235 . Since all $x_{j}, j=1,2, \ldots, 5$, should be positive integers, the above results should be rounded off to the nearest integer as
(A). $\left(x_{1}, x_{2}, x_{3}, x_{4}, x_{5}\right)=(3,2,2,4,3)$, or
(B). $\left(x_{1}, x_{2}, x_{3}, x_{4}, x_{5}\right)=(3,2,2,3,3)$

Configuration (A), although will result in higher system reliability, consumes 111 of $g_{1}$ which is greater than the available resource, 110. Configuration (B) gives system reliability, $R_{s}, 0.9045$ and consumes $g_{1}=83, g_{2}=146.1$, and $g_{3}=$ 194.5. Therefore, configuration (B) shotis the optimal results.

## REFERENCES

i. Abadie, J. and J. Guigou, Numerical experiments with the GRG method, in Integer and Nonlinear Programminf, e.d. J. Abadie, Amsterdam: North Holland Publishing Co. (1970).
2. Abadje, J., and J. Carpenter, Generalization of the Wolfe Reduced Gradient Method to the Case of Nonlinear Constraints, in Optimization, ed. R. Fletcher, N.Y.: Academic Press (1969).
3. Abadie, J., Solution des questions de dégénérescence dans la methode GRC. EDF* note FI 145/100 due 25 (September 1969).
4. Abadie, J. and J. Guigou, Gradient réduit gènéralise, EDF* note HI 069/2 du Avril (1968).
5. Guigou, J., Presentation et utilisation du code GRG: EDF* note HI 102/G2 du g Juil (1969).
6. Guigou, J., Presentation et utilisation du code GREG, EDF* note HI $582 / 2$ due 25 Mai (1971).
7. Hwans, C. L., J. L. Kiliiams, and L. T. Fan. Introduction to the Generalized Redu Gradient Method, Institute for SY̌stems Design and Optimization, Repori No. 39 , K.S.U., Manhattan, Kansas 66502.
8. Wolfe, P., Methods of nonlinear programming, in: Recent Advances in Mathematical Procraming: eds. R. Graves and P. Wolfe, MeGraw-Hill, New York, 1965.
9. Wolfe, P., Methods for linear constraints, in: Nonlinear Prosramming, ed. I. Aba North Holland Publishing Co., Amsterdam, 1967.
 IEEE Twansactions on Kellarity, Mol. F-24, io. 5, pp. 205 (Auguse 29-5).
3.6 METHOD OF LAGRANGE MULTIPLIERS AND THE KUHN-TUCKER CONDITIONS IN OPTIMAL SYSTEM RELIABILITY

1. Introduction

The general nonlinear programming problem can be solved by the method of Lagrange multipliers when the problem has characteristics that (1) no inequalities appear in the constraints, (2) no non-negativity or discreteness restrictions are imposed on the variables, (3) the number of equality constraints is less than the number of variables, and (4) the objective and constraint functions are continuous and posses partial derivatives at least through second order. The necessary and sufficient conditions are developed from Taylor's series expansion.

The method of Lagrange multipliers can be generalized to handle problems involving inequality constraints and non-negative variables. The necessary conditions for optimizing the problems are the so called Kuhn-Tucker conditions. These necessary conditions are also sufficrent for a global minimum, if the objective function is a convex function and the constraints form a convex set of a feasible region, and for a global maximum if the objective function is a concave function and the constraints form a convex set of a feasible region.

Wolfe (1959) introduced, based on the Kunn-Tucker conditions, the modified simplex method for quadratic programing problems which is widely used and is simple to apply. Many authors have derived the necessary and sufficient conditions for different cases of nonlinear programming problem form the Kuhn-Tucker conditions. For details, see [6].

Several papers have presented the application of method of Lagrange multipliers and the Kuhn-Tucker conditions to the following system reliability optimization problems:

Example 1 Single Constraint Problem
Given a systen reliability requirement $R_{s}$, min , the problem is to determine a least-cost allocation of an $N$-stage series system that yields $R_{s} \geq R_{s, m i n}$. The example is from Kettelle [1962]. As an example, consider the following four-stage system with a system reliability requirement of $R_{s, \min }=0.99$ and total cost less than $b_{1}=61:$
Stage, 4 2 3

$C_{j}$	1.2	2.3	3.4	4.5
$R_{j}$	0.8	0.7	0.75	0.85

The problem is
Maximize

$$
R_{s}=\prod_{j=i}^{N}\left[1-\left(1-R_{j}\right)^{x_{j}}\right]
$$

subject to

$$
g_{1}=\sum_{j=i}^{N} c_{j} x_{j} \leq b_{1}
$$

and

$$
R_{s} \geq R_{s, \min }
$$

Examole 2 Two Linear Constraints Problem
Consider an example of a series system of four stages. The component reliability, cost, and weight data are:
$\begin{array}{lllll}\text { Stage, j } & 1 & 2 & j & 4\end{array}$

Component reliability, $R_{j}$	0.80	0.70	0.75	0.35
Cost, $c_{j}$	1.2	2.5	3.4	4.5
Weight,$w_{j}$	$j$	4	8	-

The system cost and weight are 56 and 120 , respectively.

The problem is
Maximize

$$
R_{s}=\prod_{j=i}^{4}\left[1-\left(1-R_{j}\right)^{x}\right]
$$

subject to

$$
\begin{aligned}
& g_{1}=\sum_{j=i}^{4} c_{j} x_{j} \leq 56 \\
& g_{2}=\sum_{j=i}^{4} w_{j} x_{j} \leq 120
\end{aligned}
$$

where $x_{j} \geq 1, j=1,2,3,4$, are integers.

A simple Lagrange multiplier method may be used to solve a single constraint problem, e.g., Example l. In this approach, the attempts employ a trial and error approach until all resouces are consumed, and assume that the degree of redundancy is continuous even though it must be discrete. However, it is very difficult to use Lagrange multipliers with multiple constraints, e.g., Example 2. To solve Example 2, the Kuhn-Tucker condition will be used to generate a set of simultaneous equations which can be solved by Newton's method. The solution obtains unique value of the Lagrange multipliers. Theoretically, a nonlinear constraint problem can also be solved by the Lagrange multiplier method and the Kuhn-Tucker conditions.
2. Lagrange Multiplier Method for Single Constraint Problem Example 1

Example 1 in the Introduction section is considered. For this single constraint problem, one Lagrange multiplier, $\lambda$, should be introduced to form an unconstrained maximum of the new function

$$
\begin{equation*}
L(\bar{x})=R_{s}-\lambda \sum_{j=i}^{V} c_{j} x_{j} \tag{1}
\end{equation*}
$$

This solution is a solution to that constrained maximization problem where constraints are, in fact, the amount of the resource expended in achieving the unconstrained solution. In general, different choices of the 's lead to different resource levels, and it may be necessary to adjust them by trial and error to achieve the maximum allowable resource, $b_{1}$. Therefore, the adjustment of the $\lambda$ 's is required [4].

Since that maximization of the logarithm of the system reliability maximizes the objective function, we take our payoff to be the log of the reliability

$$
\begin{align*}
H & =2 \pi R_{s} \\
& =\sum_{j=i}^{N} 2 n\left[1-\left(1-R_{j}\right)^{x_{j}}\right] \tag{2}
\end{align*}
$$

For a given $\lambda$, the Lagrange multiplier function will be formed as

$$
\begin{equation*}
L(\bar{x})=\sum_{j=i}^{N} \ell n\left[1-\left(1-R_{j}\right)^{x_{j}}\right]-\lambda \sum_{j=i}^{N} c_{j} x_{j} \tag{j}
\end{equation*}
$$

over the integers $x_{j} \geq 1 . \quad j=1,2, \ldots, N$.
Eq. (3) can be maximized by differentiation with respecz to $x_{j}$ and equating to zero to obtain the optimal $x_{j}$, then rounding off the values to the nearest integers. Namely,

$$
\begin{equation*}
\frac{d L(\bar{x})}{d x_{j}}=0 \tag{t}
\end{equation*}
$$

or

$$
\begin{equation*}
\frac{-\left(1-R_{j}\right)^{x_{j}} 2 n\left(1-R_{j}\right)}{\left[1-\left(1-R_{j}\right)^{x_{j}}\right]}-\lambda c_{j}=0 \tag{5}
\end{equation*}
$$

$$
\begin{align*}
& \text { leads to the solution }(\text { real }) \text { for } x_{j}: \\
& \qquad x_{j}=\frac{2 n\left\{1 /\left[1-2 n\left(1-R_{j}\right) / i c_{j}\right]\right\}}{\operatorname{nn}(I-R .)} \tag{ó}
\end{align*}
$$

which is applied to each stage. The rounding off procedures to $x_{j}$, $j=1,2,3,4$, to upper and lower nearest integers are tested to determine which maximizes the $R_{s}$, and the payoffs and costs summed to produce an optimum solution.

Referring to Example l, application of the Lagrange multiplier method as previously developed for a series of values of $\lambda$ produces the solutions shown in Table 1. Inspection of the results shows that in all but one case the changes in allocation from one solution to the next consists of at most one additional component in at most one stage. Therefore the reliability and cost are monotonic increasing with the number of components used and there is no $\lambda$ which could produce new solutions between these solutions. However, the transition from $\lambda=0.0003$ to 0.0002 produced a change in three stages, and we can expect further solutions in this interval for intermediate $\lambda$ values. Additional exploration of this region yields two more solutions, as given in Table 2.

Since there are no longer any changes by more than one component between successive solutions, the optimal allocation is $\left[x_{1}, x_{2}, x_{3}, x_{1},\right]$ * $=$ $[5,7,6,4]$ with system reliability, $R_{s}=1-0.001288=0.998712$, and $\operatorname{cost} \sum_{j=i}^{4} c_{j} x_{j}=60.5$, which is the same result obtained by the dynamic programming approach.

Table 1

1	Cost	System unreliability	Allocation			
			Stage 1	Stage 2	Stage $\overline{3}$	Stage 4
0.0009	44.6	0.009997	3	5	4	3
0.0008	48.0	0.007086	5	5	5	3
0.0007	50.3	0.005392	5	6	5	3
0.0006	54.8	0.002530	5	6	5	4
0.0005	54.8	0.002530	5	6	5	4
0.0004	54.3	0.002530	5	5	3	4
0.0003	54.8	0.002530	5	5	5	4
0.0002	61.7	0.001035	6	7	6	4

Table 2

$\lambda$	Cost	System unreliaiblity	Allocation			
		Stage 1	Stage 2	Stage 3	Stage 4	
0.000225	54.3	0.002530	5	6	5	4
0.000220	57.1	0.002020	5	7	5	4
0.000215	60.5	0.001288	5	7	6	4
0.000210	61.7	0.001035	6	7	6	4

3. Kuhn-Tucker Conditions

The Kuhn-Tucker conditions can be stated as follows [6]:
A point $\left(x_{1}, x_{2}, \ldots, x_{n}\right)$ which optimizes a function

$$
\begin{equation*}
s=f\left(x_{1}, x_{2}, \ldots, x_{n}\right) \tag{7}
\end{equation*}
$$

subject to the inequality constraints

$$
\begin{equation*}
g_{j}\left(x_{1}, x_{2}, \ldots, x_{n}\right) \leq 0, \quad j=1,2, \ldots, r \tag{8}
\end{equation*}
$$

exists if there is a set of $\lambda_{1}, \lambda_{2}, \ldots, \lambda_{m}$, that satisfies the following set of conditions.

$$
\begin{align*}
& \frac{\partial L}{\partial x_{i}}=\frac{\partial f}{\partial x_{i}}-\sum_{j=i}^{r} \lambda_{j} \frac{\partial g_{j}}{\partial x_{i}}=0, \quad i=1,2, \ldots, n \\
& \lambda{ }^{\mathrm{g}}{ }_{j}=0, \quad \quad j=1,2, \ldots, r \\
& g_{j} \leq 0, \quad j=1,2, \ldots, r \\
& \lambda_{j} \geq 0, \quad j=1,2, \ldots, r \text { (for maximization) } \\
& j=1,2, \ldots, r \text { (for maximization) }(12 a)  \tag{12a}\\
& \lambda_{j} \leq 0,  \tag{12b}\\
& j=1,2, \ldots, r \text { (for maximization) }
\end{align*}
$$

or

These conditions are also sufficient for a global minimum if $f$ and $g_{j}$, $j=1,2, \ldots, r$, are all convex and differentiable functions and for a global maximum if $f$ is concave and $g_{j}, j=1,2, \ldots, r$, are all convex and differentiable functions.

Similarly, the necessary conditions for optimization of the function equation (7), subject to the inequality constraints, equation (3) and the constraint of non-negative $x$ are

$$
\begin{equation*}
\frac{\partial L}{\partial x_{i}}=\frac{\partial F}{\partial x_{i}}-\sum_{j=i}^{r} \lambda_{j} \frac{\partial g_{j}}{\partial x_{i}} \leq 0, \quad i=1,2, \ldots, n \text { (for maximization) } \tag{153}
\end{equation*}
$$

or

$$
\begin{align*}
& \frac{\partial L}{\partial x_{i}}=\frac{\partial f}{\partial x_{i}}-\sum_{j=i}^{r} \lambda_{j} \frac{\partial g_{i}}{\partial x_{i}} \geq 0, \quad i=1,2, \ldots, n^{-} \text {(for minimization) }  \tag{13b}\\
& x_{i} \frac{\partial L}{\partial x_{i}}=0, \quad i=1,2, \ldots, n  \tag{14}\\
& \lambda_{j} g_{j}=0, \quad j=1,2, \ldots, r  \tag{15}\\
& g_{j} \leq 0, \quad j=1,2, \ldots, r  \tag{16}\\
& x_{i} \geq 0, \quad i=1,2, \ldots, n  \tag{17}\\
& \lambda_{j} \geq 0, \quad j=1,2, \ldots, r \text { (for maximization) } \tag{18a}
\end{align*}
$$

or

$$
\begin{equation*}
\lambda_{j} \leq 0, \quad j=1,2, \ldots, r \text { (for minimization) } \tag{18b}
\end{equation*}
$$

Equations (12a), (12b), (18a) and (18b) are based on the fact that
if $\lambda>0$, the stationary point cannot be a minimum, and if $\lambda<0$, it can not be a naximum [kuhn-Tucker (1951)]. Note that the sign of $\lambda$ will be affected by factors such as the nature of the optimization problem (whether maximization or minimization), the type of inequality constraints [whether $g_{j}(x) \leq 0$ or $\left.g_{j}(x) \geq 0\right]$, and the form of the Lagranian function [whether $L(x, \lambda)=f(x)-\sum_{j} \lambda_{j} g_{j}(x)$ or $\left.L(x, \lambda)=f(x)+\sum_{j} \lambda_{j} g_{j}(x)\right]$. Recall that equations (12a), (12b), (1Sa) and (18b) are based on the inequality constraints given by equation $(8)\left[g_{j}(x) \leq 0\right]$, and the Lagrangian function of the form, $L(x, 1)=E(x)-\sum_{j} \lambda_{j} g_{j}(x)$.
4. Method of Lagrange multipliers and the Kuhn-Tucker Conditions for Two Linear Constraints Problem

## Example 2

When more than one constraint is imposed to the problem, the trial and error procedure for searching $\lambda$ 's associated with each constraint is not practical. In this example, the Kuhn-Tucker conditions are applied to simplify the problem $[9,10]$.

For an $N$-stage series system, the problem can be restated as Maximize

$$
\begin{equation*}
R_{s}=\prod_{j=i}^{N}\left[1-\left(1-R_{j}\right)^{x_{j}}\right] \tag{19}
\end{equation*}
$$

subject to

$$
\begin{equation*}
\sum_{j=i}^{N} a_{i j} x_{j} \leq b_{i} \quad i=i, 2, \ldots, r \tag{20}
\end{equation*}
$$

If we denote $\left(1-R_{j}\right)$ by $Q_{j},\left(1-r_{j}\right)^{X_{j}}$ by $Q_{j}^{\prime}$, then eq. (19) becomes

$$
R_{s}=\prod_{j=i}^{N}\left(1-Q_{j}^{\prime}\right)
$$

Since maximization of the logarithm of the system reliability maximizes the objective function [1], we can denote the objective function by

$$
\begin{equation*}
\ell \pi R_{S}=\sum_{j=i}^{N} 2 n\left(1-Q_{j}^{\prime}\right) \tag{21}
\end{equation*}
$$

Also, by

$$
Q_{j}{ }_{j}{ }_{j}=Q_{j}^{\prime},
$$

We obtain

$$
\begin{equation*}
x_{j}=\frac{\ln Q_{i}^{\prime}}{\ln Q_{j}} \tag{22}
\end{equation*}
$$

Substituting $x_{j}$ into eq. (20),

$$
\sum_{j=i}^{N} a_{i j} \frac{2 n Q_{j}^{\prime}}{2 n Q_{j}} \leq b_{i}, \quad i=1,2, \ldots, r
$$

or

$$
\begin{equation*}
\sum_{j=i}^{N} a_{i j} 2 n Q_{j}^{\prime} \leq b_{i}, \quad i=1,2, \ldots, r \tag{23}
\end{equation*}
$$

where

$$
\begin{equation*}
\alpha i j=\frac{a_{i j}}{\operatorname{Rn} Q_{j}} \tag{24}
\end{equation*}
$$

Since the objective (eq. (2こ)) and constraints (eq. (2ろ)) iunctions are all separable concave and convex of $Q_{j}^{\prime}$ respectively, this guarantees the global maximum [5].

The Lagrange function, whose stationary point is to be found, is

$$
\begin{equation*}
L\left(R^{\prime}, \lambda\right) \equiv \sum_{j=i}^{N} 2 n R_{j}-\sum_{i=1}^{r} \lambda_{i}\left[\sum_{j=i}^{N}\left(\alpha_{i j} 2 n\left(1-R_{j}^{\prime}\right)\right)-b_{i}\right] \tag{25}
\end{equation*}
$$

The Kuhn-Tucker condition can be written as

$$
\begin{align*}
& \frac{\partial L}{\partial R_{j}}=\frac{i}{R_{j}}+\sum_{i=1}^{r} i_{i} a_{i j} /\left(1-R_{j}^{\prime}\right)=0, \quad i=1,2, \ldots, N  \tag{25}\\
& I_{i}\left[\sum_{j=i}^{N}\left(a_{i j} 2 n\left(1-R_{j}^{\prime}\right)\right)-b_{i}\right]=0  \tag{-}\\
& \sum_{j=i}^{N} a_{i j} 2 n\left(1-R_{j}^{\prime}\right)-b_{i} \leq 0  \tag{28}\\
& \lambda_{i} \geq 0, \\
& i=1,2, \ldots, r
\end{align*}
$$

Eqs. (26) - (29) form the basis of a solution for optimization. A set of $N+r$ equations represented by eq. (26) and eq. (2-) can be solved by Newton's method. Actually, eq. (29) will forin the stopping eriterion for the itcration process.

After the solution is obtained from the simultaneous equations formed from the Kuhn-Tucker conditions, we combine the solution with eqs. (21) and (22) to get the optimal system reliability and optimal redundant numbers for each stage in which the rounding off procedure to the nearest integer number is required.

Referring to Example 2, the problem can be stated as
Maximize

$$
\ln R_{s}=\sum_{j=1}^{4} \ell n R_{j}^{\prime}
$$

subject to

$$
\begin{aligned}
& \sum_{j=1}^{4} \frac{c_{j}}{2 n\left(1-R_{j}\right)} \ln \left(1-R_{j}^{\prime}\right)-C \leq 0 \\
& \sum_{j=1}^{4} \frac{w_{j}}{2 n\left(1-R_{j}\right)} \quad 2 n\left(1-R_{j}^{\prime}\right)-W \leq 0
\end{aligned}
$$

The Lagrange function is

$$
\begin{aligned}
L\left(R^{\prime}, \lambda\right)= & \sum_{j=1}^{4} \ell R_{j}^{\prime}-\lambda\left[\sum_{j=1}^{4} \frac{c_{j}}{2 n\left(1-R_{j}\right)} 2 n\left(1-R_{j}^{\prime}\right)-C\right] \\
& -\lambda_{2}\left[\sum_{j=1}^{4} \frac{w_{j}}{2 n\left(1-R_{j}\right)} 2 n\left(1-R_{j}^{\prime}\right)-w\right]
\end{aligned}
$$

The Kuhn-Tucker conditions are

$$
\begin{align*}
& \frac{\partial L}{\partial R_{j}^{\prime}}=\frac{1}{R_{j}^{\prime}}+\frac{\lambda_{1} c_{j}+\lambda_{2} w_{j}}{\left(1-R_{j}^{\prime}\right) \ln \left(1-R_{j}\right)}=0, \quad i=1,2,3,4  \tag{30}\\
& \lambda_{1}\left[\sum_{j=1}^{4} \frac{c_{j}}{2 n\left(1-R_{j}\right)} 2 n\left(1-R_{j}^{\prime}\right)-C\right]=0  \tag{31}\\
& \lambda_{2}\left[\sum_{j=1}^{4} \frac{w_{j}}{\ln \left(1-R_{j}\right)} \quad \ln \left(1-R_{j}^{\prime}\right)-W\right]=0  \tag{32}\\
& \sum_{j=1}^{4} \frac{c_{j}}{2 n\left(1-R_{j}\right)} \ln \left(1-R_{j}^{\prime}\right)-C \leq 0 \tag{33}
\end{align*}
$$

$$
\begin{align*}
& \sum_{j=1}^{+} \frac{w_{j}}{\ln \left(1-R_{j}\right)} 2 n\left(1-R_{j}^{\prime}\right)-W \leq 0 \\
& \lambda_{1}, \lambda_{2} \leq 0 \tag{35}
\end{align*}
$$

This problem solved by the Lagrange multipliers method and the KuhnTucker conditions following eqs. (30) - (35) gives the results, $\left[R_{1}, R_{2}\right.$, $\left.R_{3}, R_{4}\right]^{*}=[0.999735,0.999494,0.999294,0.999388],\left[\lambda_{1}, \lambda_{2}\right]^{*}=[0.00019994$, -0.00003730 ], and the system reliability $R_{s}, 0.997914$. If use eq (22), we find the optimal allocation $\left[x_{1}, x_{2}, x_{3}, x_{4}\right]^{*}=[5.11,6.30,5.25,3.90]$ which have to be rounded off to the nearest integers as $[5,6,5,4]$. The system reliability under the allocation of $[5,5,5,4]$ is 0.997471 , the consumed $g_{1}$ is 34.8 and $g_{2}$ is 117 .
5. Conclusion

The Kuhn-Tucker conditions do provide valuable clues about the characteristics of the optimal solution, and they also permit the determination of the cptimal solution. However, it is usually difficule, í not impossible to derive the optimal solution for a large scale nonlinear programming problem directly from the conditions. Also, it is not necessarily true that every point which is a solution to the kuhnTucker conditions will be a point at which the objective function takes on a relative maximum or minimum for all $\bar{x}$ which satisfy the constraints. But every point at which the objective function assumes a relative maximum or minimum for $\bar{x}$ satisfying the constraints must be a solution to the Kuhn-Tucker conditions. There are many valuable indirect applications of the Kuhn-Tucker conditions. An example is quadratic programming.

## REFERENCES

1. R. E. Barlow, F. Proschan, and L. C. Hunter, Mathematical Theory of Reliability, New York: Wiley, 1965.
2. Black, G., and F. Proschan, "On Optimal redundancy", Operations Research, Vo1. 7, pp. 581-588 (1959).
3. Bodin, L. D., "Optimization procedure for the analysis of coherent structures", IEEE Transactions on Reliability, Vol. R-18, No. 3, pp. 118-126 (August 1969).
4. Everett, H. III, "Generalized Lagrange Multiplier Method for solving problems of optimum allocation of resources", Operations Research, Vol. 11, No. 3, pp. 399417 (May-June 1963).
5. Hadley, G., Nonlinear and Dynamic Programming, Reading, Mass.: AddisonHesley, 1964.
6. Hwang, C. L., P. K. Gupta, and L. T. Fan, Method of Lagrange Multipliers and the Kuhn-Tucker-Conditions, Institute for Systems Design and Optimization, Report No. 60, Kansas State University (1974).
7. Kuhn, N. W. and Tucker, A. W., Non-Linear Programming, Froceedings of the Second Berkeley Symposium on Mathematical Statics and Probability, J. Neyman, Ed., University of California Press, Berkeley, California, pp. 481-492 (1951).
8. Messinger, M., and Shooman, H., "Technique for optimum spares allocation: a tutorial review' ${ }^{\prime \prime}$ IEEE Transactions on Reliability, Vol. R-19, pp. 156-166 (November 1970).
9. Misra, K. B., and M. D. Ljubojevic, "Optimal Reliability design of a system: a new look', IEEE Transactions on Reliability, Vol. R-22, pp. 255-258 (December 1973).
10. Misra, K. B., "Reliability optimization of a series-parallel system", IEEE Transactions on Reliability, Vol. R-21, No. 4, pp. 230-238 (November 1972).
11. Shershin, A. C., "Mathematical optimization techniques for the simultaneous apportionments of reliability and maintainability", Operations Research, Vol. 18, No. 1, pp. 95-106 (January-February 1970).
12. Tucker, A. W., Linear and Nonlinear Programming, Dperations Research, Vol. 5, pp. 244-257 (1957).

### 3.7 THE GENERALIZED LAGRANGIAN FUNCTION METHOD APPLIED TO OPTIMAL SYSTEMS

 RELIABILITY1. Introduction

A general mathematical programming problem can be stated as

$$
\begin{equation*}
\text { Problem }(A) \text { : minimize } f(\bar{x}) \tag{1}
\end{equation*}
$$

subject to

$$
\begin{align*}
& g_{i}(\bar{x}) \geq 0, \quad i=1, \ldots, m,  \tag{2}\\
& x \in \Omega \tag{3}
\end{align*}
$$

where $X \in E^{n}$, and $\Omega$ is a subset of $n$-Euclidean space $E^{n}$. It is assumed that $f(\bar{x})$, and $g_{1}(\bar{x}), g_{2}(\bar{x}), \ldots, g_{m}(\bar{x})$ are real valued functions on $\lambda_{6}$ and twice continuously differentiable.

Problem (A) can be solved by methods which are based on transformation of a given constrained problem into a sequence of unconstrained problems. There are two classes of such methods, namely, the penalty and Lagrangian methods. The penalty methods (e.g., sequential unconstrained minimization technique) have been studied extensively and applied to many practical problems [5],[5]. However, they suffer from numerical instabilities. The Lagrange multipliers method has been used mostly for the analysis of economic systems [2]. Recently, augmented Lagrangian functions have been proposed to solve the problems with equaiity $[6,7,10]$ and inequality constraints $[1,11,12,13]$.

In this section a new type of the generalized or augmented Lagrangian function proposed by Sayama et al. [12,15] for finding the solution of a nonlinear programming problem with inequality constraints is applied to optimal systems reliability problems. The function is twice continuously differentiable and closely related to the generalized penalty function which includes the interior and exterior penalty functions as special cases.

The theoretical properties of the function and the computational algorithm are presented in [13]. The method has been proved to be locally convergent to the saddle points of the generalized Lagrangian. By using the metnod, we can find the Lagrange multipliers associated with the solution of problem ( $A$ ), which play an important part for design and synthesis in the fields of engineering and economics.
2. The generalized Lagrangian function and the computational procedures The classical Lagrangian function associated with Problem (A) is defined as

$$
\begin{equation*}
L(\bar{x}, \bar{\lambda})=f(\bar{x})-\sum_{i=1}^{m} \lambda_{i} g_{i}(\bar{x}) \tag{4}
\end{equation*}
$$

where $i_{i}, i=1,2, \ldots, m$ are the Lagrange multipliers. The literature on the penalty method and the method of Lagrange multipliers is well revieived in Fiacco and McCormick [5], Lootsma [8], and Rockafellar [11].

Although several examples have been suggested to satisfy the properties of the generalized Lagrangian, a proper choice of the function is of utmost importance in obtaining efficient methods of solution. A class of the generalized or augmented Lagrangian proposed by Sayama et al. [12,15] is

$$
L(\bar{x}, \bar{\lambda} ; t)=f(\bar{x})-\sum_{i=1}^{m} \begin{cases}\lambda_{i} g_{i}(\bar{x})-\operatorname{tg}_{i}^{2}(\bar{x}), & g_{i}(\bar{x}) \leq 0  \tag{5}\\ \frac{\left(\lambda_{i}\right)^{2} g_{i}(\bar{x})}{\lambda_{i}+\operatorname{tg}_{i}(\bar{x})} & g_{i}(\bar{x}) \geq 0\end{cases}
$$

or in a similar form to the classical Lagrangian

$$
L(\bar{x}, \bar{\lambda} ; t)=f(\bar{x})-\sum_{i=1}^{m} \lambda_{i} g_{i}(\bar{x})+\sum_{i=1}^{m} \begin{cases}\operatorname{tg}_{i}^{2}(\bar{x}), & g_{i}(\bar{x}) \leq 0 \\ \frac{\lambda_{i} \tau_{i}^{2}(\bar{x})}{\lambda_{i}+\tau g_{i}(\bar{x})}, & g_{i}(\bar{x}) \geq 0\end{cases}
$$

where $\lambda_{i}, i=1,2, \ldots, m$ are multipliers and $t>0$, a penalty parameter. $L(\bar{x}, \bar{\lambda} ; t)$ is termed the multiplier function, and the computational algorithm using the function is called the multiplier method. $L(\bar{x}, \lambda ; t)$ is constructed in a such a way that it is twice continuously differentiable if $f(\bar{x})$, and $g_{i}(\bar{x}), i=1,2, \ldots m$ are twice continuously differentiable. This property is very important to the computational procedure for finding the unconstrained minimum of the generalized Lagrangian.

It is worth noting that by letting $t=0$ in $L(\bar{x}, \bar{\lambda} ; t)$, equation (5) is reduced to the classical Lagrangian equation (4). The multiplier function can also be interpreted as an exterior penalty function if $\lambda_{i}=0$, $i=1,2, \ldots, m$ in $L(\bar{x}, \bar{\lambda} ; t)$.

A computational algorithm which makes use of the multiplio: function associated with Problem ( $A$ ) is considered. The penalty parameter, t, if choosen sufficiently large (say $10^{5}$ ), is kept constant. Let $\bar{\lambda} 1$ be an initial estimation of $\bar{\lambda}$, and let $\bar{x}^{k}$ denotes a point minimizing $L\left(\bar{x}, \bar{\lambda}^{k} ; t\right)$; i.e.,

$$
L_{x}\left(x^{-k}, \lambda^{-k} ; t\right)=\nabla f\left(\bar{x}^{k}\right)-\sum_{i=1}^{m}\left\{\begin{array}{l}
{\left[\lambda_{i}^{k}-2 \operatorname{tg}_{i}\left(\bar{x}^{k}\right)\right] \nabla g_{i}\left(\bar{x}^{k}\right)}  \tag{7}\\
\frac{\left(\lambda \lambda_{i}^{k}\right)^{3}}{\left[\lambda_{i}^{k}+\operatorname{tg}_{i}\left(\bar{x}^{k}\right)\right]^{2}} \nabla g_{i}\left(\bar{x}^{k}\right)
\end{array}\right\}=0
$$

This suggests that we take

$$
\lambda_{i}^{k+1}=\left\{\begin{array}{ll}
\lambda_{i}^{k}-2 \operatorname{tg}_{i}\left(\bar{x}^{k}\right) & g_{i}\left(x^{-k}\right) \leq 0,  \tag{8}\\
\frac{\left(\lambda_{i}^{k}\right)^{j}}{\left[\lambda_{i}^{k}+\operatorname{tg}_{i}\left(\bar{x}^{k}\right)\right]^{2}}, & g_{i}\left(\bar{x}^{-k}\right) \geq 0,
\end{array} \quad i=1, \ldots, m,\right.
$$

so that $\left(\bar{x}^{k}, \lambda^{k+1}\right)$ satisfies the following equation

$$
\begin{equation*}
I_{x}\left(\bar{x}^{k}, \lambda^{k+1}\right)=\nabla f\left(\bar{x}^{k}\right)-\sum_{i=1}^{m} \lambda_{i}^{k+1} \nabla g_{i}\left(\bar{x}^{k}\right)=0 \tag{9}
\end{equation*}
$$

If $\bar{\lambda}^{-1} \geq 0$, then $\lambda^{-k}$ is leept non-negative according to the correction of (8).
Eq. (8) may be revresented as follows:

$$
\operatorname{l}_{i}+1= \begin{cases}\lambda_{i}^{k}-2 \xi_{i} \operatorname{tg}_{i}\left(\bar{x}^{-k}\right) & , g_{i}\left(\bar{x}^{k}\right) \leq 0 \\ \wedge_{i}^{k}-\xi_{i} \frac{t \lambda_{i}^{k} g_{i}\left(x^{k}\right)\left[2 \lambda_{i}^{k}+\operatorname{tg}\right.}{\left.i\left(x^{-k}\right)\right]} \\ {\left[\lambda_{i}^{k}+\operatorname{tg} g_{i}\left(\bar{x}^{k}\right)\right]^{2}} & g_{i}\left(\bar{x}^{k}\right) \geq 0, \\ & i=1, \ldots, m,\end{cases}
$$

where $1 \geq \bar{\xi}_{i}>0$. If $\bar{\xi}_{i}=1$, (10) is equivalent to (8). By using the multiplier function (10) can be written as follows:

$$
\begin{equation*}
\lambda_{i}^{k+1}=\lambda_{i}^{k}+c L_{\lambda_{i}}\left(\bar{x}^{k}, i^{k} ; t\right), \quad i=1, \ldots, m, \tag{11}
\end{equation*}
$$

where $c$ is a scalar,

$$
-C=\left\{\begin{array}{l}
2 \xi_{i} t \\
2 \xi_{i} t \frac{\lambda_{i}^{k}+0.5 \operatorname{tg} g_{i}\left(x^{k}\right)}{\lambda_{i}^{k}+2 \operatorname{tg} g_{i}\left(x^{k}\right)}
\end{array}\right.
$$

The computational procedure by the multiplier method may be summarized as follows:

1) Choose a penalty parameter $t \geqslant 0$ and initial values of multiplier $\bar{\lambda}_{I} \geq 0$.
2) Find $x^{k}$ that minimizes $L\left(\bar{x}, \lambda^{k} ; t\right)$. Any multidimensional search technique, e.g., the sequential simplex pattern search may be used.
3) Stop the iterations when one of the following criteria is satisfied.

$$
\begin{aligned}
& \left|\lambda_{i}^{k} g_{i}\left(\bar{x}^{k}\right)\right| \leq \varepsilon, \quad i=1, \ldots, m \\
& \text { or }
\end{aligned}
$$

$\left|f\left(\bar{x}^{k}\right)-L\left(\bar{x}^{k}, \lambda^{-k} ; t\right)\right| \leq \varepsilon$
where $\varepsilon$ is a sufficiently small positive number.
4) Select $\lambda^{-k+1}$ by (8) or (10), and return to step 2 ).

## 3. Numerical Examples

## Example 1

To demonstrate the generalized Lagrangian function method, the five-stage reliability problem is solved. The problem is

Maximize

$$
R_{s}=\prod_{j=1}^{5}\left[1-\left(1-R_{j}\right)^{x_{j}}\right]
$$

subject to

$$
\begin{aligned}
& g_{1}=\sum_{j=1}^{5} P_{j}\left(x_{j}\right)^{2} \leq P \\
& g_{2}=\sum_{j=1}^{5} c_{j}\left(x_{j}+\exp \left(x_{j} / 4\right)\right) \leq C \\
& g_{j}=\sum_{j=1}^{5} w_{j} x_{j} \exp \left(x_{j} / 4\right) \leq W
\end{aligned}
$$

where $x_{j} \geq 1, \quad j=1,2, \ldots, 5$, are integers.

The constants associated with the five-stage problem are

$j$	$R_{j}$	$P_{j}$	$P$	$c_{j}$	$C$	$w_{j}$	W
1	0.80	1		7		7	
2	0.85	2		7		8	
3	0.90	3	110	5	175	8	200
4	0.65	4		9		6	
5	0.75	2		4		9	

It is noted that in optimizing the system reliability, the decision variables, namely, the number of components used at each stage, are considered as continuous variables. The nearest integer numbers are assigned to them eventually.

To solve this problem, we first of ali nave to reformulate it as Minimize

$$
f_{o}(\bar{x})=-R_{s}=-\sum_{j=1}^{5}\left[1-\left(1-R_{j}\right)^{x_{j}}\right]
$$

subject to

$$
\begin{aligned}
& g_{1}(\bar{x})=P-\sum_{j=1}^{5} p_{j}\left(x_{j}\right)^{2} \geq 0 \\
& g_{2}(\bar{x})=C-\sum_{j=1}^{5} c_{j}\left(x_{j}-\exp \left(x_{j} / 4\right)\right) \geq 0 \\
& g_{j}(\bar{x})=W-\sum_{j=1}^{5} w_{j} x_{j} \exp \left(x_{j} / 4\right) \geq 0 \\
& g_{j+j}\left(x_{j}\right)=x_{j}-1.0 \geq 0 \\
& g_{9}(\bar{x})=1.0+f_{0}(\bar{x}) \geq 0
\end{aligned}
$$

The constant penalty parameter, $t=1.0 \times 10^{5}$, and initial estimate of multiplier $\mathrm{F}^{-1}=(1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0)^{\mathrm{T}}$ are chosen [Step 1]. The generalized Lagrangian function is given by

$$
L(\bar{x}, \bar{\lambda} ; t)=f_{0}(\bar{x})-\sum_{i=1}^{9} \begin{cases}1 \cdot g_{i}(\bar{x})-1.0 \times 10^{5} \cdot g_{i}{ }^{2}(\bar{x}), & g_{i}(\bar{x}) \leq 0  \tag{12}\\ \frac{(1)^{2} \cdot g_{i}(\bar{x})}{1+1.0 \times 10^{5} \cdot g_{i}(\bar{x})} & g_{i}(\bar{x})>0\end{cases}
$$

which is a function of $\bar{x}=\left(x_{1}, x_{2}, x_{3}, x_{4}, x_{5}\right)^{T}$ only. The sequential simplex pattern search method starting from $\bar{x}^{0}=(1.0,1.0,1.0,1.0,1.0)^{\mathrm{T}}$ is applied to find the minimum $L(\bar{x}, \bar{\lambda} ; t)$ of eq. (7) [Step 2] $\cdot \bar{x}^{1}=$ $\left(x_{1}^{1}, x_{2}^{1}, x_{3}^{1}, x_{4}^{1}, x_{5}^{1}\right)^{T}$ is found to be $(2.0594,2.5178,2.7202,3,4299,2.6118)^{\mathrm{T}}$ which gives

$$
\begin{aligned}
& L^{\prime}\left(\bar{x}^{1}, \bar{\lambda} ; t\right)=-0.9014323 \\
& f_{0}\left(\bar{x}^{1}\right)=-0.9013423 \\
& g_{1}\left(\bar{x}^{1}\right)=13.39341 \\
& g_{2}\left(\bar{x}^{1}\right)=26.07391 \\
& g_{3}\left(\bar{x}^{1}\right)=15.60743 \\
& g_{4}\left(\bar{x}^{1}\right)=1.0594 \\
& g_{5}\left(\bar{x}^{1}\right)=1.5178 \\
& g_{6}\left(\bar{x}^{-1}\right)=1.7202 \\
& g_{7}\left(\bar{x}^{1}\right)=1.4299 \\
& g_{8}\left(\bar{x}^{1}\right)=1.6118 \\
& g_{9}\left(\bar{x}^{1}\right)=0.0986577
\end{aligned}
$$

The stopping criteria are $\varepsilon_{1}=1.0 \times 10^{-3}$ and $\varepsilon_{2}=1.0 \times 10^{-4}$. Since

$$
\left|\lambda_{i}^{\prime} g_{i}\left(\bar{x}^{\prime}\right)\right|=\left|1 \cdot g_{i}\left(\bar{x}^{\prime}\right)\right| \pm 1.0 \times 10^{-3} \text {, for } i=1,2, \ldots, 9,
$$

and

$$
\begin{aligned}
& \left|\frac{L\left(\bar{x}^{\prime}, \bar{\lambda}^{1} ; t\right)-L\left(\bar{x}^{0}, \bar{\lambda}^{0} ; t\right)}{L\left(\bar{x}^{1}, \bar{\lambda}^{1} ; t\right)}\right|=\left|\frac{0.9013426-0.9}{0.9013426}\right| \\
& \quad=0.0015 \pm 1 \times 10^{-4} \quad[\text { Step } 3] .
\end{aligned}
$$

We should go to Step 4 by choosing new $\bar{\lambda}^{-2}$ 's using eq. (8). Then go to Step 2.

The iterative procedures are carried out until the stopping criteria are satisfied [Step 3]. The results are presented in Table 1.

The optimal results are $\bar{X}=\left(x_{1}, x_{2}, x_{3}, x_{4}, x_{5}\right)^{T}=(2.408,2.376,2.019$, $3.632,2.898), f_{0}(\bar{x})=-0.9193794, g_{1}=12.85325, g_{2}=23.77317, g_{j}=0.18543$.

Since the number of components used at each stage should be positive integers, the optimal results of $\bar{X}$ shall be rounded off to the nearest integers, and check the constraints. The possible system configurations are:
(A) $\left(x_{1}, x_{2}, x_{3}, x_{4}, x_{5}\right)=(2,2,2,4,3)$
(B) $\left(x_{1}, x_{2}, x_{3}, x_{4}, x_{5}\right)=(3,2,2,4,3)$
(C) $\left(x_{1}, x_{2}, x_{3}, x_{4}, x_{5}\right)=(3,2,2,3,3)$

Configuration ( $A$ ) results in system reliability, $R_{S}=0.9007-59$, $g_{1}(\bar{x})=4.0, g_{2}(\bar{x})=24.74182, g_{j}(\bar{x})=1.7710$. Configuration (B) results in system reliability, $R_{s}=0.9508028, g_{1}(\bar{x})=-1.0, g_{2}(\bar{x})=14.467$, $g_{3}(\bar{x})=-19.6139$ in which constraint 1 , and 3 are violated. Configuration (C) results in system reliability, $R_{s}=0.9044667, g_{1}(\bar{x})=27, g_{2}(\bar{x})=28.879$, $g_{3}(\bar{x})=7.319$. Configuration $(B)$ consumes the costs exceeding the total available resources. Configuration (A) gives the system reliability less than that from configuration (C), therefore configuration (C) is the optimal solution.
the
Computational results of the system reliability maximization problem (Example 1).
$\varepsilon_{1}=10^{-3}, \quad \varepsilon_{2}=10^{-4}, \quad t=10^{5} \quad \lambda_{i}^{1}=1.0, \quad x_{i}^{o}=1.0, \quad i=1,2, \ldots, 5$

$$
\begin{aligned}
& R_{S}=-f_{o} \\
& 0.29835 \\
& 0.9013423 \\
& 0.9166632 \\
& 0.9182469 \\
& 0.9182125 \\
& 0.9192970 \\
& 0.9193794
\end{aligned}
$$

$$
\text { - 2es } 9 \varepsilon^{\circ} \mathrm{S}=\text { aurt, uotgequduoy }
$$

$$
\begin{aligned}
& \text { Table } 1 . \\
& \text { Iteration }
\end{aligned}
$$

## Example ?

The objective of this example is to find the optimal $R_{i}$ 's which minimize

$$
C=2 K_{1} R_{1}^{\alpha_{1}}+2 K_{2} R_{2}^{\alpha_{2}}+K_{3} R_{3}^{\alpha_{3}}+2 K_{4} R_{4}^{\alpha_{4}}
$$

subject to the constraints

$$
\begin{aligned}
& R_{S, \min } \leq 1-R_{3}\left[\left(1-R_{1}\right)\left(1-R_{4}\right)\right]^{2}-\left(1-R_{3}\right)\left\{1-R_{2}\left[1-\left(1-R_{1}\right)\left(1-R_{4}\right)\right]\right\}^{2} \\
& R_{i} \geq R_{i, \min }
\end{aligned}
$$

The numerical values of parameters are

$$
\begin{array}{lll}
k_{1}=100, \quad & k_{2}=100, \quad & k_{j}=200, \quad k_{4}=150 \\
& \alpha_{i}=0.6, \quad & i=1,2,3,4 . \\
R_{s, \min }=0.9, & R_{i, \min }=0.5, & i=1,2,3,4 .
\end{array}
$$

The problem is formulated in the generalized Lagrangian function format as follows:

## Minimize

$$
\begin{aligned}
f_{0}(\bar{R}) & =c \\
& =2 K_{1} R_{1}{ }^{\alpha_{1}}+2 K_{2} R_{2}^{\alpha_{2}}+K_{3} R_{3}^{\alpha_{3}}+2 k_{4} R_{4}^{\alpha_{4}}
\end{aligned}
$$

subject to the constraints
$g_{1}(\bar{R})=1-R_{3}\left[\left(1-R_{1}\right)\left(1-R_{4}\right)\right]^{2}-\left(1-R_{3}\right)\left\{1-R_{2}\left[1-\left(1-R_{1}\right)\left(1-R_{4}\right)\right]\right\}^{2}-R_{s, \text { min }} \geq 0$
$g_{i+1}(\bar{R})=R_{i}-R_{i, \min } \geq 0, \quad i=1,2, \overline{3}, 4$.
$g_{i+5}(\bar{R})=1-R_{i} \geq 0, \quad i=1,2,3,4$
$g_{10}(\bar{R})=R_{3}\left[\left(1-R_{1}\right)\left(1-R_{4}\right)\right]^{2}-\left(1-R_{3}\right)\left\{1-R_{2}\left[1-\left(1-R_{1}\right)\left(1-R_{4}\right)\right]\right\}^{2} \geq 0$
where $1-g_{10}(\bar{R})$ is the system reliability of the complex configuration shown in Fig. 1 , and $\bar{R}=\left[R_{1}, R_{2}, R_{3}, R_{4}\right]^{T}, R_{1}, R_{2}, R_{3}$, and $R_{4}$ are the reliabilities of blocks $1,2,3$, and 4 respectively.

For this example, the SUMT-RAC program fails to satisfy the special requirement that the violable non-negativity constraints should never be violated during the search. The results by applying the formulation of generalized Lagrangian function method are presented in Table 2.

The optimal solutions obtained from the starting point of $\left(R_{1}, R_{2}, R_{3}, R_{4}\right)^{\circ}$ $=(0.7,0.7,0.7,0.7)$ are $\left(R_{1}, R_{2}, R_{3}, R_{4}\right)^{*}=(0.50001,0.84062,0.5,0.5)$, optimal minimum cost, $C=642.0446$, and the system reliability, $R_{s}=0.9005$. The penalty parameter, $t=1.0 \times 10^{5}, \varepsilon_{1}=1.0 \times 10^{-3}$, and $\varepsilon_{2}=1.0 \times 10^{-4}$ are used.

It is noted that the penality parameter, say $t=1.0 \times 10^{5}$, is large enough, we will finally reach the optimal solution in the feasible region. Comparing with the results obtained by SUMT-Lai, the cost is almost the same $(C=642,0446$ by this method, and 642.428 by SUMT-Lai), but the systern reliability, $R_{S}$, is slightly higher by this method $\left(R_{S}=0.9005\right)$ than that by SUMT-Lai $\left(R_{S}=0.900021\right)$. The multiplier method also exhibits much faster convergence ( 11.53 sec . for this problem) than SUMT-Lai (about 45 sec . for the same problem) using an IBM $370 / 158$ computer.


Fig. I A schamatic diagram of a complex system



[teralion

$$
\begin{aligned}
& \mathrm{k} \\
& 0 \\
& 1 \\
& 2 \\
& 3
\end{aligned}
$$

## REFERENCES

1. K. J. Arrow, F. J. Gould and S. M. Howe, "A general saddle point result for constrained optimization," Institute of Statistics Mimeo Series No. 774, Univ. of N. Carolina (Chapel Hill), 1971.
2. K. J. Arrow, L. Hurwicz and H. Uzawa: Studies in Linear and Non-linear Programming, Stanford Univ. Press, Stanford, 1958.
3. J. Bracken and G. P. McCormick: Selected Applications of Nonlinear Programming, Wiley, 1968.
4. H. Everett, "Generalized Lagrange multiplier method for snlving problems of optimal allocation of rescurces," Operat. Res., 11, 390-417, 1963.
5. A. V. Fiacco and G. P. McCormick: Nonlinear Programming, Sequential Unconstrained Minimization Techniques, Wiley, 1968.
6. P. C. Haarhoff and J. D. Buys, "A new method for the optimization of a nonlinear function subject to nonlinear constraints," Comput. J., 13, 178-184, 1970.
7. M. R. Hestenes, 'Multiplier and gradient method," J. Optim. Theory and Applns., 4, 303-320, 1969.
8. F. A. Lootsma, "A survey of methods for solving constrained minimization problems via unconstrained minimizations," in Numerical Methods for Nonlinear Optimization, F. A. Lootsma (editor), Academic Press, 1973.
9. B. T. Polyak, "Iteration methods using Lagrange multipliers for solving extremal problems with constraints of the equation type," USSR Comput. Math. and Math. Phys., 10-5, 42-52 (1970).
10. M. J. D. Powell, "A method for nonlinear constraints in minimization problems," in Optimization, R. Fletcher (editor), Academic Press, 1969.
11. R. T. Rockafellar, "Penalty method and augmented Lagrangians in nonlinear programming," Proceedings of 5 th IFIP Conference on Optimization Techniques, Rome, May, 1973.
12. H. Sayama, Y. Kameyama, H. Nakayama, and Y. Sawaragi, "Iteration Process in Lagrange Multipliers for Multiplier Method", System and Control (Japan), Vol. 17, pp. 775-778 (1973).
13. H. Sayama, Y. Kameyama, H. Nakayama, and Y. Sawaragi, "The Generalized Lagrangian Functions for Mathematical Programming Problems', Report 55, Institute for Systems Design and Optimization, Kansas State University, 1974.

## 3.8

GEOMETRIC PROGRAMMING APPLIED TO OPTIMAL SYSTEM RELIABILITY

1. Introduction

By employing the well-known inequality which states that the arithmetic mean is at least as great as the geometric mean, dual problems for a variety of optimal design problems, i.e., primary problems, may be formulated. Geometric programming exploits this inequality and the relationships between the primal and dual problems to facilitate solution of optimization problems. The primal problems must be expressed in terms of a class of functions which are called positive polynomials or posynomials for short.

In a primal problem, posynomial $S$ is minimized subject to constraints of the posynomial type. Because of the inequality relating the arithmetic and geometric means, there exists a related problem which requires maximization of the so-called dual function $v$ subject to certain linear constraints $[1,2,6]$.

Geometric progranming differs from other optimization techniques in that it gives the minimum values $S(\bar{x})$ of posynomial $S$ (primary function) without first locating the point $\bar{x}$ where $s$ is minimum. It solves the dual problem first, then the optimal solution of the primal problem can be obtained by the corresponding relation (see the following sections).
2. Formulation of the Problem

A more general primal minimization problem involving posynomials subject to $r$ inequality constraints and the corresponding dual problem of maximizing the dual function subject to its constraints can be stated as follows:

## Primal Froblem

Minimize

$$
\begin{equation*}
S=\sum_{j=1}^{n_{0}} u_{i} \tag{1}
\end{equation*}
$$

subject to

$$
\begin{equation*}
g_{i} \leq 1 \quad, i=1,2, \ldots, r \tag{2}
\end{equation*}
$$

where

$$
\begin{equation*}
g_{i}=\sum_{j=m_{i}}^{n_{i}} u_{j} \tag{3}
\end{equation*}
$$

Here

$$
\begin{equation*}
m_{i}=n_{i-1}+1 \quad, i=1,2, \ldots, r \tag{4}
\end{equation*}
$$

and the $u_{j}$ are numbered consecutively from $l$ to $n_{r}=n$. The $u_{j}$ are defined:

$$
\begin{equation*}
u_{j}=c_{j} \stackrel{M_{i}^{=}}{=}{ }_{x_{i}}^{a}{ }^{j i}, \quad j=1,2, \ldots, n \tag{5}
\end{equation*}
$$

where

$$
\begin{equation*}
x_{1}, x_{2}, \ldots, x_{m}>0 \tag{6}
\end{equation*}
$$

The components $a_{j k}$ are arbitrary real numbers, but the coefficients $c_{j}$ assumed to be positive.

The posynomial $S$ which is to be minimized is a function of $m$ independent variables $x_{1}, x_{2}, \ldots, x_{m}$. The inequality constraints, eq. (2), are called forced constraints, where the inequality constraints given in eq. (6) are considered to be natural constraints. The matrix $\left(a_{j k}\right)$ is called the exponent matrix. It has $n$ rows and $m$ columns.

The dual problem that corresponds to the primal problem is as follows:

## Dual Problem

Maximize

$$
\begin{equation*}
v=\left(\underset{j}{\Pi_{=1}^{n}}\left(\frac{c_{j}}{\delta_{j}}\right){ }^{\delta}\right)_{i=1}^{\Pi_{1}} \lambda_{i}^{\lambda_{i}} \tag{7}
\end{equation*}
$$

where

$$
\begin{equation*}
\lambda_{i}=\sum_{j=m_{i}}^{n_{i}}{ }_{j} \quad, i=1,2, \ldots, r \tag{8}
\end{equation*}
$$

Here

$$
m_{1}=n_{0}+1, \quad m_{2}=n_{1}+1, \ldots, m_{r}=n_{r-1}+1
$$

The constants $c_{j}$ are assumed to be positive and the weights $\delta_{1}, \delta_{2}, \ldots, \delta_{n}$ are subject to the linear constraints:

$$
\begin{align*}
& \delta_{1} \geq 0, \quad \delta_{2} \geq 0, \ldots, \delta_{n} \geq 0  \tag{9}\\
& \sum_{j=1}^{n_{0}} \delta_{j}=1  \tag{10}\\
& \sum_{j=1}^{n} a_{j k} \delta_{j}=0, \quad k=1,2, \ldots, m \tag{11}
\end{align*}
$$

where the coefficients, $a_{j k}$, are all real numbers.
The dual function, $v$, is a function cf the variables, $\varepsilon_{1}, \delta_{2}, \ldots, \delta_{n}$, and the linear constraints of positivity condition (eq. (9)), the normality condition (eq. (10)), and the orthogonality condition (eq. (ll)) are imposed on these variables.

Note the manner in which the dual problem is generated from its corresponding primal problem. The positive constants, $c_{j}$, appearing in the dual function, $v$, are the coefficients of the posynomials whose terms are given by eq. (5). Each $\delta_{j}$ is associated with the $j$-th term, $u_{j}$, of the primal problem, and hence, each $u_{j}$ or the posynomials is associated with one and only one of the dual variables, $\delta_{1}, \delta_{2}$, $\ldots, \delta_{n}$. Each $\lambda_{i}$ in the dual problem comes from a forced constraint, $g_{i} \leq 1$, of the primal problem. Because the normality condition forses the weights of the objective function to sum to unity, the $\lambda_{0}$ corresponding to the objective function itself is unity, and thus it does not appear in eq. (7). This nomality condition is the only part of the dual problem that distinguishes between the objective function, $S$, and a set of the inequality constraints, $g_{i}<1$. The coefficient matrix ( ${ }_{j k}$ ) that appears in the orthogonality condition, eq. (ll), is the exponent
matrix of the primal problem.
Since the optimal redundancy allocation problems under consideration have positive coefficients with the variables in the objective function, if the objective function can be transformed to a polynomial form, and all the resources requirement associated with each component of the ith constraint and the $j$ th resource have positive values, then the geometric programming with the type of "minimization of posynomial subject to inequality constraints" will be considered here $[3,4]$.

Referring to an $N$-stage parallel redundant system which has linear and separable constraints, the system reliability can be stated as

Maximize

$$
\begin{equation*}
R_{s}=\prod_{j=1}^{N}\left(1-Q_{j}^{x_{j}}\right) \tag{12}
\end{equation*}
$$

subject to

$$
\begin{equation*}
\sum_{j=1}^{N} P_{i j} x_{j} \leq b_{i}, \quad i=1,2, \ldots, r \tag{13}
\end{equation*}
$$

when $Q_{j} \leq 0.5$, which is a reasonable assumption for the component unreliability, then eq. (12) can be approximated as
maximize

$$
R_{s}=1-\sum_{j=1}^{N} Q_{j}{ }_{j}
$$

or, equivalently,
minimize

$$
\begin{equation*}
S=\sum_{j=1}^{N} Q_{j}{ }_{j} \tag{14}
\end{equation*}
$$

Since the stage unreliability is defined as

$$
\begin{equation*}
Q_{j}^{\prime}=Q_{j}{ }_{j} \tag{15}
\end{equation*}
$$

hence eq. (14) can be expressed as

$$
\begin{equation*}
S=\sum_{j=1}^{N} Q_{j}^{\prime} \tag{16}
\end{equation*}
$$

Also, from the definition of eq. (15),

$$
\ln Q_{j}^{\prime}=x_{j} \ln Q_{j},
$$

or

$$
\begin{equation*}
x_{j}=\frac{\ell n Q_{j}^{\prime}}{\ln Q_{j}} \tag{17}
\end{equation*}
$$

$$
, j=1,2, \ldots, N
$$

Substituting $x_{j}$ into eq. (13), we obtain

$$
\sum_{j=1}^{N} p_{i j} \frac{\ln Q_{j}^{\prime}}{\ln Q_{j}} \leq b_{i}, \quad i=1,2, \ldots, r
$$

Divided both side by $b_{i}>0$,

$$
\sum_{j=1}^{N} \frac{p_{i j}}{b_{i} \ln Q_{j}} \quad \ell_{n} Q_{j}^{\prime} \leq 1
$$

or

$$
\begin{equation*}
\sum_{j=1}^{N}\left(-\frac{p_{i j}}{b_{i} \ln Q_{j}}\right)(-1) \ln Q_{j}^{\prime} \leq 1 \tag{18}
\end{equation*}
$$

If we define

$$
\begin{equation*}
k_{i j}=-\frac{p_{i j}}{b_{i}^{l n} Q_{j}} \tag{19}
\end{equation*}
$$

then

$$
\sum_{j=1}^{N}\left(-k_{i j}\right) \ell n Q_{j}^{\prime} \leq 1
$$

or

$$
\begin{equation*}
\sum_{j=1}^{N} \ell n Q_{j}^{-k i j} \leq 1 \tag{20}
\end{equation*}
$$

or

$$
\begin{equation*}
\ln \prod_{j=1}^{N} Q_{j}^{\prime-K_{i j}} \leq 1 \tag{21}
\end{equation*}
$$

Taking exponential on both side, then

$$
\prod_{j=1}^{N} Q_{j}^{-K_{i j}} \leq e
$$

or

$$
\begin{equation*}
e^{-1} \prod_{j=1}^{N} Q_{j}^{\prime}{ }^{-K_{i j}} \leq 1, i=1,2, \ldots, r \tag{22}
\end{equation*}
$$

The primal geometric programming problem is therefore formulated as minimize eq. (16) subject to eq. (22).

Assuming $x_{j}$ to be continuous variables, the dual geometric programming formulation is

Maximize
subject $=0$

$$
\begin{equation*}
\sum_{j=1}^{N} \delta_{j}=1 \tag{21}
\end{equation*}
$$

and

$$
\begin{align*}
& j_{j}-\sum_{i=N+1}^{N+r} k_{i j} j_{i}=0, j=1,2, \ldots, N  \tag{25}\\
& \lambda_{i}=\sum_{j=m_{i}}^{n_{i}} \delta_{j}, i=1,2, \ldots, r  \tag{26}\\
& j_{i} \geq 0, i=1,2, \ldots, r \tag{27}
\end{align*}
$$

where $j_{i}, i=1,2, \ldots, r$, are the dual variables corresponding to eq. (22) and $j_{r+j}, j=1,2, \ldots, N$, are the dual variables corresponding to eq. ( 10 ). . Eqs. (24) and (25) can be simultaneously solved to get $\delta_{j}^{*}, j=1,2, \ldots$, $V+r$. Substitution of these results into eq. (25) gives rise to $v(0)^{*}$. It has been proved that [2]

$$
\begin{equation*}
S\left(Q^{*}\right)=V\left(j^{*}\right), \tag{28}
\end{equation*}
$$

and

$$
\begin{equation*}
u_{j}(\bar{Q})=\bar{o}_{j} S\left(\bar{Q}^{\prime}\right), j=1,2, \ldots, V+r \tag{29}
\end{equation*}
$$

where

$$
\begin{equation*}
u_{j}=C_{j} \prod_{i=1}^{m} Q_{k}^{\prime}{ }_{i k}, k=1,2, \ldots, m \tag{30}
\end{equation*}
$$

From eqs. (23) and (29), $Q_{k}^{\prime}, k=1,2, \ldots, m$ can be optimally obtained.
Finally, we will apply eq. (i5) to find the optimal alloこations, $x_{j}$, $j=1,2, \ldots, N$.
3. A Numerical Example

Consider the problem in which $N$ stages are connected in series and redundant components, $x_{j}-1$, are added in parallel at each stage. The objective is to determine $x_{j}$ at each stage, such that the system reliabilizy is maximized and the cust and the weight constraints are not exceeded. The problem is

Maximize

$$
\begin{equation*}
R_{s}=\prod_{j=1}^{N}\left[1-\left(1-R_{j}\right)^{x_{j}}\right] \tag{51}
\end{equation*}
$$

subject to

$$
\begin{equation*}
g_{l}=\sum_{j=1}^{Y} c_{j} x_{j} \leq C \tag{52}
\end{equation*}
$$

$$
g_{2}=\sum_{j=1}^{N} w_{j} x_{j} \leq W
$$

The constants associated with this problem are given as

Stage	Cost	Weight	Probability of Survival
$c_{j}$	1.2	1.0	$R_{j}$
1	2.3	1.0	0.80
2	3.4	1.0	0.70
$j$	4.5	1.0	0.75
4	$W=30.0$	0.85	
$C=56.0$,			

The objective function can also be stated as
Minimize

$$
\begin{equation*}
Z=\sum_{j=1}^{4} Q_{j}^{\prime} \tag{33}
\end{equation*}
$$

subject to

$$
\begin{equation*}
e^{-1} \prod_{j=1}^{4} Q_{j}^{\prime-K_{i j}} \leq 1, \quad i=1,2 \tag{34}
\end{equation*}
$$

where

$$
\begin{align*}
& Q_{j}^{\prime}=Q_{j}^{X_{j}}=\left(1-R_{j}\right)^{X_{j}}  \tag{35}\\
& K_{1 j}=-\frac{\varepsilon_{j}}{C 2 n Q_{j}} \quad, j=1,2,3,4  \tag{36}\\
& K_{2 j}=-\frac{W_{j}}{W Q_{n}} \quad, j=1,2,3,4 \tag{37}
\end{align*}
$$

The dual function is

$$
\begin{align*}
& v=\left(\frac{1}{j_{1}}\right)^{\delta} 1\left(\frac{1}{\delta_{2}}\right)^{\delta} 2\left(\frac{1}{\delta_{j}}\right)^{\delta}{ }^{\delta}\left(\frac{1}{j_{4}}\right)^{j} 4\left(\frac{\left.e^{-1}\right)^{j} 5}{\delta_{j}}\left(\frac{e^{-1}}{\delta_{6}}\right)^{j} 6\right. \\
& \left(\lambda_{1}\right)^{\lambda_{1}}\left(\lambda_{2}\right)^{\lambda_{2}} \tag{38}
\end{align*}
$$

where

$$
\lambda_{1}=\hat{s}_{5}, \lambda_{2}=\hat{o}_{6}
$$

The normality condition becomes

$$
\begin{equation*}
j_{1}+j_{2}+j_{j}+j_{4}=1 \tag{39}
\end{equation*}
$$

and the orthogonality conditions becomes

$$
\begin{align*}
& \delta_{1}-\left[k_{11}^{j} 5+k_{21} \delta_{5}\right]=0 \\
& \delta_{2}-\left[K_{12} \delta_{5}+k_{22} j_{6}\right]=0 \\
& \delta_{3}-\left[K_{13} \delta_{5}+K_{23} \delta_{6}\right]=0 \\
& \delta_{4}-\left[K_{14} \delta_{5}+K_{24} j_{6}\right]=0 \tag{10}
\end{align*}
$$

Various methods can be applied to get the optimal $j_{1}^{*}, \hat{j}_{2}{ }^{*},{ }_{j}{ }_{j}{ }_{4}{ }_{4}{ }^{*}$, ${ }_{5}{ }_{5}{ }^{*}, j_{5}^{*}$, and $v^{*}$.

$$
\text { From egs. }(39)-(10) \text {, we can express } j_{1}, \hat{o}_{2}, \delta_{j}, s_{4} \text {, and } \delta_{j} \text { int terms }
$$

of ${ }^{j}$ :

$$
\begin{align*}
& \delta_{j}=\frac{K_{1 j}}{\sum_{j=1}^{4} K_{1 j}}+\left(K_{2 j}-\frac{\mathbb{K}_{1 j} \sum_{j=1}^{!} K_{2 j}}{\sum_{j=1}^{4} K_{1 j}}\right)_{6} \quad j=1,2, \quad, \quad,  \tag{41}\\
& s_{5}=\frac{1}{\sum_{j=1}^{i} k_{1 j}}-\frac{\sum_{j=1}^{ \pm} k_{2 j}}{\sum_{j=1}^{ \pm} k_{1 j}} s_{6} \tag{+2}
\end{align*}
$$

Substituting egs (41) and (42) into eg. (38), the objective function is a one-dimensional function (in term of $\delta_{6}$ ) to be maximized. The Golden Section method can be applied to find

$$
\begin{aligned}
& V^{*}=0.00207 \\
& \delta_{6}^{*}=0.0046
\end{aligned}
$$

Also, we can obtain, by substituting into egs (41) and (42),

$$
\begin{aligned}
& \delta_{1}^{*}=0.09969 \\
& \delta_{2}^{*}=0.25537 \\
& \delta_{3}^{*}=0.32786 \\
& \delta_{4}^{*}=0.31707 \\
& \delta_{5}^{*}=7.48310
\end{aligned}
$$

Therefore,

$$
\begin{aligned}
& Q_{1}^{\prime}=0.2^{x_{1}}=\delta_{1} V^{*}=0.0002064 \\
& Q_{2}^{\prime}=0.3^{x_{2}}=\delta_{2} V^{*}=0.0005286 \\
& Q_{3}^{\prime}=0.25^{x_{3}}=\delta_{3} V^{*}=0.0006787 \\
& Q_{4}^{\prime}=0.15^{X_{4}}=\delta_{4} V^{*}=0.0006563
\end{aligned}
$$

From these equations, the optimal $x_{j}, j=1,2,3,4$, are found to be

$$
\begin{aligned}
& x_{1}=5.27248 \\
& x_{2}=5.26699 \\
& x_{3}=5.25248
\end{aligned}
$$

which gives the system reliability, $R_{s}, 0.99793$. After rounding off to the nearest integers, we get the optimal allocation:

$$
\begin{aligned}
& x_{1}=5 \\
& x_{2}=6 \\
& x_{3}=5 \\
& x_{4}=4
\end{aligned}
$$

The system reliability is 0.99747 with a cost slack of 1.4 and a weight slack of 10 .

## REFERENCES

1. Duffin, R. J., E. L. Peterson, and C. Zener, Gecmetric Programming, N.Y.: Wiley (1967).
2. Fan, L. T., L. E. Erickson, and C. L. Hwang, Geometric Programming, Institute for System Desing and Optimization, Vol. 5, K.S.U., Manhattan, Kansas 66502.
3. Federowicz, A. J., and M. Mazundar, "Use of geometric programming to maximize reliability achieved by redundancy", Operations Research Vol. 16, No. 5, pp. 948-954 (Sept. - Oct. 1968).
4. Misra, K. B., and J. Sharma, "A new geometric programming formulation for a reliability problem", International Journal of Quality Control, Vol. 18, No. 3, pp. 497-503 (1973).
5. Nijkamp, P., Planning of Industrial Complexes by Means of Geometric Progranming, Rotterdam Universtiy Press, Rotterdam, Netherlands, (19-2).
6. Zener, C., Engineering Design by Geometric Programming, N.Y.: WileyInterscience, (1971).

### 3.9 LNTESER DRGGRUMMING APPLIED TO OPTIMAL SYSTEM RELIABILITY

1. Introduction

In many problems the decision variables make sense only if they have integer values. Redundancy allocation in a system reliability optimization problem is a good example. If all the variables are integer, we have an integer programning problem which can be solved by an integer programming algorithm. A problem in which some, of the variables are required to be integers is a mixed integer programming problem. For example, if both of the redundancy allocations and element reliability at each stage are regarded as decision variables in a series system, we have a mixed integer programming problem.

In some situations, the decision variables are (assumed to be) continuous, even though they must be integers. The solution is obtained by rounding the fractional values of the optimal solution to integer values. This approach has, however, its risks. Although this is one approach there are pitfalls.

Various papers have presented the application of integer programming to a variety of problems. Problems treated in these papers can be classified into the following examples:

Example 1 Linear Objective Function
The problem is to minimize a linear cost function

$$
f=\sum_{j=1}^{N} c_{j} m_{j}
$$

of an $N$-stage series system, where $m_{j}+1$ components are used in the $j$ th stage, subject to the constraints:

$$
\begin{aligned}
& R_{s} \geq R_{s, m i n}^{m} \\
& N \\
& \vdots M_{j} m_{j} \leq w
\end{aligned}
$$

where

$$
R_{s}=\prod_{j=1}^{N}\left[1-\left(1-R_{j}\right)^{m_{j}^{+i}}\right]
$$

The constants associated with the problem are given as

$$
\begin{aligned}
& N=2, \quad R_{S, \min }=0.9905, \quad W=40 \\
& R_{1}=0.91, \quad R_{2}=0.96, \\
& c_{1}=5, \quad c_{2}=8, \\
& w_{1}=9, \quad w_{2}=6
\end{aligned}
$$

Example ? Nonlinear Objective Function and Linear Constraint Functions
Consider the problem in which $N$ stages are connected in series and redundant components, $m_{j}$, are added in parallel at each stage. The objective is to determine $m_{j}$ at each stage, such that the system reliability is maximized and the weight and cost constraints are not exceeded. The problem is stated as

Naximize

$$
R_{s}=\sum_{\substack{j=1 \\ j}}^{\lambda}\left[1-\left(1-R_{j}\right)^{m_{j}^{+1}}\right]
$$

subject to

$$
\begin{aligned}
& g_{1}=\sum_{j=1}^{N} c_{j} m_{j} \leq C \\
& g_{2}=\sum_{j=1}^{N} w_{7} m_{j} \leq \mathbb{W}
\end{aligned}
$$

 arci nrodahilt of surviral for the redundancies at each stage. The tro dats seis are listed below.
A. Consider the set of known data originally presented in [25, 25]

Stage	Cost	Weight	Probabilit of Survival
$j$	$c_{j}$	$w_{j}$	$R_{j}$
1	5	8	0.90
2	4	9	$0 .-5$
3	9	6	0.65
4	7	-	0.80
5	7	$\delta$	0.85

$$
\hat{C}=100, \quad W=104
$$

The probiem is also ~⿵estrieted that

$$
0 \leq m_{j} \leq 4, \quad j=1,2, \ldots, 5
$$

B. Consider the set of known data used in $[4,15,16,29]$

Stage	Cost	Weight	Probability of Siurvivai
1	$c_{j}$	1.2	1.0
2	2.5	1.0	0.20
3	3.4	1.0	0.50
4	4.5	1.0	0.25
$C=47.0$,	$H=20.0$		0.15

Example 5 Nonlinear Objective Function and Nonlinear Constraint Funcions
In this example [17, 25, 26], the s!stem has $N$ stages operating in series. We want to achieve a system reliability being at least $R_{s}$,min wile minimizing the cost. To attain this reliability. redundant components, m, are added in parallel up to a maximum of allowed number, m, max, at each stage. The prowiem is:

$$
==\sum_{j=1}^{N} v_{i} m_{i} \exp \left(-m_{j} / 2\right)
$$

subject to

$$
\begin{aligned}
& g_{1}=\sum_{j=1}^{N} p_{j 1} m_{j}+p_{j 2} m_{j}^{2}+p_{j 3} \leq p \\
& g_{2}=\sum_{j=1}^{N} c_{j}\left[m_{j}+\exp \left(-m_{j}\right)-\alpha_{j}\right] \geq C \\
& s_{j}=\sum_{j=1}^{N} w_{j} m_{j} \exp \left(-m_{j} / 4\right) \geq W \\
& R_{s}=\prod_{j=1}^{N}\left[1-\left(1-R_{j}\right)^{j}\right] \geq R_{s, \min } \\
& 0 \leq m_{j} \leq m_{j, \max } \quad, j=1,2, \ldots, N
\end{aligned}
$$

The constants assigned to this problem are:

$$
N=2, R_{s, \min }=0.85, m_{j, \max }=4, P=37, C=81, K=38
$$

$j$	$v_{j}$	$p_{j 1}$	$p_{i 2}$	$p_{j 3}$	$c_{j}$	$a_{j}$	${ }_{j}{ }_{j}$
1	$j$	$j$	1	0	30	0	30
2	2	3	1	1	30	4	30

Example 4
The "object" is to maximize nonlinear system reliability subject to 3 nonlinear constraints with redundant components in each stage that are subject to type 1 failures [24].

Maximize

$$
R(m)=\prod_{i=1}^{j}\left[1-\sum_{u=1}^{h_{i}}\left[1-\left(1-q_{1 u}\right)^{m_{i}+1}\right]-\sum_{u=h_{i}+1}^{s_{i}}\left(q_{i u}\right)^{m_{i}+1}\right]
$$

subject to

$$
\begin{aligned}
& G_{1} \cdot\left(m_{1}+5\right)^{2}-\left(1_{2}\right)^{2}+\left(m_{3}-2^{2} \leq 51,\right. \\
& G_{2}\left(m_{1}=\right. 20\left(m_{1}+\exp \left(-m_{1}\right)+20\left(m_{2}-\exp \left(-m_{2}\right)\right)\right. \\
&+20\left(m_{3}-\exp \left(-m_{3}\right)\right) \geq 120, \\
& G_{5}(m)= 20\left(m_{1} \exp \left(-m_{1} / 4\right)\right)-20\left(m_{2} \exp \left(-m_{2} / 4\right)\right) \\
&+20\left(m_{3} \exp \left(-m_{3} / 4\right)\right) \geq 65, \\
& m_{2}=\left(m_{1}, m_{2}, m_{5}\right), m_{i} \text { positive integer for } i=1,2,3 .
\end{aligned}
$$

The subsystems are subject to four failure models $\left(s_{i}=4\right)$ with one 0 failure $\left(h_{i}=3\right)$ and three $A$ failures, for $i=1,2,5$. Fcr each subsystem the failure probability of an element is snown in Table 1.

Table 1
The tipe of failue and its failure probability for each eiemert

subsystem	type of failure	玉ailure provabiliさ!
i	a	$q_{\text {iu }}$
1	$\begin{aligned} & \text { O } \\ & \text { A } \\ & A \\ & A \end{aligned}$	$\begin{aligned} & 0.01 \\ & 0.05 \\ & 0.20 \\ & 0.18 \end{aligned}$
2	$\begin{aligned} & 0 \\ & A \\ & A \\ & A \\ & A \end{aligned}$	$\begin{aligned} & 0.08 \\ & 0.02 \\ & 0.15 \\ & 0.12 \end{aligned}$
3	$\begin{aligned} & 0 \\ & A \\ & A \\ & A \end{aligned}$	$\begin{aligned} & 0.04 \\ & 0.05 \\ & 0.20 \\ & 0.10 \end{aligned}$

There are then at least ilve methods of solving these binds of problems in integer programming: Partial enuneration - Lawer \& Bell, Impliciz enumeration - Lemke \& Spielberg, cutting plane method - Gonory, Branch and bound, and Implicit enumeration - Geoffrion. They are classified in Table 2.

Tahle = GlassiEication of Examples and Approaches

Examples	Methods applied to the examples	Reference
```Example l Min. linear cost function s.t. R i.inear weight constraint```	$\begin{aligned} & \text { Partial enumeration - Lawler \& Bell } \\ & \text { Implicit enumaratior - Lemke \& Spielberg } \end{aligned}$	$\begin{gathered} 17 \\ 9 \end{gathered}$
	Cutting plane method - Gomory Branch and bound Partial enumeration - Lawler \& Bell Partial enumeration Enumeration - Balas or Glover	$\begin{gathered} 25,26 \\ 4,15,16,28 \\ 1- \\ 14 \\ 10 \end{gathered}$
```Examiple 3 Min. Nonlinear cost function s.t. R \Xi nonlinear constraints```	$\begin{aligned} & \text { Cutting plane method - Gomory } \\ & \text { Partial enumeration - Lawier \& Bell } \end{aligned}$	$25.26$ $17$
Example 4   Nax. $R_{s}$ with 2 classes of failure modes   s. $\tau$.   5 nonlinear   constraints	Cutting plane method - Gomory   Implicit enumeration - Geoffrion	$\begin{array}{r} 24 \\ 8 \end{array}$

## Example 1

The integer programming problem of $0-1$ type variables due to Lawler and Bell [11] is used to find the solution of the example. Lawler and Bell describe a programmed algorithm for solving discrete optimization problems with a monotonic objective function and arbitrary constraints.

A brief review of the Lawler-Bell method is provided in the section. The type of problems that can be solved by this method may be put in the following form. Minimize $g_{0}(x)$ subject to $r$ constraints of the form

$$
\begin{equation*}
g_{i 1}(x)-g_{i 2}(x) \geq 0, \quad i=1, \ldots, r \tag{1}
\end{equation*}
$$

where

$$
\begin{aligned}
& x \equiv\left\{x_{1}, x_{2}, \ldots, x_{n}\right\} \\
& x_{j}=0 \text { or } 1, \quad j=1, \ldots, n
\end{aligned}
$$

Each of the functions in (1) must be monotone nondecreasing in each of its arguments. With some ingenuity, many problems can be put in this form.

Vector $x$ is "binary" in the sense that each $x_{j}$ is either 0 or 1 ; $x \leq y$ if and only if $x_{j} \leq y_{j}$ for $j=1, \ldots, n$. This is the vector partial ordering. There is also the lexicographic or numerical ordering of these vectors obtained by identifying with each $x$, the integer value $N(x)=x_{1} 2^{n-1}+x_{2} 2^{n-2}+\ldots+x_{n} 2^{\circ}$. Numerical ordering is a refine ment of the vector partial ordering, i.e., $x \leq y$ implies $N(x) \leq V(y)$; however, $N(x) \leq V(y)$ does not imply $x \leq y$.

The method is basically a search method, which starts with $x=(0,0, \ldots 0)$ and examines the $2^{n}$ solution vectors in the numerical ordering described above. Further, the labor of examination is
subject to

$$
\begin{align*}
& g_{1}(m)=\sum_{j=1}^{2} 2 n\left[1-\left(1-R_{j}\right)^{m+1}\right]-2 n R_{s, m i n} \geq 0 \\
& g_{2}(m)=W-\sum_{j=1}^{2} w_{j} m_{j} \geq 0 \tag{2}
\end{align*}
$$

Before $m_{1}$ and $m_{2}$, both $\geq 0$, can be transformed to the variable of 0-1 type, it is necessary to estimate their upper bounds. This is done by substituting zero for all variables in the constraints, except the one for which the maximum value is to be found. Denote these by $m_{i j}^{\star}$, then $m_{j}^{u}=\min \left(m_{i j}^{*}\right)$, $i=1,2, \ldots r$, is the upper bound for $m_{j}$. It is easy to show that both $m_{i}^{u}$ and $m_{2}^{u}$ are 3 . We therefore can make the following substitution

$$
\begin{align*}
& m_{1}=x_{11}+2 x_{12} \\
& m_{2}=x_{21}+2 x_{22} \tag{j}
\end{align*}
$$

where, $x_{i j}, i=1,2, j=1,2$, is either 0 or 1 .
Now the problem is reformulated as

$$
\begin{align*}
f(x) & =5 x_{11}+10 x_{12}-8 x_{21}+16 x_{22} \\
g_{11}(x) & =\ln \left[1-0.09^{x_{11}+2 x_{12}+1}\right]+2 n\left[1-0.04^{x_{21}+2 x_{22}-1}\right]-2 n 0.9903 \\
g_{12}(x) & =g_{21}(x)=0 \\
g_{22}(x) & =9 x_{11}+18 x_{12}-6 x_{21}-12 x_{22}-25 \tag{t}
\end{align*}
$$

consideralby cut down by following certain rules. As the examination proceeds one can retain the least costly up-to-date solution. If $\hat{x}$ is the solution having "cost" $g_{0}(\hat{x})$ and $x$ is the vector being examined, then the following steps indicate the conditions under which certain vectors may be skipped. ${ }^{1}$

1) Test if $g_{0}(x) \leq g_{0}(\hat{x})$. If YES, skip to $x^{*}$ and repeat the operation; otherwise proceed to step 2).
2) Examine whether $g_{i 1}\left(x^{*}-1\right)-g_{i 2}(x) \leq 0$ for $i=1, \ldots, r$. If YES, proceed to step 3); otherwise skip to $\mathrm{x}^{*}$ and go to step 1).
3) Further, if $g_{i 1}(x)-g_{i 2}(x) \geq 0,(i=1, \ldots, r)$, replace $x$ by $\hat{x}$ and skip to $x^{*}$; otherwise change $x$ to $x+1$. In either case further execution is transferred to step 1). Lawler and Bell [11] call the above steps of the algorithm skipping rules $1,3,2$, respectively. Following the above rules, all the vectors are examined and scanning continues until a vector having maximum numerical order, viz., ( $1,1, \ldots .1$, ), is found. In case one has skipped to a vector having numerical order higher the ( $1, . ., 1$ ), designate this state by "overflow" and terminate the procedure. The least "costly" vector recorded provides the optimum solution.

One should not be overwhelmed by the number of trials. In practice the number of vectors to be examined may be quite small. For example, in an 11 -variable problem with a total of $2^{11}$-solution vectors, only 42 vectors were examined.

This example should first of all be formulated as
Minimize

$$
f=\sum_{j=1}^{2} c_{j} m_{j}
$$

Now the problem conforms to the Lovier-Bell algorithm. The solution is arrived at after examining only six vectors out of the 16 generated by the four binary variables of (3). The sequence of examination and the different rules applied are indicated in Table 3 . The vector ordering used is also shown, viz., $x \equiv\left\{x_{12}, x_{22}, x_{11}, x_{21}\right\}$. There are no definite rules about the ordering of these variables. However, it has been observed for all the problems studied that the variables carrying least "numerical weights" are assigned the "rightmost" position in the ordering. This is done so that the numerical values of $m_{1}$ and $m_{2}$ increase as the examination of solution vectors $x$ proceeds.

To begin with Table 3, we set $x=(0,0, \ldots, 0)$ and $y_{0}(\hat{x})=\infty$ and at the end of the table, the solution is $\hat{x}$ and the minimum cosi is $g_{0}(\hat{x})$. The true optimum is shown by the arrow in Table 3 . Therefore, $m_{1}=m_{2}=1$ from (3).

Actually in a large problem there is an appreciable reduction in the number of solution vectors being inspected. For example in a 5-stage problem of Bellman [27] requiring 11 binary variables, the solution was obtained by examining 42 of the $2^{11}$ solutions.

Table 3

$x_{12} x_{22} x_{11} x_{21}$				
0	0	0	0	$g_{11}\left(x^{*}-1\right)-g_{12}(x)<0$

$x^{*}=1(0,0,0,0) ;$ therefore overflow takes place and we stop.
3. The Gomory Cutting Plane Merhod

Example 2
This problem is to be solved by Gomory's cutting plane method $[5,6]$. It is noted that the reliability optimization problems solved by this method should have the objective and constraint functions in the separable types and need not satisfy any convexity and concavity conditions. A separable function, of several variables is one that can be written as a sum of functions each with only one of the variables as argument.

The reliability optimization problem can be formally stated as:
Optimize

$$
Z=\sum_{j=i}^{N} f_{j}\left(m_{j}\right)
$$

subject to

$$
\begin{aligned}
& \sum_{j=1}^{N} g_{i j}\left(m_{j}\right) \leq b_{i} \\
& \prod_{j=1}^{N} R_{j}^{\prime} \geq M
\end{aligned}
$$

where

$$
m_{j}=0.1, \ldots, m_{j}^{\prime} \quad j=1,2, \ldots, N .
$$

and all the terms are known except $Z$ and $m_{j}$ and where,
$Z=$ the objective to be maximized
$N=$ the number of subsystems or stages
$f_{j}\left(m_{j}\right)=$ the objective function at stage $j$ as a function of $m_{j}$
$g_{i j}\left(m_{j}\right)=$ the amount of the $i$ th resource consumed at stage $j$ as a function of $\mathrm{m}_{j}$
$b_{i}=$ the amount of the ith resource available
$r=$ the number of constraints

$$
\begin{aligned}
R_{j}^{\prime}= & 1-\left(1-P_{j}\right)^{m_{j}+1} \text {, the reliability of the } j \text { th subsystem with } r_{j}+1 \\
& \text { units, where } R_{j} \text { is the reliability of each component } \\
M= & \text { the minimum acceptable reliability of the system } \\
m_{j}^{\prime}= & \text { maximum number of redundant units allowed at stage } j .
\end{aligned}
$$

There exists the fact that after some transformations the above problem given by eq. (इ) can be solved as the following integer programming problem expressed by eq. (6):
max/min

$$
Z=\sum_{j=1}^{N} \sum_{k=0}^{m_{j}^{\prime}} \Delta E_{j k^{m}}{ }_{j k}
$$

subject to

$$
\begin{aligned}
& \sum_{j=1}^{N} \sum_{k=0}^{\text {Lh }}{ }_{j}^{\prime} \Delta g_{i j k} m_{j k} \leq b_{i}, \quad i=1,2, \ldots r \\
& \sum_{j=1}^{N} \sum_{k=0}^{m} \Delta 2 \pi R_{j k}^{\prime} m_{j k} \geq 2 n M
\end{aligned}
$$

and

$$
\text { for } k=0
$$

$$
m_{j k}-m_{j, k-1} \leq 0
$$

$$
m_{j k} \geq 0
$$

$$
\text { for } \begin{aligned}
k & =i, \ldots m_{j}^{\prime} \\
j & =1, \ldots N^{\prime}
\end{aligned}
$$

$$
\text { for ail } j \text { and } k
$$

where in addition to the same notations used in problem (5),

$$
\begin{gathered}
k=\text { index used to denote a particular redundant unit at stage } j \\
m_{j k}=\text { the variable representing the } k t h \text { redundancy at stage } j \text {, where } \\
m_{j k}=l \text { for } k \leq m_{j} \text { and } m_{j k}=0 \text { for } m_{j}<k \leq m_{j}
\end{gathered}
$$

$$
\begin{aligned}
\Delta f_{j k} & =f_{j k} & & \text { for } k=0 \\
& =f_{j k}-f_{j, k-1} & & \text { for } k=1, \ldots, m_{j}
\end{aligned}
$$

is the change in $f_{j}\left(\mathrm{~m}_{\mathrm{j}}\right)$ by adding the k th redundancy at stage $j$, where $f_{j k}$ is the objective function of stage $j$ when exactly $k$ redundant units are used.

$$
\begin{array}{rlrl}
\Delta g_{i j k}= & g_{i j k} & \text { for } k & =0 \\
= & g_{i j k}-g_{i j, k-1} & \text { for } k & =1, \ldots, m_{j}^{\prime} \\
i & =1, \ldots, r
\end{array}
$$

is the change in $g_{i j}\left(m_{j}\right)$ by adding the kth redundancy at stage $j$ and where $g_{i j k}$ is the function of the ith resource consumed when $k$ redundant units are used at stage $j$.

$$
\begin{aligned}
\Delta \ell n R_{j k} & =\ell n R_{j k} & & \text { for } k=0 \\
& =\ell n R_{j k}-n R_{j, k-1} & & \text { for } k=1, \ldots, m_{j}
\end{aligned}
$$

is the change in $2 n R$, by adding the $k$ th redundancy at stage $j$, and where $R_{j k}$ is the reliability at stage $j$ when $k$ redundant units are used.

The equivalence of (5) and (6) is easily illustrated using the quantities and terms which are defined above and assuming that $m_{j}$ units are used at stage j. By substituting these quantities into the objective function $=$ of (5), vields

$$
Z=\sum_{j=1}^{N} f_{i}\left(m_{j}\right)=\sum_{j=1}^{N} \sum_{k=0}^{m_{j}} \Delta f_{j k}
$$

Likewise the restriction equation of (5) becomes

$$
\sum_{j=1}^{N} g_{i j}\left(m_{j}\right)=\sum_{j=1}^{N} \sum_{k=0}^{m} \Delta g_{i j k}
$$

Now by taking logarithms of the reliability restriction of (5) and with the appropriate substituting, the follwoing equivalent resiriction is obtaineci

$$
2 N M \leq \sum_{j=1}^{N} \ln R_{j}=\sum_{j=1}^{N} \sum_{k=0}^{m_{j}} \Delta \operatorname{Ln} R_{j k}
$$

Now the new variable $\mathrm{m}_{j k}$ is introduced which represents the $k$ th redundancy at stage $j$ and is derined as follows

$$
\begin{align*}
m_{j k} & =1 & \text { for } 0 \leq k \leq m_{j} \\
& =0 & m_{j}<k \leq m_{j}^{\prime}
\end{align*}
$$

with the obvious result that

$$
\begin{equation*}
m_{j}=\sum_{k=1}^{m^{\prime}}{ }^{j} m_{j k} \tag{8}
\end{equation*}
$$

In the above it is understood that the $\Delta$ in ${ }_{j k}$ are numerically evaluated coefficients. To complete the integer programning formulation it is necessary to formulate the relationships of (7) as restrictions. Equation (7) includes the requirement that each subsystem shall contain at least one component. This is accomplished by including the following restrictions

$$
\begin{equation*}
m_{j k}=1 \quad \text { for } k=0 . \tag{Э}
\end{equation*}
$$

The remaining part of (7) insures that at each stage $j$, the $k$ th redundant unit $m_{j k}$ equals one if it is in the solution and that it is in the solution only if the $(k-1)$ th redundant unit is included. This is incorporated into the problem by including the restraints

$$
m_{j k} \leq m_{j, k-1} \quad \begin{align*}
k & =1, \ldots, m_{j} \\
j & =1, \ldots, N . \tag{10}
\end{align*}
$$

Thus including (9) and (10) completes the formulation of the problem (5) as an integer programming problem as stated by (6).

After applying the set $A$ data of Example 2 shown in the Introduction section, the problem can be illustrated in Fig. l in the required integer programming formulation. The equations in Group I insure that one basic unit is in each stage. The Group II equations allow the $k$ th redundant unit to be in the solution only if the $(k-1)$ th redundant unit is included and require the $m_{j k}$ variables to be either zero or one. The system restrictions on cost and weight are in Group III. The $c_{j}$ equation, representing the $\Delta$ in $R_{j k}$ values, is the objective function to be maximized. This problem was solved by an integer programming algorithm and the solution is as follows
$m_{10}=1$
$m_{20}=1$
$m_{30}=1$
$m_{40}=1$
$m_{50}=1$
$m_{11}=1$
$m_{21}=1$
$m_{31}=1$
$m_{41}=1$
$m_{51}=1$
$m_{12}=1$

$$
m_{22}=1
$$

$$
m_{j 2}=1
$$

$$
m_{42}=1
$$

$$
m_{52}=1
$$

$$
m_{25}=1
$$

$$
m_{33}=1
$$

$$
m_{43}=1
$$

$$
m_{34}=1
$$

			Stage I	Stage II	Stage II I	Stage IV	Stage V
			${ }^{m} 10^{m} 11^{m} 12^{m} 13^{m} 14$	${ }^{m} 20^{m} 21^{m} 22^{m} 23^{m} 24$	$\mathrm{m}_{30^{\mathrm{m}} 31^{\text {min }} 32^{\mathrm{m}} 33^{\mathrm{m}} 34}$	$m_{40}{ }^{m} 41^{m} 42^{m} 43^{m} 44$	$\mathrm{m}_{50} \mathrm{~m}_{51} \mathrm{~m}_{5} 2^{\mathrm{m}} 53^{m_{54}}$
	$\begin{aligned} & 1 \\ & 1 \\ & 1 \\ & 1 \\ & 1 \end{aligned}$		1	1	1	1	1
$\begin{aligned} & \text { こ } \\ & \text { c } \\ & 0 \\ & \text { c. } \end{aligned}$	0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0		$\begin{array}{rrrrr} -1 & 1 & & & \\ & -1 & 1 & & \\ & & -1 & 1 & \\ & & & -1 & 1 \end{array}$	$\begin{array}{rrrrr} -1 & 1 & & & \\ & -1 & 1 & & \\ & & -1 & 1 & \\ & & & -1 & 1 \end{array}$	$\begin{array}{rrrrr} -1 & 1 & & & \\ & -1 & 1 & & \\ & & -1 & 1 & \\ & & & -1 & 1 \end{array}$	$\begin{array}{rrrrr} -1 & 1 & & & \\ & -1 & 1 & & \\ & & -1 & 1 & \\ & & & -1 & 1 \end{array}$	$\left.\begin{array}{rrrr} -1 & 1 & & \\ & -1 & 1 & \\ & & -1 & 1 \\ & & & -1 \end{array}\right)$
$\stackrel{5}{\bar{\sigma}}$	100	$\geq$ $\geq$ $\geq$	$\begin{array}{llll}5 & 5 & 5 & 5 \\ 8 & 8 & 8 & 8\end{array}$	$\begin{array}{llll}4 & 4 & 4 & 4 \\ 9 & 9 & 9 & 9\end{array}$	$\begin{array}{llll}9 & 9 & 9 & 9 \\ 6 & 6 & 6 & 6\end{array}$	$\begin{array}{lllll}7 & 7 & 7 & 7 \\ 7 & 7 & 7 & 7\end{array}$	$\begin{array}{llll}7 & 7 & 7 & 7 \\ 8 & 8 & 8 & 8\end{array}$
	,	$=$			$\begin{array}{lllll} \infty & 0 & 0 & 0 & \infty \\ 0 & 0 & \infty & 0 & \infty \\ & 0 & \infty & \infty & 0 \\ 0 & 0 & 0 & 0 \\ 0 & 0 & 0 & 0 & 0 \\ 1 & 0 & 0 & 0 & 0 \end{array}$		

Fig. 1
and all other $m_{j k}=0$. To summarize, there are

$$
\begin{aligned}
& m_{1}=2 \text { redundant units at stage } 1 \\
& m_{2}=3 \text { redundant units at stage } 2 \\
& m_{3}=4 \text { redundant units at stage } 3 \\
& m_{4}=3 \text { redundant units at stage } 4 \\
& m_{5}=2 \text { redundant units at stage } 5
\end{aligned}
$$

This configuration has a cost of 93 units where the limit is 100 units and weighs 104 units which is equal to the limit. The system reliability $R_{S}=0.985$ or in $R_{S}=-0.015175$.
4. The Branch and Bound Method

## Example 2

Example 2 can also be solved by the branch and bound method [4, 28], which is briefly introduced as follows.

Problem A: Maximize total system reliaibility

$$
R_{S}=\prod_{i=1}^{i=m}\left(1-p_{i}^{n_{i}}\right),
$$

subject to the constraints:

$$
\sum_{i=1}^{i=m} a_{i j} n_{i}-d_{j}, \quad j=1, \ldots, s, \quad n_{i} \geq 1 ; \quad n_{i} \text { integer }
$$

If we make the following transformations:

$$
\begin{aligned}
& c_{i k}=2 n\left(1-p_{i}^{k+1}\right)-2 n\left(1-p_{i}^{k}\right), \\
& b_{j}=d_{j}-\sum_{i=1}^{i=m} a_{i j}
\end{aligned}
$$

then Probien A can be identically formulated as.

```
 Problem E: Saximize
```

subject. to constraints:

$$
\begin{aligned}
& \sum_{i=1}^{i=m} \sum_{k=1}^{i=x} a_{j} x_{i k} \leq b_{j}, \\
& x_{i k}=0 \text { or } 1 ; \quad \text { and } \quad x_{i k}=0 \text { implies } x_{i 1}=0 \text { if } 1>k .
\end{aligned}
$$

The one-to-one correspondance of Problem A and Problem B can be easily proved:

$$
\text { Let } x=\left(x_{i k}\right) \text { be a feasible solution to problem } B \text { and let } k_{i} \text { be }
$$

the largest index such that $x_{i k}=1$.
Since $X$ is a feasible solution for problem $B$.

$$
\begin{aligned}
& \sum_{i=1}^{i=m} \sum_{k=1}^{k=\infty} a_{i j} x_{i k} \leq b_{j}, \\
& \sum_{i=1}^{i=m} a_{i j} k_{i} \leq d_{j}-\sum_{i=1}^{i=m} a_{i j}, \\
& i=m \\
& \sum_{i=1} a_{i j}\left(k_{i}+1\right)_{T} \leq d_{j} .
\end{aligned}
$$

Hence $N=\left(n_{i} n_{i}=k_{i}+1\right)$ is a feasible solution for problem $t$. The other constraints are satisfied since $k_{i}$ is a nonnegative integer.

The objective function for the feasible solution $k$ in problem 3 is given by

$$
\begin{aligned}
& \bar{z}=\sum_{i=1}^{i=m} \sum_{k=1}^{k=\infty} c_{j k} x_{i k} \\
& =\sum_{i=1}^{i=m} \sum_{k=1}^{k=k} i \quad\left\{2 n\left(1-p_{i}^{k+1}\right)-\ln \left(1-?_{i}^{k}\right\}\right. \\
& =\sum_{i=1}^{i=n}\left\{2 n, 1-p_{i}^{k_{i}^{-1}} ;-2 n\left(1-p_{i}\right)\right\} \\
& =x n R-\sum_{i=i}^{i=m} \ell n\left(i-D_{i}\right) .
\end{aligned}
$$

As a conclusion, $R_{s}$ is maximized when $Z$ is maximum, namely, the optimal solution to Problem B corresponds to the optimal solution to Problem $A$.

## Bounding Procedure

In order to develop a bounding procedure for a multi-dimensional knapsack problem (MDK), consider a single-dimensional knapsack problem:

Maximize

$$
\sum_{i=1}^{i=m} \sum_{k=1}^{k=\infty} c_{i k^{x}}{ }_{i k},
$$

Subject to a single constraint

$$
\sum_{i=1}^{m} \sum_{k=1}^{\infty} a_{i j} x_{i k} \leq b_{j} \quad \text { for a given } j
$$

Define the ratios $r_{i k}=c_{i k} / a_{i j}$. Then, for a feasible solution,

$$
\begin{aligned}
Z= & \sum_{i=1}^{i=m} \sum_{k=1}^{k=\infty} c_{i k} x_{i k}=\sum_{i=1}^{i=m} \sum_{k=1}^{k=\infty} r_{i k} a_{i j} x_{i k} \\
& \leq \max _{i, k}\left[r_{i k}\right] \sum_{i=1}^{i=m} \sum_{k=1}^{k=\infty} a_{i j} x_{i k} \leq \max _{i, k}\left[r_{i k}\right] \cdot b_{j} .
\end{aligned}
$$

Also, since

$$
\exp \left(c_{i k}\right)=\left(1-p_{i}^{k+1}\right) /\left(1-p_{i}^{k}\right)=1+p_{i}^{k} /\left(1+p_{i}+\ldots+p_{i}^{k+1}\right)
$$

and

$$
\exp \left(c_{i, k+1}\right)=\left(1-p_{i}^{k+2}\right) /\left(1-p_{i}^{k+1}\right)=1+p_{i}^{\left.k+1 /\left(1+p_{i}+\ldots+p_{i}^{k-1}+p_{i}^{k}\right), ~\right), ~}
$$

$i t$ can be seen that $c_{i k}>c_{i, k+1}$, which implies $r_{i k}>r_{i, k+1}$, or max ${ }_{i, k}\left\{r_{i k}\right\}=$ $\max _{i}\left\{r_{i 1}\right\}$. Hence $Z \leq \max _{i}\left\{r_{i 1}\right\} \cdot b_{j}$.

In the MDK there are s constraints, one for each resource j. Therefore, for any feasible solution for the MDK,

$$
z \leq \max _{i}\left\{r_{i 1}\right\} \cdot b_{j} \text { for any } j \leq \min _{j}\left[\max _{i}\left\{r_{i 1}\right\} \cdot b_{j}\right] .
$$

Consequently, the optimal feasible solution Z* * is bounded by the quantity $\min _{j}\left[\max _{i}\left(r_{i 1}\right) \cdot b_{j}\right]$. This quantity is the upper bound for the $\because D A N$.

Let $X=\left(X_{i k}\right)$ be an intermediate solution in which none of the resources is fully utjlized. This intermediate solution can be augmented by including $x_{i * 2}$ if i and 2 satisfy the conditions (1) $x_{i \ell-1}=1,(2) x_{i \ell}=0$, and (3) no exclude decision has previously been made for $x_{i *}$. Any such qualified variable can form the basis of a decision either to include or to exclude. This decision would partition the set of all feasible solutions based on the intermediate solution $X$ into two mutually exclusive and exhaustive subsets, and it would be a basis for branching. The subset described by the decision to include $x_{i \ell}\left(i . e ., x_{i \ell}=1\right)$ would be termed an inclusive branch, and the subset described by the decision to exclude (i.e. $x_{i 2}=0$ ) would be termed an exclusive branch.

Let $k_{i}$ be defined, as before, as the largest index such that $x_{i k}=1$ before the branching decision. It can be seen that $2=k_{i}-1$. ilso, let I be the set of all indices $i$ for which an exclude decision is made be fore the branching decision. Then the bounds for the inclusive and exclusive brancines (subsets) can be computed as follows.

Inclusive branch:

$$
k_{i *}=k_{i}+1
$$

Unallocated resource $b_{j}^{\prime}=b_{j}-\sum_{i=1}^{i=m} \sum_{k=1}^{k=k} a_{i j} x_{i j}=b_{j}-\sum_{i=1}^{i=m} k_{i} \cdot a_{i j}$.

$$
\text { Objective Eunction (after branching) }=\sum_{i=1}^{i=m} \sum_{k=1}^{k=k} i c_{i k}
$$

Hence the upper bound on the inclusive brarch equals

$$
\begin{equation*}
\sum_{i=1}^{i=m} \sum_{k=1}^{k=k} c_{i k}+\min _{j}\left(\max \sum_{i k I}\left(r_{i, k_{i}+1}\right) \cdot b_{j}^{\prime}\right) \tag{11}
\end{equation*}
$$

Exclusive branch:

$$
\begin{aligned}
& I^{\prime}=I U i^{*} . \\
& \text { Unallocated resource } b_{j}^{\prime}=b_{j}-\sum_{i=1}^{i=m} k_{i} \cdot a_{i j} . \\
& \text { Objective function (after branching) }=\sum_{i=1}^{i=m} \sum_{k=1}^{k=k_{i}} c_{i k} .
\end{aligned}
$$

Hence the upper bound on the exclusive branch equals

$$
\begin{equation*}
\sum_{i=1}^{i=m} \sum_{k=1}^{k=k_{i}} c_{i k}+\min _{j}\left(\max _{i \neq I^{\prime}}\left(r_{i, k_{i}+1}\right) \cdot b_{j}^{\prime}\right] . \tag{12}
\end{equation*}
$$

The first forward solution is obtained by selecting the component for a branching decision that yields the highest upper bound on the inclusive branch and always branches into the inclusive branch. During the forward procedure, the bounds for the exclusive branch are stored as temporary bounds. The bounds for the inclusive branch are not stored explicitly. After a complete solution is reached (i.e. at least one of the resources is depleted completely giving a solution $X^{0}$ ), all the temporary bounds on the exclusive branches are revised. For this revision the index $k_{i}$ is changed to the largest index such that $X_{i k}=1$ in the solution $x^{0}$, for all $i \neq i^{*}$. These revised upper bounds are then compared with the objective function $Z\left(X^{0}\right)$. Only those branches need be explored further for which the upper bound exceeds $Z\left(X^{0}\right)$. The method of branch and bound is used to solve this example where the set B data of Example 2 shown in the Introduction are assigned. By eq. (6), $b_{j}=(33.6,16)$.
The forvard procedure, during which the initial upper bounds are sonputed, Is shown in Table $\therefore$. When compared with the upper bounds, $\ddot{\sim}=1.0216^{7}$ is shown to be optimal, yielding the results shown in Table 3 . the
same result as obtained by Proschan and Bray. [29]

Table 4

Illustration of the Forward Procedure

Level	Stage selected	Upper bound
1	2	0.67575
2	1	0.80308
3	3	0.74449
4	4	0.87010
5	2	0.93613
6	1	0.98437
7	3	0.96546
8	2	1.00108
9	4	$\therefore .00627$
10	1	1.01451
11	3	1.01061
12	2	1.01833
13	1	1.02059
14	2	1.02048

Tabel 5

The Optimal Configuration

Stage $i$	No. of parallel components $n_{i}$
1	5
2	6
4	4
	Total system reliability $=0.99169$

5. The Gormory's Cutting Plane Method

Example 3
To solve this problem by Gomery's cutting plane method $[5,6]$, we have to transfer the constraint,

$$
R_{s} \geq R_{s, \min }
$$

into

$$
2 n R_{s} \geq 2 \pi R_{s, \min }=-0.1625
$$

This can be written as

$$
\begin{aligned}
& -0.1625 \leq \sum_{j=1}^{2} \sum_{k=0}^{4} \Delta \ln R_{j k} m_{j k} \\
& 0.1625>-\sum_{j=1}^{2} \sum_{k=0}^{4} \Delta \ln R_{j k}^{m}{ }_{j k} .
\end{aligned}
$$

In this example, the units have the same reliability as the units in exmaple 2 , thus the $\Delta \ln R_{j k}$ values are the same as the objective function $c_{j}$ vaiues of example 2 .

The objective is to determine the $m_{j}$, the number of redundant units at stage $j$, that minimizes the following cost function

$$
==\left[3 m_{1} e^{-m_{1} / 2}\right]+\left[2 m_{2} e^{-m_{2} / 2}\right]
$$

while not violating the system restraints. Problems with few linear constraints such as example 1 can be readily solved by methods prescr.ed in $[20,27]$, but it seems that these methods are inadequate for solving this second example which includes multiple nonlinear restraints. The integer programming formulation of this problem is illustrated in Fig. 2.

The Group I equations represent the greater-than-restrictions, and the Group IV equations represent the less than restrictions on the system. The Group II equations insure that one basic unit is in each stage. The Group III equations allow the kth redundant unit to be in the solution only if the $(k-1)$ th redundant unit is included and requires the $m_{j k}$ variables to be either zero or one. A minimization problem is converted to a maximization problem by multiplying the objective function ( -1 ).

This problem was converted, therefore the $c_{j}$ equation is the objective function to be maximized. The integer programming solution is as follows

$$
\begin{aligned}
m_{10}=1 & m_{20} & =1 & m_{22}=1
\end{aligned} m_{24}=1
$$

and all. other $m_{j k}=0$. To summarize, there are

$$
\begin{aligned}
& m_{1}=0 \text { redundant units at stage } 1 \\
& m_{2}=4 \text { redundant units at stage } 2 .
\end{aligned}
$$

The minimum cost $Z=1.0827$ and the system reliability $R_{s}=0$. Sog where $\ln R_{s}=-0.1065$.

Stage I
Stage II


Fig. 2

## Example $j$

To soive this problem by the integer programming due to the LawlerBell algorizhm, we reformulate the problem as:

Minimaze the cost function

$$
g_{0}(m) \equiv\left[3 m_{1} \exp \left(-m_{1} / 2\right)\right]+\left[2 m_{2} \exp \left(-m_{2} / 2\right)\right]
$$

subject to the constraints

$$
\begin{align*}
& g_{1}(m) \equiv 37-\left[3 m_{1}-m_{1}^{2}\right]-\left[3 m_{1}+m_{2}^{2}+1\right] \geq 0 \\
& \left.g_{2}(m) \equiv\left[30 m_{1}+\exp \left(-m_{1}\right)\right)\right]+\left[30\left(m_{2}+\exp \left(-m_{2}\right)\right)-4\right]-81 \geq 0 \\
& g_{3}(m) \equiv\left[30 m_{1} \exp \left(-m_{1} / 4\right)\right]+\left[30 m_{2} \exp \left(-m_{2} / 4\right)\right]-38 \geq 0 \\
& g_{4}(m) \equiv\left[\ln \left(1-0.1^{m_{1}+1}\right)\right]+\left[\ln \left(1-0.25^{m_{2}+1}\right)\right]+0.1625 \geq 0 \tag{13}
\end{align*}
$$

$g_{4}(m)$ refers to the reliahility constraint.
The problem can be traisformed to the type (1) by substituting $m_{1} \equiv x_{11}+2 x_{12}+4 x_{13}$ and $m_{2} \equiv x_{21}+2 x_{22}+4 x_{23}$. The maximum value $0 \in$ either $m_{1}$ or $m_{2}$ does not exceed 3 from the scrutiny of the constraints of $(1, j)$.

The different functions in (1) are defined as follows

$$
\begin{aligned}
g_{11}(x)= & g_{22}(x)=g_{32}(x)=g_{42}(x)=0 \\
-g_{12}(x)= & 36-3\left(x_{11}+2 x_{12}+4 x_{13}\right) \\
& -\left(x_{11}+2 x_{12}+4 x_{13}\right)^{2}-3\left(x_{21}+2 x_{22}+4 x_{23}\right) \\
& -\left(x_{21}+2 x_{22}+4 x_{23}\right)^{2} \\
g_{21}(x)= & 30\left[\left(x_{11}+2 x_{12}+4{ }_{13}\right)\right. \\
& \left.+\exp \left(-\left(x_{11}-2 x_{12}+4 x_{13}\right)\right)\right] \\
& +30\left[\left(x_{21}+2 x_{22}-4 x_{23}\right)\right. \\
& +\exp \left(-\left(x_{21}-2 x_{22}+4 x_{23}\right)!\right]-85
\end{aligned}
$$

$$
\begin{align*}
g_{31}(x)= & 30\left[\left(x_{11}+2 x_{12}+4 x_{13}\right)\right. \\
& \left.\cdot \exp \left(-\left(\frac{x_{11}+2 x_{12}+4 x_{13}}{4}\right)\right)\right] \\
& +30\left[\left(x_{21}+2 x_{22}+4 x_{23}\right)\right. \\
& \left.\left(-\left(\frac{x_{21}+2 x_{22}+4 x_{23}}{4}\right)\right)\right]-38 \\
g_{41}(x)= & \ln \left(1-0 . x_{11}+2 x_{12}+4 x_{13}^{+1}\right) \\
& +\ln \left(1-0.25^{x_{21}+2 x_{22}+4 x_{23}+1}\right)+0.1625 . \tag{14}
\end{align*}
$$

The solution with variable ordering indicated in Tahle 5 is obtained in nine steps only, whereas the complete set consists of 64 vectors. The minimum $g_{0}(x)$ recorded is 1.082680 (shown by the arrow in Table 6) for which allocation is $m_{1}=0, m_{2}=4, \ln R_{s}=-0.106563$, and $R_{s}=0.89892$.

Table 6

$$
x_{13} x_{23} \quad x_{12} x_{22} x_{11} \quad x_{21}
$$



## Example +

Geoffrion's implicit enumeration method is to solve the problem with two classes of failure modes. A formulation by $0-1$ linear programming [3, 8] is introduced. We state the original system reliability problem as Problem A

Maximize

$$
\begin{equation*}
R_{S}=\prod_{i=1}^{N}\left[1-Q_{i}\left(m_{i}\right)\right] \tag{15}
\end{equation*}
$$

subject to

$$
\begin{equation*}
G_{i}(m)=\prod_{i=1}^{N} g_{t i}\left(m_{i}\right) \leq b_{t}, \quad t=1,2, \ldots, T . \tag{16}
\end{equation*}
$$

where

$$
Q_{i}\left(m_{i}\right)=Q^{0}\left(m_{i}\right)+Q^{-t}\left(m_{i}\right)
$$

$Q^{0}\left(m_{i}\right)$ and $Q^{A}\left(m_{i}\right)$ are the unreliabilities of subsystem i obtained for class 0 failure modes and for class A failure modes, respectively. [24]

To formulate Problem A into a $0-1$ linear programming problem, we derine the following $0-1$ variable:

$$
x_{i j}=\left\{\begin{array}{l}
1 ; \text { allocate } j \text { elements to subsystem } i, \\
0 ; \text { otherwise } .
\end{array}\right.
$$

When we introduce this $0-1$ variable the nonlinear system reliability (Example 4) of the NIP - m problem, we get the following linearized objective function:

$$
\begin{equation*}
f(X)=\sum_{i=1}^{N} \sum_{j=r_{i}}^{v_{i}} c_{i j} X_{i j}, \tag{18}
\end{equation*}
$$

where, for all $i$ and $j$,

$$
\left.\left.\begin{array}{rl}
c_{i j} \equiv \ln \left\{1-\left\{\sum_{u=1}^{h} Q_{i u}^{p}(j)+\sum_{u=h_{i}+1}^{s_{i}} Q_{i u}^{s}(j)\right.\right.
\end{array}\right)\right\},
$$

When we introduce the $0-1$ variable into the $T$ nonlinear constraints (16), we get

$$
\begin{align*}
& g_{t}(X)=\sum_{i=1}^{N} \sum_{j=r_{i}}^{v_{i}} a_{t i j} x_{i j} \leqslant b_{t}, \quad t=1,2, \ldots, T .  \tag{20}\\
& a_{t i j} \equiv g_{t i}(j), \text { for all } t, i, \text { and } j . \tag{21}
\end{align*}
$$

By definition of $0-1$ variable (i7), we add the following $N$ linear constraints to the constraints (20):

$$
\begin{equation*}
g_{T+i}(X) \equiv 1-\sum_{j=r_{i}}^{v_{i}} x_{i j}=0, \quad i=1,2, \ldots, N . \tag{22}
\end{equation*}
$$

By introducing the 0-1 variable, we have thereby reformulated problem $A$ into a ZOLP problem which maximizes the linear objective function (13)-(19) subject to the $T+N$ linear constraints (20)-(22). This is the ZOLP-m problem. It is proved in the next page that there is a one-to-one correspondence between the NIP-m and the ZOLP-m problem proposed here.

$$
\begin{align*}
f(x)= & \sum_{i=1}^{N} \sum_{j=r_{i}}^{V} \ln \left[1-\left\{Q_{i}^{O}(j)-Q_{i}^{A}(j),\right] x_{i j}\right. \\
= & \sum_{i=1}^{N}\left\{\sum_{j \varepsilon Z_{i}^{\dagger}} \ln \left[1-\left\{Q_{i}^{O}(j)+Q_{i}^{A}(j)\right\}\right] x_{i j}\right. \\
& +\sum_{j \varepsilon Z_{i}^{\dagger}} \ln \left[1-\left\{Q_{i}^{0}(j)+Q_{i}^{A}(j)\right\} \underline{X}_{i j}\right\} \tag{23}
\end{align*}
$$

where $Q_{i}^{O}(j)$

$$
\sum_{u=1}^{h} Q_{i u}^{P}(j), Q_{i}^{A}(j) \equiv \sum_{u=h_{i}+1}^{s i} Q_{i u}^{S}(j), \text { and } z_{i}=\left\{j ; r_{i}, r_{i}+1, \ldots, v_{i}\right\}
$$

is set of subsystem $i$ and a direct sum of the $\bar{I}_{i}$ and $\bar{Z}_{i}$ (which are a partitioning of $Z_{i}$ ). Let $X^{*}$ be a feasitie solution to the ZOLP-m problem. Then, (23) is as follows:

$$
\begin{align*}
f\left(X^{*}\right) & =\sum_{i=1}^{N} \sum_{j \varepsilon L_{i}^{+}} \ln \left[1-\left\{Q_{i}^{O}(j)+Q_{i}^{A}(j)\right\}\right] x_{i j} \\
& =\sum_{i=1}^{N} \ln \left[1-\left\{Q_{i}^{O}\left(j_{i}^{*}\right)-Q_{i}^{A}\left(j_{i}^{+}\right)\right\}\right]=\ln R\left(j^{*}\right),
\end{align*}
$$

where $j^{*}=\left(j_{1}^{*}, j_{2}^{*}, \ldots, j_{V}^{*}\right)$.
Now we prove that (20) and (21) are correct. It is obvious that (21)
is necessary. In order to prove that it is sufficient, substitute (2:)
into (20).

$$
\begin{align*}
& g_{i}(x)=\sum_{i=1}^{N} \sum_{j=r_{i}}^{u} g_{t i}^{i}(j) x_{i j}=\sum_{i=1}^{N}\left\{\sum_{j=-}^{N} g_{i j}(j) x_{i j}\right. \\
& \left.+\sum_{j=\sum_{i}} g_{t i}(j) x_{i j}\right], \quad t=1,2, \ldots, T . \tag{25}
\end{align*}
$$

Let $X^{*}$ be a feasible solution to the ZOLP-m problem, then (25) is

$$
\begin{align*}
& g_{t}(x)=\sum_{j=1}^{N} \sum_{j L_{i}^{+}} g_{t i}(j) x_{i j}=\sum_{i=1}^{N} g_{t i}\left(j_{i}^{*}\right)  \tag{26}\\
&=G_{t}\left(j^{*}\right) \leq b_{t}, \\
& t=1,2, \ldots, T .
\end{align*}
$$

The Zolp-m problem is to maximize the linear objective function (18)-(19) subject to the linear constraints (20)-(22) for $N=3$ and $T=3$, where the coefficients $a_{t i j}$ of (11) for $j=1,2,3,4$ are:

$$
\begin{aligned}
& a_{11 j}=(j+j)^{2}, a_{12 j}=(j)^{2}, a_{13 j}=(2+j)^{2}, \\
& a_{2 i j}=-20(j+\exp (-j)), a_{3 i j}=20 j \exp (-j / 4), \text { for } i=1,2,3, \\
& b_{1}=51, b_{2}=-120, b_{j}=-65 .
\end{aligned}
$$

The ZOLP-in problem is illustrated in Table 7 in the required ZOLP-m formulations which 1000 times the coeffcient $c_{i j}$ for all i and $j$ of the linear objective function (18). The variables are (for $j=1,2,3,4$ ):

$$
x_{i j}=x_{j}, \quad x_{2 j}=x_{4+j}, \quad x_{3 j}=x_{8+j} .
$$

The feasible and optimal solutions of the ZOLP-m example are shown in Table 8 ; the optimal solutions are $x_{2}=1, x_{5}=1$, and $x_{11}=1$.

## Objective Function, $x_{i j}$

i $j:$	1	2	3	$\frac{4}{1}$
1	24.7	$23 . j$	38.7	50.2
2	123.3	243.4	332.7	417.0
3	26.3	112.1	161.3	204.6

## Constraints


$\# 1, G_{1}<51.0$

生,$G_{3} \leq-65.0$

1	0	0	0	0	0	0	0
2	-1	-1	-1	-1	0	0	0
3	0	0	0	0	-1	-1	-1


same---------
----------- - same-------
$\# 2, G_{2} \leq-120.0$

-4, $G_{4} \leq 1$

## Feasible Solutions

i	1	2.	3	4	1	2	3	4
1	1	0	0	0	0	1	0	0
2	0	0	0	1	0	0	0	1
3	0	1	0	0	1	0	0	0
step 37 step 41								


1	0	1	0	0	0	1	0	0
2	0	0	1	0	1	0	0	0
3	1	0	0	0	0	0	1	0
step 61								
step 91								


1	0	1	0	0	
2	1	0	0	0	Optimal   Solution
3	0	0	1	0	

$$
m_{1}^{*}=2, m_{2}^{*}=1, m_{3}^{*}=3
$$

## REFERENCES

1. uarifrkel, F. S., and G. L. Neminuser, Integer Programminö, N.l. : kile! (12-2)
2. Ḡen, M., K. Okuno, and S. Shinofuji, "An optimizing metnod in system reliability with failime-modes by implicit enumeration algorithm", J. of ine Operations Fesearch of Japan, Vol. 19, pp. 99-116(June 1976).
3. Ceoffrion, $A . M$. "An improved implicit enumeration approach for integer rrogrammir.g", RAND Corp. Rept. RM-5644-fR June i968, or Oper. Res. Vol. 1', pr. $457-454$ !lay-June (1969).
4. Ghare, ‥M. and R. E. Tarlor, "Optimal redundancy for reliabilit! in spries sysien:", Óperaiions Research, Vol. 17, pp. 838-847 (Sept. 1969).
5. Gomory, R.E., "All integer programming algorithm". IBM Res. Center Repi. TRC-189, ian. 1960, or in "Industrial Scheduling" edited by J. E. Muth arcd. G. I. Thompson, Prentice Hali, (196.5).
ó. Gompr!, R. E., "Outline of an algorithm for integer solutions to linear problem," Bulletin of the American Mathematical Society, Vol. 64, No. 5, pn. 275-278 (1958).
T. Hiw. T. C. Integer Programing and Network Flows, Mass.: Addison-kesie: Publishing Comp. (1969).
6. Hyun, K. N., "Reliability" optimization by" O-1 programming for a sysem with several failure modes", IEEE Transactions on Reliability Vol. R-24. No. 5 , pp. 2(1s-210 (4ueust 1975).
7. Hang. C. L. L. T. Fan, F. A. Tillman, and S. kumar, "Optimization of iife support sloster reiiadility by an integer programining method", AIIE Iransactions, Vol. 3, No. 3, pp. 220-258 (September 1071).
8. Kolesar. P. J., "Linear procramming and the reliability of multicomporent systems", Naval Research Logistics Quarterly, Vol. 15, pp. 317-32- (Sept. 1967).
9. Lawler, E. L., and M. D. Bell, "A method for solving discrete optimization problems", Operations Research, Vol. 14, pp. 1098-1112 (Nov.-Dec. 1966).
10. Lawler, E. L. and D. E. Wood, "Branch-and-bound-methods: A survey", Operations Research, Vol. 14, pp. 699-719, (July-Aug. 1966)
i5. Lemke, C. E., and Spielberg, K., "Direct Search Algorithms for Jero-One and Mixed Integer Programming," Operations Research, 15, 5, 1957, pp. 892-914.
11. Luns, R., "Optimization of system reliability by a new nonlinear integer progranming procedure", IEEE Transactions on Reliability, Vol. R-24, vp. 14-16 (April 1975).
12. Moleaver, D. i., "Numerical investigation of parallel redundancy in series Systems", Operations Research, Vol. 22, pp. 1110-İ17 (Sept.-Oct. 1974).
13. Mcleavey, D. W., and J. A. Mcleavey, "Optimization of system reliability" by branch-and-bound", IEEE Transactions on Reliability, Vol. R-25, No. 5, pp. 327-529 (December 1976).
14. Misra K. B., "A method of solving redundancy optimization problems", IEEE Transactions on Reliability, Vol. R-20, No. 3, pp. 117-120 (August 1971).
15. Mjsta, K. B., and J. Sharma, "Reliability optimization of a system by zeroone programming', Microelectronics and Reliability, Vol. 12, pp. 229-25j (June 1975).
 method of convex and integer programing". Operations kesearch, Vol. 16, pp. 392-40́ (March-April 1968).
16. Proschan, F. and T. A. Bray, "Optimum redundancy under multiple constraints", Operations Research, Vol. 13, pp. 800-814 (Sept.-Oct. 1965).
17. Salkin, H. M., Integer Programming, Mass.: Addison Wesley (1975).
18. Salkin, H., and Spielberg, K., "Adaptive Binary Programming", IBM Scientific Research Centre, 410 East 62nd St., New York, N.Y., Report No. $320-2951$, March 1968).
19. 'Taha, H. A.: Integer Programming - Theory: Applications and Computations, N. Y.: Academic Press (1975).
20. Tillman, F. A., "Optimization by integer programming of constrained reliadility problems with several modes of failure", IEEE Transactions on Reliability, lỏ. No. 2, pp. 47-55 (May 1969).
21. Tillnan. F. A., "Integer programming solutions to constrained reliability optimization problems", Transactions of Twentieth Annual Technical Conference Arfican Society for Quality Control, paper number 66-174, pp. 676-693 (1066).
22. Tillman, F. A., and J. M. Liittschwager, "Integer programming formulation of constained reliability problems", Management Science, Vol. 13, No. 11 , pp. SS7-899 (Jul! 196T).
23. Bellman, R. E. and S. E. Dreyfus, "Dymamic programming and the reliability of multi-component devices," Operations Research, Vo1. 5, pp. 200-206 (Mar.-Apr. 1958
24. Balas, E., "A mote on the branch-and-bound principle," Operations Research, Vol. pp. 442-445 (1968).
25. Froschan, F., and T. A. Bray, "Optinal redundancy under multiple constraints", Operations Research, Vol. 13, pp. 800-814 (1965).

### 3.10 OTHER METHODS APPLIED TO THE SYSTEM RELIABILITY OPTIMIZATION PROBLEMS

## 1. Introduction

In addition to the methods presented in the previous sections, there are several other methods that have been used for the system reliability optimization problems. A classical approach $[1,7,11,13,15,16]$ is to maximize the system reliability without considering the "cost". Minimum effort to increase the system reliability is of primal interest. Parametric method involving a transformation of the objective function into a simplified form so that either the method of Lagrange multiplier and the Kunn-Tucker conditions [4] or modified Box's method [ 3] can be applied to solve the transformed problem.

Linear programming has sometimes been included in reliability optimization techniques for solving (a) an optimization problem with a linear form of non-negative variables subject to a system of linear inequalities $[9,17]$, or (b) an original nonlinear optimization problem having been transformed to a standard linear form which can be solved by linear programming. Separable programming $[21,23]$ is a typical technique to handle this formulation.

Stochastic method has also been used in reliabiliこy problems to maximize system reliability subject to cost restraints [10]. The method is based on a stochastic approach in which probability distributions are attached to families of allocations. Random search techniaue [5] and other miscellaneous optimization techiniques $[6,3,12,14,19,20]$ are sonetimes applied to system reliability optimization problems.

Illustrations are given in the following by the classical approach, parametric method, linear programming, and separable programming.
2. A Classical Approach

Gordon [11], and Moskowitz and IKLean [13] may be the first two groups using the graphical techniques in optimum component redundancy for maximum system relialbility. Their objective was also to develop a general mathematicai solution for the optimum number of redundant elements in a system, while the reliabilities of the individual components are known, but without considering "cost" constraints. The figures which show the overall reliability as a function of complexity, reliability of components, and redundancy are presented so that the optimal solution can be pointed out from the figures.

Basing on a theorem of Albert [1], Lloyd and Lipow [11] introduced in effort function, which is required to accomplish the system reliability of a series configuration from the present reliability, $R_{s}$, to a desired higher level, $\vec{R}_{s}$. Let $R_{1}, R_{2}, \ldots, R_{n}$ denote the subsystem reliabilities, the system reliability can be given by

$$
\begin{equation*}
R_{s}=\prod_{i=1}^{n} R_{i} \tag{1}
\end{equation*}
$$

Since $\bar{R}_{S}>R_{S}$, it is required to increase at least one of the $R_{i}$ 's to the point that the required reliability, $\bar{R}_{s}$, will be met, in accordance with eq. (1). To accomplish such an increase takes a certain effort, which is to be alloted in some way among the subsystems. The desired system reliability achieved with minimum effort is given as follows.
(A) Order the known reliabilities $R_{1}, R_{2}, \ldots, R_{n}$ in nondecreasing order (we assume now that such an ordering is implicit in the notation) so that

$$
\begin{equation*}
R_{1} \leq R_{2} \leq \cdots \leq R_{n} \tag{2}
\end{equation*}
$$

(B) Increase each of the reliabilities $R_{1}, R_{2}, \ldots, R_{K_{0}}$ to the same value $\bar{R}_{0}$; but do not attempt to increase the reliabilities $R_{K_{0}}-1, \ldots, R_{n}$.

The number $\mathrm{K}_{0}$ is determined as

$$
\begin{align*}
& K_{0}=\text { maximum value of } j \text { such that } \\
& R_{j}<\left(\frac{\bar{R}_{s}}{\substack{n+1 \\
i=j+1}}\right)^{1 / j}=r_{j} \text { (say) } \tag{3}
\end{align*}
$$

where $R_{n+1}=1$ by definition.
The number $\bar{R}_{0}$ is determined as

$$
\begin{equation*}
\bar{R}_{0}=\left(\frac{\bar{R}_{s}}{\substack{n+1 \\ \bar{\pi} R_{j}+1}}\right)^{1 / K_{0}} \tag{4}
\end{equation*}
$$

(C) It is evident that the system reliability will then be $\bar{R}_{s}$, since

$$
\begin{equation*}
\text { new reliaiblity }=\bar{R}_{0}^{K_{0}} R_{K_{0}+1} \ldots R_{n}=\bar{R}_{0}^{K_{0}}{ }_{j=\bar{K}_{0}+1}^{n+1} R_{j} \tag{5}
\end{equation*}
$$

and by using eq. (t) we immediately obtain

$$
\text { new reliability }=\overline{\mathrm{R}}_{\mathrm{s}}
$$

A Numerical Example
Let $\left(R_{1}, R_{2}, R_{3}, R_{4}, R_{5}, R_{6}\right)=(0.75,0.30,0.57,0.90,0.95,0.99)$, then

$$
R_{s}=\prod_{j=1}^{6} R_{j}=0.4418
$$

The required value of system reliability is $\bar{R}_{S}=0.53$. Suppose that we did not consider the selection of $K_{0}$ by eq. (3) but arbitrarily decided to set $K_{0}=1$ and use eq. (4). We would then obtain

$$
\bar{R}_{0}=\left(\frac{0.53}{\prod_{j=2}^{6} R_{j} \times 1}\right)^{1 / 1}=0.8996 .
$$

and we would have

$$
\bar{R}_{s}=0.53=0.8996 \times 0.80 \times 0.87 \times 0.90 \times 0.95 \times 0.99
$$

as desired. However, the theorem tells us that the effect to increase reliability has not been allotted in an optimum manner; i.e., more effort has been used than is necessary. Rather, we should determine $K_{0}$ by eq. (3). To do this we calculate the quantities:

$$
r_{6}=\left(\frac{0.53}{1}\right)^{1 / 6}=0.8996
$$

which is smaller than $R_{6}=0.99$. Therefore the 5 th component is good enough. Similarly

$$
r_{j}=\left(\frac{0.5 j}{0.99 \times 1}\right)^{1 / 3}=0.8825
$$

which is smaller than $R_{5}=0.95$;

$$
r_{t}=\left(\frac{0.53}{0.99 \times 0.95 \times 1}\right)^{1 / 4}=0.8664
$$

which is smaller than $R_{4}=0.90$; and

$$
r_{j}=\left(\frac{0.53}{0.99 \times 0.95 \times 0.90 \times 1}\right)=0.8551
$$

which is aiso smaller than $R_{3}=0.37$; therefore, components of stages 5 ,
stages 5, 4, and 3 are good enough. However,

$$
r_{2}=\left(\frac{0.53}{0.99 \times 0.95 \times 0.90 \times 0.87 \times 1}\right)^{1 / 2}=0.8484
$$

which is greater than $R_{2}=0.80$. Therefore the 2 nd component is not good. Since 2 is the largest subscript $j$ such that $R_{j}<r_{j}$, then $K_{0}=2$, which means to achieve the system reliability, $R_{s}=0.53$, the minimum effort to be allotted is to increase the 1 st and 2nd component from 0.70 and 0.30 to the same level. $\bar{R}_{0}=0.8484$; whereas the rest components are left at their original level. The resulting reliability of the entire system is, a.s required,

$$
\bar{R}_{s}=0.53=(0.8484)^{2} \times 0.87 \times 0.90 \times 0.95 \times 0.99 .
$$

Effort Function Minimization

Effort function $G(x, y)$, of a system is defined as the amount of effort required to increase the system reliability, $x$, to a higher level, $y$. Any cost, weight, volume, or power demand can be regarded as special kind of effort function, whether they are mathematically well described or not. Therefore, the cost minimization problem is an effort function minimization problem. The effort function always satisfies the following requirements:

1. $G(x, y) \geq 0$, which means the increasing of reliability from lower level, $x$, to higher level, y, will always need at least zero effort.
2. $G(x, y)$ is nondecreasing in $y$ for fixed $x$ and nonincreasing in $x$ for fixed $y$; eg.

$$
\begin{aligned}
& G(0.7,0.8) \leq G(0.7,0.85) \\
& G(0.6,0.8) \geq G(0.7,0.8)
\end{aligned}
$$

3. If $x \leq y \leq z, G(x, y)+G(y, z)=G(x, z)$, which states that the amount of effort to incraase the reliability from $x$ to $z$ is equal to the sum of efforts to increase the reliability from $x$ to $y$, then from $y$ to $z$. Namely, $G(x, y)$ is additive.
4. $G(0, y)$ has a derivative $h(y)$ such that $y(y)$ is strictly increasing in $y$, $0<y<1$.

For an N-stage series system, we denote $R_{i}$ and $R_{s}$ the reliabilities of the ith stage and the system respectively. If $\bar{R}_{s}$ is the minimum requirement of the system reliability and $\bar{R}_{i}$ the optimal ith stage reliability, then we can readily define the effort function minimization problem as Minimi=e

$$
\sum_{i=1}^{N} G\left(R_{i}, \bar{R}_{i}\right)
$$

subject t.o

$$
\prod_{i=1}^{N} \bar{R}_{i} \geq \bar{R}_{S}
$$

To solve this optimization problem, $R_{i}, 1=1,2, \ldots, N, \bar{R}_{S}$, and the effort function $G\left(R_{i}, \bar{R}_{i}\right)$ should be given, then various optimization, eg. dynamic programming, the method of Lagrange multiplier and the Kuhn-Tucker conditions, GRG, etc. can be applied to reach the optimal solution.
3. Parametric Method

## Principle and Historical Background

Parametric approach was originally used in evaluating system reliability, especially when the number of components in a system was large or the system configuration complex. Probability was treated as a point in a Cartesian frame and formulas were derived to evaluate the system reliaoility by assigning a parametric value to it [2].

If the probability of success of any event is $x$, hence the probability of failure is $y=1-x$, then the parametric $\dot{\phi}$ and $\theta$ associated with $x$ and $y$ are defined by

$$
\begin{equation*}
\phi \equiv \tan \theta=\frac{y}{x}=\frac{y}{1-y}=\frac{1-x}{x} . \tag{6}
\end{equation*}
$$

By this transformation, the complex system, whether in the form of bridges, delta-star, or star-delta, can be expressed by the combinations of these parameters assigned in each subsystem. Then the system reliability can be automatically obtained by transforming back from eq. (6).

Parametric method are just an intermediate step to transfer the objective function in terms of component reliability to the one in terms of the parameters, $\Phi$, subject to "cost" constraints, therefore, the objective function having been formulated in parametric forms can be solved by any applicable nonlinear programming technique. The method of Lagrange multipliers and the Kuhn-Tucker conditions [4] and the modified Box method [3] are two applicable ones.

## Formulation of the Problem

The problem formulation by the parametric approach is mainly on the transformation of the objective function by eq. (6).

For an $N$-stage series configuration, the system reliability is known as

$$
\begin{equation*}
R_{s}={\underset{j=1}{N} R_{j}^{\prime}, ~}_{\prime}^{\prime} \tag{7}
\end{equation*}
$$

where

$$
\begin{equation*}
R_{j}^{\prime}=\left[1-\left(1-R_{j}\right)^{x_{j}}\right] \tag{8}
\end{equation*}
$$

If the parameters $\phi_{s}$ and $\phi_{j}^{\prime}$ are defined as

$$
\begin{equation*}
\left.\phi_{s}=\frac{1-R_{s}}{R_{s}} \quad \text { (or } R_{s}=\frac{1}{1+\phi_{s}}\right) \tag{9}
\end{equation*}
$$

and

$$
\begin{equation*}
\left.\phi_{j}^{\prime}=\frac{1-R_{j}^{\prime}}{R_{j}^{\prime}} \quad \text { or } R_{j}^{\prime}=\frac{1}{1+\phi_{j}}\right) \tag{10}
\end{equation*}
$$

respectively, then $\mathrm{e} q$. ( $\bar{i}$ ) can be represented as

$$
\begin{equation*}
\phi_{s}+1=\prod_{j=1}^{N}\left(l+p_{j}^{\prime}\right) \tag{11}
\end{equation*}
$$

In most reliabiliyy studies, we are dealing with components having a relativelÿ high vaiue of $R_{j}^{\prime}$. Using this fact, eq. (11) can be expressed as

$$
\begin{equation*}
p_{s} \simeq \sum_{j=1}^{N} p_{j}^{\prime} \tag{12}
\end{equation*}
$$

From definition in eq. (6), we have

$$
\begin{equation*}
o_{j}^{\prime}=\tan g_{j}^{\prime}=\frac{Q_{j}^{\prime}}{1-Q_{j}^{\prime}} \tag{13}
\end{equation*}
$$

and

$$
\begin{equation*}
\phi_{j}=\tan \theta_{j}=\frac{Q_{j}}{1-Q_{j}} \tag{14}
\end{equation*}
$$

Then from eqs. (13) and (14), it is easy to find that.

$$
\begin{equation*}
p_{j}^{\prime}=\frac{1}{1+\cot \theta_{j}} \tag{15}
\end{equation*}
$$

and

$$
\begin{equation*}
p_{j}=\frac{1}{1+\cot } \theta_{j} \tag{16}
\end{equation*}
$$

Since $R_{j}^{\prime}=1-Q_{j}^{\prime}$, and $R_{j}=1-Q_{j}$, then eq. (8) becomes

$$
\begin{equation*}
Q_{j}^{\prime}=Q_{j}^{X_{j}} \tag{17}
\end{equation*}
$$

Substituting eqs (15) and (16) into eq. (17), we obtain

$$
\begin{equation*}
1+\cot e_{\underline{i}}^{\prime}=\left(1+\cot \theta_{j}\right)^{x_{j}} \tag{18}
\end{equation*}
$$

By eqs (12) and (15), eq (17) can be expressed in terms of $j_{j}^{\prime}$ and ${ }_{j}$ as

$$
1+\frac{1}{b_{j}}=\left(1+\frac{1}{\phi_{j}}\right)^{x_{j}}
$$

or equivalently

$$
\frac{p_{j}^{1}-1}{p_{j}^{1}}=\left(\frac{p_{j}+1}{\nu_{j}}\right)^{x_{j}}
$$

If borh $p_{j}^{\prime}$ and $\phi_{j}$ are much smaller than $I$, then

$$
\phi_{j}^{\prime} \simeq \phi_{j}^{x_{j}}
$$

Substituting into eq. (12), then we reformulate the objective function as

$$
\begin{equation*}
\phi_{S}=\sum_{j=1}^{N} \phi_{j}^{x_{j}} \tag{19}
\end{equation*}
$$

to be minimized subject to linear constraints

$$
\begin{align*}
& \sum_{j=1}^{N} c_{j} x_{j} \leq C \\
& \sum_{j=1}^{N} w_{j} x_{j} \leq W \tag{20}
\end{align*}
$$

To solve eqs. (19) and (20), the Lagrange function is introduced as

$$
\begin{equation*}
L=\sum_{j=1}^{N} o_{j}^{x_{j}}+\lambda_{1}\left[\sum_{j=1}^{N} c_{j} x_{j}-C\right]+\lambda_{2}\left[\sum_{j=1}^{N} w_{j} x_{j}-W\right] \tag{21}
\end{equation*}
$$

The Kuhn-Tucker conditions are

$$
\begin{align*}
& \frac{2 L}{2 x_{j}}=\phi_{j}{ }_{j} 2 n_{j}+\lambda_{1} c_{j}+\lambda_{2} W_{j}=0  \tag{22}\\
& \sum_{j=1}^{N} c_{j} x_{j}=C  \tag{23}\\
& \sum_{j=1}^{N} w_{j} x_{j}=W \tag{24}
\end{align*}
$$

From eq. (22).

$$
\begin{equation*}
x_{j}=\frac{1}{\ln _{j}}\left[\ln \left(a_{j} \lambda_{1}+b_{j} \lambda_{2}\right)\right] \quad, j=1,2, \ldots, . v \tag{25}
\end{equation*}
$$

where

$$
\begin{aligned}
a_{j} & \equiv-\frac{c_{j}}{2 n \phi_{j}} \\
b_{j} & \equiv-\frac{w_{j}}{2 n \phi_{j}}
\end{aligned}
$$

Substituting (25) into (23) and (24),

$$
\begin{align*}
& -\sum_{j=1}^{N} a_{j}\left[2 n\left(a_{j} \lambda_{1}+b_{j} \lambda_{2}\right)\right]=C  \tag{26}\\
& -\sum_{j=1}^{N} b_{j}\left[2 \pi\left(a_{j} \lambda_{1}-b_{j} \lambda_{2}\right)\right]=W \tag{27}
\end{align*}
$$

Solving the simultaneous eqs (26) and (27) to get $\lambda_{1}$ and $\lambda_{2}$. Once $\lambda_{1}$
and $i_{2}$ are obtained, $x_{j}, j=1,2, \ldots, N$, can be found from eq. (25)

A Numerical Example

```
Consider the five stage problem [18]:
```

Maximize

$$
R_{s}=\sum_{j=1}^{5}\left[1-\left(1-R_{j}\right)^{x_{j}}\right]
$$

subject to

$$
\begin{aligned}
& g_{1}=\sum_{j=1}^{5} c_{j} x_{j} \leq C \\
& g_{2}=\sum_{j=1}^{j} w_{j} x_{j} \leq w
\end{aligned}
$$

The constraints associated with the problem are:

Stage	Cost	Weight	Reliability
$c_{j}$	5	$w_{j}$	$R_{j}$
1	4	8	0.90
2	9	6	0.75
3	7	7	0.65
4	7	8	0.80
5	$W=104$		0.85
$C=100$,			

The objective function is transformed by eq. (19) as
Minimize

$$
\phi_{s}=\sum_{j=1}^{N} \phi_{j}^{x_{j}}
$$

where

$$
\phi_{j}=\frac{I-R_{j}}{R_{j}}
$$

$$
j=1,2,3,4,5
$$

By using the method of Lagrange multipliers and the Kuhn-Tucker conditions, we introduce multipliers $\lambda_{1}$ and $\lambda_{2}$ to obtain the solution shown in Table 1. The result is identical to that in [8].

Table 1 Numerical result of the example

Number of components at each stage					$\begin{aligned} & \text { Used } \\ & \text { cost } \end{aligned}$	$\begin{aligned} & \text { Used } \\ & \text { weight } \end{aligned}$		
$<_{1}$	$x_{2}$	${ }^{3}$	${ }^{+}$	${ }^{x_{5}}$	$\mathrm{g}_{1}$	$\mathrm{g}_{2}$	$\mathrm{R}_{\mathrm{S}}$	$\lambda$
2	3	3	2	2	77	91	0.87529	0.005
2	3	4	3	2	93	104	0.93080	0.004
2	3	$\pm$	$j$	2	93	104	0.9 .5080	$0.005 *$
2	3	4	3	3	100	112	0.94901	0.002

where

```
\lambda=\mp@subsup{\lambda}{1}{}+\mp@subsup{i}{2}{}
 * is the optimal solution
```

A lincar programming problem arises whenever two or more candidates or activities are competing for limited resources and when it can be assumed that all relationships within the problem are linear.

Since the reliability optimization problem usually has nonlinear objective function and/or nonlinear constraint functions, unless we linearized the objective and/or constraint functions or we do encounter specific case, linear programming is not apulicable. In the next section we are to introduce separable programming, which is a special class of nonlinear programming and is usually fit for the system optimization problems adaptable to linear programming.

A special case of reliability allocation problem solved by linear programming is presented here.

Problem statement and formulation
The problem is about reliability least cost apportionment which says:[17]

A company has a system to build which is composed of two subsystems in series. The reliability requiremnt for the system is 0.90 . Initial evaluation of the two subsystems yields a reliability of 0.85 for subsystem 1 and 0.87 for subsystem 2. The product of these tivo subsystem reliabilities is approximately 0.74. It is clear that both subsystems' reliabilities must be improved to meet the 0.90 reliability requirement. The relative additional program cost for incremental reliability improvements is determined to be in a ratio of 0.3 to 0.7 (normalized) for subsystems 1 and 2 respectively. The reliability improvement tradeof factor between subsystems 1 and 2 is 0.9 anc 0.1 respectively, i.e., subsystem 1 approaches
the constraint at a rate of 0.9 per incremental increase in reliaibility. The problem is to minimize the costs to meet the 0.90 reliability requirement.

Notation

## Definition

$R_{0} \quad$ The initial system reliability (predicted)
$R_{r} \quad$ The design goal (the required reliability)
$R_{j}^{\prime} \quad$ The initial assessed reliability of subsystem $j$
$\therefore \alpha_{j} \quad$ The reliaiblity improvement increment of subsystem $j$
$\alpha_{j} \quad$ The exponent corresponding to the reliability $R_{j}^{\prime}, \alpha_{j}<l$ if subsystem $j$ is part of a redundant system whose reliability is written as $R_{j}{ }^{\prime} \alpha_{j}$
N
The total number of serially connected subsystems
$\ln (x) \quad$ The natural logarithm of $x$
$K_{;} \quad$ The reliability improvement diffirulty factor for subsystem $j$

$$
\begin{aligned}
& 0 \leq K_{j} \leq 1 \\
& \sum_{j=1}^{N} K_{j}=1
\end{aligned}
$$

$M_{i} \quad$ Number of structural variables in the ith equation
$C_{i j} \quad$ The reliability improvement tradeoff factor for the ith iradeoff between a subset of $M_{1} \leq N$ subsystems

$$
0 \leq C_{i j} \leq 1 ; \quad \sum_{j=1}^{M_{i}} C_{i j}=1
$$

$3_{i} \quad$ The minimal tradeoff requirement (in terms of the total reliability improvement increment) for the ith tradeoff

The methodology for pointing out areas for design improvement to meet design goals using a linear programming is as follows:

If initially

$$
R_{0}<R_{r} ; R_{0}=\prod_{j=1}^{N} R_{j}^{1 \alpha_{j}}
$$

maximize the function,

$$
\sum_{j=1}^{N} K_{j} \Delta \alpha_{j}
$$

subject to the constraints

$$
\begin{aligned}
& \sum_{j=1}^{N} \Delta \alpha_{j} \ln R_{j}^{\prime} \leq \ln R_{o}-\ln R_{r} \\
& \sum_{j=1}^{M} C_{i j} \Delta \alpha_{j} \leq \beta_{i} \\
& \text { (some } C_{i j} \text { may be } 0 \text { ) }
\end{aligned}
$$

(For simplification it is assumed in the example $\alpha_{1}=\alpha_{2}=1$ )
We seek to maximize

$$
. j \Delta \alpha_{1}+.7 \Delta \alpha_{2}
$$

Which therefore minimizes (since $\Delta \alpha_{j}$ are negative) additional reliability program costs subject to the constraints:

## Type of Constraints

(1). $1625 \Delta \alpha_{1}+.1393 \Delta \alpha_{2} \leq-.1964 \quad$ Reliability Requirement constraint
(2) $.9 \Delta a_{1}-.1 \Delta a_{2} \leq 3 \quad$ Tradeoff constraint
(j) $\Delta a_{1}>-1$

Implied constraint
(4) $\Delta \alpha_{2}>-1$

Implied constraint

Solutions are gentrated as a function of $B$ in Fig. 1 and 2. One can see graphically the following situations relative to the feasibility of solutions and the value of $p$.

For $B \geq-.4161$ - the tradeoff constraint does not influence the external solution to the problem. This case represents situations where there is no problem in meeting a given tradeoff constraint.

For $-.9243 \leq \beta<-.4161$ - there exists a feasible solution, the solution of which is influenced by both the minimal reliability requirement and the tradeoff constraint.

For $\beta<-.9243$ - no feasible solution exists since the constraint $\Delta \alpha_{1}>-1$ imposes that the boundary is open on the left side in Fig. 1.

5. Separable Programming

Seaprable programming is a special class of nonlinear programming that is adaptable to linear programming. The problems are constructed of separable functions which have the form

$$
D(\bar{x})=\sum_{i=1}^{m} h_{i}\left(x_{i}\right)
$$

The separable programming problem can be defined as finding a set of $x_{i,} i=1,2, \ldots, m$ which maximizes (or minimizes)

$$
c(\bar{x})=\sum_{i=1}^{m} f_{i}\left(x_{i}\right)
$$

subject to tine constraints

$$
\sum_{i=1}^{M} g_{k i}\left(x_{i},<b_{k}, \quad k=1, \ldots, p\right.
$$



CONSTRAINTS:

$$
\begin{array}{ll}
.9 \Delta \alpha_{1}+.1 \Delta \alpha_{2} \leq 3 \\
-\left(\Delta \alpha_{1} 2 n R_{1}+\Delta \alpha_{2} \lambda n R_{2}\right) \leq 2 n R_{0}-l n_{R} \\
\text { or equivalently }
\end{array}
$$

Fig. 1

OPTIML VALUES $R_{i}\left(1+\Delta \alpha_{1}\right) R_{2}\left(1+\Delta q_{2}\right)$ AS A FUNCTION OF BETA


Fig. 2 REQUIRED RELIABILITY OF SUBSYSTEM ONE
and

$$
x_{i} \geq 0
$$

By approximating a noniinear function of one variable by a piecewise linear function, the problem becomes a resiricted linear programmming problem, and can be solved by a slightly revised simplex method. MPS/360 has this revision[23] Formulation of the Problem

A continuous nonlinear function of a single variable, $x_{i}$, can be approximated by a piecewise linear function over a specified interval domain. This is done by partitioning this intercal domain into $n_{i}$ disjoint, but continuous, intercals. The $\left(n_{i}+1\right)$ points of the partitions are represented. by the set

$$
S=\left\{\begin{array}{ccccc}
0 & x_{i}^{1}, & x_{i}^{2}, & \ldots, & x_{i}^{n} \\
x_{i}, & x_{i}
\end{array}\right\}
$$

There are two methods of representing the piecewise linear spproximation of a continuous nonlinear function of one variable. The method employed here is known as the "delta method." Both methods are developed in G. Hadley's Nonlinear and Dynamic Programming [22]. The "delta method" uses the differences of adjacent points of the set, $S$, and the differences of the functional values at the adjacent points in developing the approximating equation of a function, $f_{i}\left(x_{i}\right)$. The differences are represented by

$$
\begin{array}{ll}
\Delta x_{i}^{j}=x_{i}^{j}-x_{i}^{j-1}, & i=1,2, \ldots, m \\
\Delta f_{i}^{j}=\dot{f}_{i}\left(x_{i}^{k}\right)-f_{i}\left(x_{i}^{j-1}\right), & j=1,2, \ldots, n_{i} \tag{23}
\end{array}
$$

where the subscript refers to a function and/or variable such as $x_{i}, f_{i}\left(x_{i}\right)$, and $g_{k i}\left(x_{i}\right)$, and the superscript refers to a partitioning of a variable. That is, $f_{i}\left(x_{i}^{j}\right)$ is the value of $f_{i}\left(x_{i}\right)$ at $x_{i}=x_{i}^{j}$. The differences for adjacent points and the corresponding functional values for a function with $n_{i}=4$ are shown in Fig. 3 .

To represent the variable $x_{i}$ and the approximation of $f_{i}\left(x_{i}\right)$, a set of variables, $n_{i}^{j}, j=1,2, \ldots, n_{i}$, is created that follows what is known as the "restricted-basis-entry-rule." The rule is satisfied for any one of the following conditions.

$$
\begin{array}{lll}
\text { (i) } 0 \leq D_{i}^{1} \leq 1 & \text { iff } & n_{i}^{j}=0, j=2,3, \ldots, n_{i} \\
\text { (ii) } 0 \leq D_{i}^{j} \leq 1 & \text { iff } & D_{i}^{2}=1,2=1,2, \ldots, j-1
\end{array}
$$

and

$$
D_{i}^{k}=0, \quad k=j+1, \ldots, r_{i}
$$

$$
\text { (iii) } 0 \leq D_{i}^{n_{i}} \quad \text { iff } \quad D_{i}^{j}=1, j=1,2, \ldots, n_{i}-1
$$

where $n_{i}$ is the number of partitioning intervals for a variable $x_{i}$. $D_{i}^{j}$ represents a variable created for the $\underline{j t h}$ partition of variable $x_{i}$. Intuitively, for any $0 \leq D_{i}^{j} \leq 1$ all previous $D_{i}^{2}$ variables $(2=1, \ldots, j-1)$ must have a value of one and all following values $\left(=j+1, \ldots, n_{i}\right)$ must be zero.

## A Numerical Example [21]

Maximize

$$
R_{s}=\prod_{j=1}^{5}\left[1-\left(1-R_{j}\right)^{x_{j}}\right]
$$



Fig. 3. Linear Approximation of $f_{i}\left(x_{i}\right)$.
subject to

$$
\begin{aligned}
& g_{1}=\sum_{j=1}^{5} p_{j}\left(x_{j}\right)^{2} \leq P \\
& g_{2}=\sum_{j=1}^{5} c_{j}\left(x_{j}+\exp \left(x_{j} / 4\right)\right) \leq C \\
& g_{j}=\sum_{j=1}^{5} w_{j} x_{j} \exp \left(x_{j} / 4\right) \leq W
\end{aligned}
$$

where $x_{j} \geq 1, j=1,2, \ldots, 5$. are integers.
The corstraints associated with the five stage problem are

j	$\mathrm{R}_{\mathrm{j}}$	$p_{j}$	P	${ }^{\text {j }}$	C	$w_{j}$	W
1	0.80	1		7		7	
2	0.85	2		7		8	
3	0.90	3	110	5	175	8	200
4	0.65	4		9		6	
5	0.75	2		4		9	

It is noted that, in optimizing the system reliability, the decision variables namely, the number of components used at each stage, are considered as continuous variables. The nearest integer numbers are assigned to them eventually.

The objective function was transformed to maximize

$$
S=\ln R_{S}=\sum_{j=1}^{5} \ln \left[1-\left(1-R_{j}\right)^{x_{j}}\right]
$$

then the MPS/360 [23] was applied to solve the problem.
The procedure is recommended in $M P S / 360$ to determine the existance of a local optimum solution, if it exists. Separable programming, at its best,
will gaarantee only a local optimum. One reason is that unlike linear inequality constraints nonlinear inequality constraints do not necessarily form a convex set. A second reason is that a nonlinear function is not necessarily concave or convex. The only way to guarantee a stationary point in a global maximum is for a function to be concave, or if it is a gloabal minimum the function must be convex. Sine the linear approximation function of a separable nonlinear function will reflect its particular concave and convex properties, separable programming will, at its best, produce a local optimum solution.

The solution to the problem is

$$
\begin{aligned}
& x_{i}=2.70000 \\
& x_{2}=2.32929 \\
& x_{3}=2.10000 \\
& x_{4}=3.50000 \\
& x_{5}=2.80000
\end{aligned}
$$

Following the similar rounding off procedures discussed in Example 3 of GRG section, the configuration of (3, 2, 2, 3, 3) will give the optimal solution with system reliability, $R_{s}, 0.9045$ and consumes $g_{1}=83, g_{2}=146.1$ and $g_{3}=194.5$. It is noted that separable programming is an approximate method depending on the fineness of the grid equations for accuracy. The uniform grid for this solution is only 0.10 . The effects of grid size on problem accuracy is dependent on the properties of the approximated functions.

## REFERENCES

1. Hlbert, A. "A Neasure of the Effort Requjred to Jncrease Reliability," Technical Report 10.45 , November, 1958, Applıed Marhematics and Statistics Laboistory, Stanford Universiこy, Contract No. N6onr-25140 (NR 342-022).
2. Banerjee, S.K., and K. Rajamaṅ, "Parametric representation of probability in two dimensions - a new approach in system reliability evaluation", IEEE Transactions on Reliability: Vol. R-21, pp. 56-60 (February 1972).

ラ. Banergee, S.k., K. Rajamani, and S.S. Deshparde, "Optimal redundancy aijocation for non series-parallel networks", IEEE Transactions on Reliability, Va1. R-25, No. 2, pp. 115-117 (June 1976).
4. Sanerjee, S.k., and K. Rajamani, "Optimization of system reliability using a parametric approach", IFEE Transactions on Reliability, Vol. R-22, 20.55-59 (Ap-il 1973) .
5. Eeráha, [i. and K.B. Misra, "Reliabiity optimization through random search algorithm'. Microelectronics and Reliability, Vol. 15, pp. 295-297 (August i974)
6. Bodin, L.D., "Optimization procedure for the analysis of coherent structures", Ines Transactions on Relaibility, Vol. R-18. No. 3, pp. 118-126 (4ugust 1969).
7. Gordon, R., "Optimum component redundancy for maximun system reliability", Operations Research, Vol. 5, pp. 229-243 (April 1957).
8. Hees, Ir.R.i.v., and Ir.i.h.v.d. Meerendonk, "Optimal reliability of parallel malii-component systems", Operations Research Quarterly, Vol. 12, No. 1, pp. 16-26 (May 1961).
？．holecar．F．i．＂Iuncar＂frogranuing and the rejabilit！of muliicomponen：


1U．Lientz，B．P．，＂A stochastic methoj of allocaiion of components to maximize ＝cliabilizy＂，＂IEEE Transactions on Reliabilizy，Vol．R－25，No．2，（June 1974
i1．Llovd，D．K．，and M．Lipow，Reliahility：Marajement，Methods，and Mathematics， Ersievood Cliffes，N．J．：Prentice－Hall（1962）．

12．Morrison，D．F．，＂The optimum allocation of spare components in system＂， Teunnemetrics，101．5，No．5，pp．599－406（August 1961）．

1ミ．Moshonitz，F．，and J．B．Mciean，＇Some reliability aspects oEslostem design＇， IRE Transactions on Reliability and Quality Control，lol．PGROC－$\delta$ ，pp．${ }^{-}-55$ （Septemider 1956）．

1－N＇uner，G．E．，and R．N．Miller，＂Resource allocation for maximum reliaoility＂ Proceedings of 1906 Anmual Symposium on Reliability，pp．ミラコーラムt（Jatuary 1966）
i三．Sasaki，M．，＂A simplified mthod of obtaining highest system reliaibiiv＂＂， Proceedings of the Eighth National Symposium on Reliabilit！and Qualit！ Contro1，pp．489－502（1962）．

16．Sasaki，M．，＂An easy allotment method achieving maximum s！stem reliability＂． Proceedings of the Ninth National Symposium on Reliability and Qualtiv Control pp．109－124（1963）．

1－．Seiman，V．，and N．i．Grisamore，＂Optimum system analysis by Jinear programming＂ iote Processins Amnual Symposium on Reliability，Anerican Society for Quality Cortrol，pp．6́96－～05（1966）
18. Iiliman, F.A., and J.M. Liittschwager, "Integer programming formulation of constrained reliability problems", Managenent Science, Vol. 15, fo. 11, pp. 887-S99 (July 1967).
19. Webster, L.R., "Optimum system reliability and cost effectiveness", Proceedings of 1967 Anmual Symposium on Reliability, pp. 489-500 (January 1967)
20. Webster, $\mathrm{i} . \mathrm{R} .:$ "Choosing optimum system configurations", Proceedings of the Tenth National Symposium on Reliability \& Quality Control, Washington, D.C., pp. 545-359 (1954).
21. Williams, J., "Optimization of industrial systems with the separable programming and the generalized reduced gradient methods", Master Thesis, Kansas State University, Manhattan, Kansas, (1972).
22. Hadley, G., Nonlinear and Dynamic Programing, Reading, Mass: AddisonWesley (1964).
25. MathematicalProgramming System/360, Version 2, Linear and Sevarable Programnit.g User's Manual, GH20-0476-2, International Business Machines Corp., 1958.
24. Kapur, K. C., and L. R. Lamberson, Reliability in Engineering Design, N.Y.: Wiley (1977).
25. Smith, C. O. Introduction to Reliability in Design, N.Y.: McGraw-Hill (1976).

CHAPTER 4 DETERMINATION OF COMPONENT RELIABILITY AND REDUNDANCY FOR OPTIMUM SYSTEMS RELIABILITY

## 1. J.NTRODUCTION

In the design process, a system must not only be designed to meet its functional requirement but must also be designed to perform its function successfully. This latter requirement involves designing reliability into the system. Often this involves designing to meet the reliability requirements within the framework of several system constraints. In some optimum system reliability problems the element reliability is assumed to be fixed, and the optimal number of redundancies at each stage is determined where the system is subject to constraints. A number of optimization techniques have been successfully applied to solve this class of problems [i]. However, a more general problem is one where both the optimal component reliability and the optimum numbcr of redundancies are to be determined in order to obtain the best overall systems reliability [3]. Specifically the problem is one where the designer must not only determine the number of redundancies but also the reliability of each component. This is a mixed integer nonlinear programming problem.

In general, problems of this type are difficult to solve by the normal system optimization techniques, for example, by the method of Lagrange multip!iers [3], sequential unconstrained minimization technique (SUMT) or generalized reduced gradient technique [ ] ] because these techniques do not provide integer solutions. The available integer programing techniques do not guarantee an optimal solution. Hence a technique that provides an integer solution as well as the optimal level of component reliability is required. The suggested procedure is one such technique.

A series system with active component redundancy is considered in this study. i combination of the well-known Hooke ard Jeeves pattern search [2]

## Notation

$b_{i}=$ the available resource for the $i^{\text {th }}$ constraint
$\mathrm{C} \quad=$ the available cost limitation in dollars
$C_{j}\left(R_{j}\right)=$ the cost of one element at the $j^{\text {th }}$ stage as a function of $R_{j}$
$g_{i j}=$ the amount of the $i^{\text {th }}$ resource consumed at the $j^{\text {th }}$ stage
$p_{j} \quad=$ the product of the weight per element and the volume per element at the $j^{\text {th }}$ stage
$p \quad=$ the limitation of the product of the volume times the weight constraints
$\mathrm{N} \quad=$ the total number of stages in the system of interest
$R_{j}^{0} \quad=$ the initial component reliability at the $j^{t h}$ stage
$R_{j}, Q_{j}=$ the reliability and unreliability of one element at the $j^{\text {th }}$ stage, respectively
$R_{s}, Q_{s}=$ the system reliability and unreliability, respectively
$r \quad=$ the total number of constraints
$v_{j}=$ the volume of one component at the $j^{\text {th }}$ stage
$w_{i}=$ the weight of one component at the $j^{\text {th }}$ stage
iv $=$ the limitation on weight
$*_{j} \quad=$ the number of components used at stage $j$
$x_{j}^{0} \quad=$ the initial number of elements used at the $j^{\text {th }}$ stage
$\bar{X} *(\bar{R})=a$ vector of optimal number of elements at each stage as a function of the component reliability at each stage
$\lambda_{j}=$ the components failure rate at the $j^{\text {th }}$ stage
$k$-out-of-n: $F=$ the system is failed if and only if at least $k$ of its $n$ elements are failed.
k-out-of $-n: G=$ the system is good if.and only if at leas $k$ of its n elements are good.
and the suggested heuristic approach by Aggarwal, et al. [1] is proposed as a stepwise optimization tecrnique for solving this problem. The procedure is simple and efficient; a componert reliability is assumed and the optimal number of redundancies is determined by the heuristic technique. A sequential search routine for maximizing the overall system reliability is carried out by using the Hooke and Jeeves pattern search.

## 2. STATEMENT OF THE PROBLEM

The system reliability of an $N$-stage parallel-series system, where both the component reliability, $R_{j}$, and the number of components, $X_{j}$, at the jth stage are to be determined, is expressed by

$$
\begin{equation*}
R_{S}(\bar{R}, \bar{X})=\prod_{j=1}^{N}\left[1-\left(1-R_{j}\right)^{X}\right] \tag{1}
\end{equation*}
$$

subject to

$$
\begin{equation*}
\sum_{j=1}^{N} g_{i j}\left(R_{j}, x_{j}\right) \leq b_{i}, \quad i=1,2, \ldots, r \tag{2}
\end{equation*}
$$

where the system reliability, $R_{s}=R_{s}\left(R_{1}, R_{2}, \ldots, R_{N} ; X_{1}, X_{2}, \ldots, X_{N}\right)$, $R_{j}, j=1,2, \ldots, N$, are all real numbers between 0 and 1 , and $X_{j}$, $j=1,2, \ldots, N$, are all positive integers.

To set up equations (1) and (2), five assumptions are made, they are:
(1) Each stage is in series and is considered to be essential for the overall operational success of the mission of the system. (The system is deroted as a l-out-of-N: F configuration).
(2) All the stages as well as all the parallel elements used at each stage are s-independent. All components in parallel in the same stage have the same probability of failure.
(3) All the components at each stage are simultaneousiy working, and for a stage to fail all the elements in that stage must fail (Each stage is denoted as a l-out-of-Xj: G configuration). (4) A short circuit failure will not be considered, that is, only a single mode of failure is assumed. (5) The costs are additive between stages.

Both the number of redundancies and the component reliability improvement will incur a "cost", which may be stated in dollars, weight, volume or a combination of all three. In order to be specific, three such constraints are assumed. These constraints have been used often to test and demonstrate optimization techniques. $(4,5,6)$

The first constraint is a combination of weight and volume and is stated as fnllows:

$$
\begin{equation*}
\sum_{j=1}^{N} g_{1 j}\left(x_{j}\right)=\sum_{j=1}^{N} w_{j} v_{j}\left(x_{j}\right)^{2}=\sum_{j=1}^{N} P_{j}\left(x_{j}\right)^{2} \leq P \tag{3}
\end{equation*}
$$

It is noted that the component reliability does not usually affect the weight nor the volume, hence $g_{1 j}$ is not a function of $R_{j}$. The second constraint is expressed in dollars, and is a function of $X_{j}$ and $R_{j}$. It is stated as:

$$
\begin{equation*}
\sum_{j=1}^{N} g_{2 j}\left(X_{j}, R_{j}\right)=\sum_{j=1}^{N} C_{j}\left(R_{j}\right)\left(X_{j}+\exp \left(X_{j} / 4\right)\right) \leq C \tag{4}
\end{equation*}
$$

where $C_{j}\left(R_{j}\right)$ is the cost per component at the $j$ th stage. The cost is an increasing function of $R_{j}$ or conversely a decreasing function of the componert failure rate expressed by

$$
C_{j}\left(\lambda_{j}\right)=a_{j}\left\{\frac{1}{\lambda_{j}}\right\}^{\beta_{j}}
$$

where $\alpha_{j}$ and $\beta_{j}$ are constants representing the inherent characteristics of each compunent at the $j$ th stage, $\beta_{j}>1$. If each component follows the negative exponential failure law, i.e.,

$$
R_{j}=e^{-\lambda} j^{t}
$$

for ail $j$, then the component cost at the $j$ th stage is

$$
\begin{equation*}
C_{j}\left(R_{j}\right)=\alpha_{j}\left(\frac{-t}{\ell n R_{j}}\right)^{B_{j}} \tag{5}
\end{equation*}
$$

where $t$ is the operating time during which the component at stage $j$ will not fail. Usually $\alpha_{j}$ and $B_{j}$ and $t$ are given.

Thus, $C_{j}\left(R_{j}\right) \cdot X_{j}$ is the cost of the components at the $j$ th stage as a function of $R_{j}$ and $X_{j}$. An additional cost $C_{j}\left(R_{j}\right) \exp \left(X_{j} / 4\right)$ is included, as the cost for interconnecting parallel elements.

$$
\begin{align*}
& \text { Substitute (5) into (4), one obtains a dollar constraint as } \\
& \sum_{j=1}^{N} a_{j}\left(\frac{-t}{\ell n R_{j}}\right)^{3}\left(X_{j}+\exp \left(X_{j} / 4\right)\right) \leq C, \tag{6}
\end{align*}
$$

Similarly a weight constraint is stated as

$$
\begin{equation*}
\sum_{j=1}^{N} g_{3 j}\left(x_{j}\right)=\sum_{j=1}^{N} w_{j} X_{j} \quad \exp \left(x_{j} / 4\right) \leq W \tag{7}
\end{equation*}
$$

where $w_{i} X_{j}$ is the weight of all of the components at the $j$ th stage. Again an additional factor is multiplied, which is $\exp \left(X_{j} / r\right)$, due to the hardware for interconnecting the links. Also note that the weight constraint is not a function of the component reliability.

Now, the problem can be stated as one where the $R_{I}, R_{2}, \ldots, R_{N}$; $X_{1}, X_{2}, \ldots, X_{V}$ are selected so that equation (1) will be maximized subject to (3), (6) and (7), where $R_{1}, R_{2}, \ldots, R_{N}$ are real numbers betwesn 0 and 1 ; and $\gamma_{1}, \gamma_{2}, \ldots, X_{N}$ are positive integers.
3. AN OPTIMIZATION PROCEDURE

The combination of the Hooke and Jeeves pattern search [2] and the heuristic approach of Aggarwal, et al. [1] is employed for solving the previously stated mixed integer nonlinear programming problem. The descriptive flow diagram is shown in Fig. 1.

The Hooke and Jeeves pattern search technique is a sequential search routine for maximizing the function, $R_{S}(\bar{R}, \bar{x})$. The argument in the Hooke and Jeeves pattern search is the component reliability, $\bar{R}$, which is varied until the maximum of $\bar{K}_{s}(\bar{R}, \bar{X})$ is obtained. The heuristic approach is applied to each value of $\bar{R}$ to obtain the optimal number of redundancies, $X_{1}, X_{2}, \ldots, X_{N}$, which maximizes $R_{S}(\bar{R}, \bar{X})$ while satisfying the nonlinear constraints. This heuristic approach is based on the concept that a component is added to the stage where its addition produces the greatest ratio of "increment increases in reliability" to the "product of decrements in slacks". This ratio is defined by

$$
\begin{equation*}
F_{j}\left(X_{j}\right)=\frac{\Delta\left(1-R_{j}\right)^{X_{j}}}{\prod_{i=1}^{3} \Delta g_{i j}\left(X_{j}\right)} \tag{8}
\end{equation*}
$$

where

$$
\Delta\left(1-R_{j}\right)^{X_{j}}=\left(1-R_{j}\right)^{X_{j}}-\left(1-R_{j}\right)^{X_{j}+1}=R_{j}\left(1-R_{j}\right)^{X_{j}}
$$

and

$$
\Delta g_{i j}\left(X_{j}\right)=g_{i j}\left(X_{j}+1\right)-g_{i j}\left(X_{j}\right)
$$

The computational procedures for evaluating the functional value of the systen reliability, $R_{s}(\overline{\mathrm{R}}, \overline{\mathrm{X}})$, at any point is:


ASSUME $\bar{R}^{\circ}$, THE INITIAL BASE PO INT
$\downarrow$
FINO OPTIMAL REDU:IDANCIES, $\bar{X} *\left(\bar{R}^{\circ}\right)$, BY THE HEURIST:C APPROACH AT $\bar{R}^{\circ}$. CALCULATE THE SYSTEM RELIABILITY $R_{S}\left(\bar{R}^{\circ}, \bar{X} \star\left(\bar{R}^{\circ}\right)\right)$.

FIG. 1. OESCRIPTIVE FLOM OIAGRAM :OR COMBINATION OF HOOKE ANO JEEVES DATTER:! SEARCH AND HEURISTIC APPROACH.

```
START AT BASE POINT
```

J.

MAKE EXPLORATORY MOVES WITH RESPECT TO $\overline{\mathrm{R}}$. IT EACH MOVE FIND $\bar{X} *(\bar{R})$ BY THE HEURISTIC APOPOACH, ANO CALCULATE $R_{s}(\bar{R}, \bar{X} *(\bar{R}))$.

## 

1) For an initial starting point the component reliability, $\bar{R}=\left(R_{1}, R_{2}, \ldots, R_{N}\right)$, is given.
2) (a) Substitute the value $\left(R_{1}, R_{2}, \ldots, R_{N}\right)$ into (1) and (6), then the problem is to find $\left(X_{1}, X_{2}, \ldots, X_{N}\right)$, a straightforward redundancy problem where the heuristic approach can be applied.
(b) Let $\bar{X}=\left(X_{1}, X_{2}, \ldots, X_{N}\right)=(1,1, \ldots, 1)$.
3) (a) Calculate $F_{j}\left(X_{j}\right)$ for all $j$ using (8).
(b) Select the stage having the highest $\mathrm{F}_{j}\left(\mathrm{X}_{\mathrm{j}}\right)$. A redundant component is proposed to be added to that stage.
4) Check to see if the constraints are violated.
(a) If the solution is still feasible, add one redundant component.

Modify the value of $X_{j}$ and repeat step 3 .
(b) If at least one constraint is exactly satisifed; the current value of $\bar{X}$ is an optimal solution corresponding to $\left(R_{1}, R_{2}, \ldots, R_{N}\right)$. Go to step 5 . (c) If at least one constraint is violated, cancel the proposed addition of the redundant component; remove that stage from further consideration and repeat step 3. When all the stages are excluded from further consideration, the current values of $\bar{X}$ are the optimal solution with respect to $\bar{R}=\left(R_{1}, R_{2}, \ldots, R_{N}\right)$.
5. Calculate the system reliability, $\mathrm{R}_{\mathrm{s}}$, the functional value, for the assigned $\overline{\mathrm{R}}$ and the optimum $\overline{\mathrm{X}}^{*}$.

## 4. NLMERICAL EXAMPLES

Example 1. A five stage problem was solved with the values given in Table 1. The optimal solution is presented in Table 2. The optimum system reliability is 0.91494 at the point $\left(R_{1}, R_{2}, R_{3}, R_{4}, R_{5}\right.$;
$\left.x_{1}, x_{2}, x_{3}, x_{4}, x_{5}\right)=(0.7582,0.8000,0.9000,0.8000,0.7500 ; 3,3,2,2,3)$. Using the starting values of $\left(R_{1}, R_{2}, R_{3}, R_{4}, R_{5}\right)=(0.70,0.70,0.70,0.70,0.70)$, the computation took 23 sec . to reach the optimum solution on an IBM 370/158 computer.

Example 2. A similar five stage problem as Example 1 was solved, but where the limitations on the constraints were $P=220, C=350$, $W=400$. The optimal solution obtained from using the following two sets of starting values of $\bar{R}^{0}=(0.7,0.7,0.7,0.7,0.7)$ and $\bar{R}^{0}=(0.8,0.8,0.8$, $0.8,0.8$ ) are presented in Tables 3 and 4. The optimal system reliabilities for these two set of solutions are 0.993657 and 0.994767 . The difference is about $0.11 \%$. However, the optimum component reliabilities and redundancies are $(0.900,0.850,0.856,0.750,0.850 ; 3,4,4,4,4)$ and $(0.850,0.863$, $0.902,0.700,0.900 ; 4,4,3, \overline{3}, 3)$, respectively. It seems that the functional value of the systems reliability, at the optimum is quite flat, therefore, there is a flexibility to select various values of component reliabilities and redundancies which have nearly the same optimal system reliability.

## 5. CONCLUDING REMARKS

The determination of the optimal number of redundancies as well as the optimal component reliability level in each of stages are carried out by a combination of the well-known Hooke and Jeeves pattern search technique and a heuristic approach. The optimal system reliability problem is an

Table 1. Constants used in Example 1.

j	$\alpha_{j}$	$\mathrm{p}_{\mathrm{j}}$	${ }^{w}$	P	C	W
1	$2.33 \times 10^{-5}$	1	7			
2	$1.45 \times 10^{-5}$	2	8	110	175	200
3	$5.41 \times 10^{-6}$	3	8			
4	$8.05 \times 10^{-5}$	4	6			
5	$1.95 \times 10^{-5}$	2	9			
	$j=1,2,3,4,5$					

Table 2. Optimal solution for Example 1.


Table 3. Optinal solution for Example 2

	$\mathrm{R}_{1}$	$\mathrm{R}_{2}$	$\mathrm{R}_{3}$	$\mathrm{R}_{4}$	$\mathrm{R}_{5}$	X			$\mathrm{X}_{5}$
Starting point	0.7	0.7	0.7	0.7	0.7				
Optimal point	0.900	0.850	0.856	0.750	0.850	3	4		4
Optimal system reliability, $\mathrm{R}_{5}=0.993657$									
Slack for the first constraint $=35$,									
Slack for the second constraint $=0.033247$									
Slack for the third constraint $=18.476$									
Initial step size $=0.05$									
Final step size $=0.0002$									

Table 4. An alternate optimal solution for Example 2

$R_{1}$	$R_{2}$	$R_{3}$	$R_{4}$	$R_{5}$	$X_{1}$	$X_{2}$	$X_{3}$	$X_{4}$	$X_{5}$


Starting point	0.8	0.8	0.8	0.8	0.8					
Optimal point	0.850	0.863	0.902	0.700	0.900	4	4	3	5	3
Optimal system reliability, $\mathrm{R}_{\mathrm{s}}=0.994767$										
Slack for the first constraint $=27$										
Slack for the second constraint $=0.006542$										
Slack for the third constraint $=24.226$										
Initial step size $=0.05$										
Final step siz	$=0$.									

extension of the usual reliability optimization problem and is a mixed integer nonlinear programming problem. The heuristic approach insures the integer number of redundancies with nonlinear constraints, while the Hooke and Jeeves pattern search optimizes the component reliability level. This procedure seems to be very efficient in solving this problem.

## ACKNOWLEDGEMENT

This study was partly supported by Office of Naval Research, Contract No. .N00014-76-C-0842.

## REFERENCES

1. Aggarwal, K.K., J.S. Gupta, and K.B. Misra, "A New heuristic criterion for solving a redundancy optimization problem", IEEE Transactions on Reliability, Vol. R-24, No. 1, pp. 86-87 (April 1975).
2. Hooke, R., and T.A. Jeeves, "Direct search solutions of numerical and Statistical problems", J. Assoc. Compt. Mach., Vol. 8, pp. 212-224 (1961).
3. Misra, K.B., and M.D. Ljubojevic, "Optimal reliability design of a system: a new look', IEEE Transactions on Reliability, Vol. R-22, pp. 255-258, (Dec. 1
4. Sharma, J., and K.V. Venkateswaran, "A direct method for maximizing the system reliability", IEEE Transactions on Reliability, Vol. R-20, No. 4, pp. 256-259 (November 1971).
5. Tillman, F.A., and J.M. Littschwager, "Integer programming formulation of constrained reliability problems", Management Science, Vol. 13, No.11, pp. 887 899 (Juiy 1967).
6. Tillman, F.A., C.L. Hwang, L.T. Fan, and S.A. Balbale, "Systems reliability subject to multiple nonlinear constraints", IEEE Transactions on Reliability, Yoi. R-17, No. 3, pp. 153-157 (September 1968).

- Tillman, F.A., C.L. Hwang, and W. Kuo, "Optimization techniques for systems Celiability with redundancy - a review", IEEE Transactions on Reliabilitv, (this same issue, 1977).


## APPENDIX

OUTLINE OF SEVERAL

OPTIMIZATION TECHNIQUES

## AI. DYNAMLC PROGRAMMING

Dynamic Programming provides a powerful tool for solving multislage decision processes which arise in various fields. It is based unt the so-called "principle of optimality" and employs the techniques of invariant imbedding. The essential notions of dynamic programming are linked to a serial structure. As mentioned, its cornerstone is the principle of optimality founded Bellman (1957). It states, "An optimal policy has the property that whatever the initial state and initial decisions are, the remaining decisions must constitute an optimal policy with regard to the state resulting from the first decision."

Consider a multistage process for which $x_{n}$ denotes a stote vector which represents a set of variables from stage $n$, and $\theta^{n}$ is a decision (ur (:ontrol) vector which stands for a set of decision (or control) variables at stage $n$.

The notion of stage is actually an abstract onc and the function of eiach stage is to transform the state variables frum the input state to the uttput state. This trinsformation can generally be expressed as

$$
\begin{equation*}
x_{n}=T_{n}\left(x_{n+1} ; 0_{n}\right), \quad n=N, N-1, \ldots, 2,1 \tag{1}
\end{equation*}
$$

Equation (1) is of vector form. If there are s state variables and one decision variable, equation (1) can be written as

$$
\begin{equation*}
x_{i, n}=r_{1, n}\left(x_{1, n+1}, x_{2, n+1}, \ldots, x_{s, n+1}, n_{n}\right) \tag{2}
\end{equation*}
$$

NHe ubjective of optimization of a multistage process is tu seek a set of admissible values of ${ }^{0},{ }^{\prime \prime}, \ldots,{ }_{N}$, so that a desired performance
criterion or a return function which is the objestive function is maximized (or minimized). The characteristic eeature of a multistage derision process is that there is an interval profit or return assuciated with each stage of the process. The objective function can be expressed as the summation of the interval profits,

$$
\begin{equation*}
\left.S\left(x_{N+1} ;\right)_{N}, \cdots, \theta_{2}, \theta_{1}\right)=\sum_{n=N}^{1} g_{n}\left(x_{n+1} ; 0_{n}\right) \tag{3}
\end{equation*}
$$

The value of the objective function depends on the initial state and a sequence of the decisions, ${ }^{( } \mathrm{N}, \ldots, \theta_{2},{ }^{\prime \prime}{ }_{1}$. If we represent the maximurn return funclion or the maximum objective function by $\bar{E}_{N}\left(x_{N+1}\right)$, then

$$
\begin{align*}
f_{N}\left(x_{N+1}\right) & =f_{N}\left(x_{1, N+1}, x_{2, N+1}, \ldots, x_{s, N+1}\right) \\
= & \max S\left(x_{N+1} ; \theta_{N}, \ldots, \theta_{1}\right) \\
= & \max \sum_{\left\{0{ }^{n}\right\}} \sum_{n=N}^{1} g_{n}\left(x_{n+1} ; \theta_{n}\right) \tag{4}
\end{align*}
$$

Thus, in general, $f_{n}\left(x_{n+1}\right)$ is the maximum return obtainable from the operation of an n-stage process if an optimal policy is followed starting witi the initial state, $x_{n+1}$.

If there is one decision variable in each stage, equation (4) expresses an N-dimensional optimization problem becausc this problem must be optimized with raspect to dil the $N$ decision variables. The dynamic programing technique is to deal with this problem as $k$ one-dimensional problems. Fur a one-stage process, equation (4) becomes

$$
\tilde{I}_{1}\left(x_{2}\right)=\max _{1}\left\{g_{1}\left(x_{2} ; \theta_{1}\right)\right\}
$$

which is the simplest optimi/ation problem among the sequence of problems: for $n=1,2, \ldots, N$. The other members of this suquence can be ohtained by writting equation (4) in the form,

$$
\begin{aligned}
& f_{1}\left(x_{n+1}\right)=\max \max \ldots \max \left\{g_{n}\left(x_{n+1} ; 0_{n}\right)+\ldots+g_{1}\left(x_{2} ; 0_{1}\right)\right\} . \\
& 0_{n} 0_{n-1} \theta_{1}
\end{aligned}
$$

Since the inputs to stages following stage $n$ are all affected by $0_{n}$ and the state of stage $n$ is not affected by decisions made at stages following it, we can rewrite this as

$$
\begin{align*}
f_{n}\left(x_{n+1}\right)=\max _{n_{n}}\left(g_{n}\left(x_{n+1} ; 0_{n}\right)\right. & +\max _{n-1} \ldots \max _{1}\left(g_{n-1}\left(x_{n} ; 1\right)_{n-1}\right. \\
& \left.\left.+\ldots+g_{1}\left(x_{2} ; 0\right)\right)\right\} \tag{6}
\end{align*}
$$

The expression,

$$
\max _{n-1} \ldots \max _{1}\left(g_{n-1}\left(x_{n} ; \theta_{n-1}\right)+\ldots+g_{1}\left(x_{2} ; 0_{1}\right)\right)
$$

stands for the maximum return (the objective function) from an ( $n-1$ )-stage process with initial state $\mathrm{x}_{\mathrm{n}}$. Hence, we can also write

$$
\begin{equation*}
f_{n-1}\left(x_{n}\right)=\max _{n-1} \ldots \max _{1}\left(g_{n-1}\left(x_{n} ;{ }_{n-1}\right)+\ldots+g_{1}\left(x_{2} ; 0 ;\right)\right. \tag{7}
\end{equation*}
$$

Thus, equation (6) can be simplified to

$$
f_{n}\left(x_{n+1}\right)=\max _{n}\left(g_{n}\left(x_{n+1} ; \theta_{n}\right)+f_{n-1}\left(x_{n}\right)\right)
$$

or

$$
\begin{equation*}
f_{n}\left(x_{n-1}\right)=\max _{n}\left(g_{n}\left(x_{n+1} ; n_{n}\right)+I_{n-1}\left(T\left(x_{n+1} ; \theta_{n}\right)\right)\right) . \tag{8}
\end{equation*}
$$

```
「his is the sorealled functional equation and, in essence a mathematica: statement of the principle of optimality. It gives a recursive reiationship between an \(n\) stage process and an \(n-1\) stage process. The solution of the Functional equation yields the value of the maximum return and the corresponding optimal policy which belongs to the set [\(0_{n}\)].
Further detials concerning dynamic programming as an optimization tool are available in the texts by Bellman (1957) and Bellman and Dreyfus (1962).
```


## RFFERENCES

Bellman, R., Dynamir. Programming, Princeton Unisersity Press, Princetun (1957).

Bellman, R., and S. E. Dreyfus, Applied Dynamic Programing, Princecon University Press, Princetun (1962).
i2. THE DISCRETE MAXIMUM PRINCIPLE

Consider a simpie multistage $p=o c e s s$ cousisting of $N$ stages connected in series. The state of the process stream denoted by an s-dimensional vector, $x=\left(x_{1}, x_{2}, \ldots, x_{s}\right)$, is transformed at each stage according to an r-dimensional decision vector, $0=\left(\theta_{1}, \theta_{2}, \ldots, \theta_{r}\right)$, which represents the decisions made at that stage. The transformation of the process stream at the nth stage is described by a set of performance equation in vectur Eorm.

$$
\begin{align*}
& x^{n}=T^{n}\left(x^{n-1} ; 0^{n}\right), \quad(n=1,2, \ldots, N)  \tag{1}\\
& x^{0}=\alpha
\end{align*}
$$

A typical optimization problem associated with such a process is to Eind a sequence of $t)^{n}, n=1,2, \ldots, N$, subject to the constraints

$$
\begin{align*}
& \left.\psi_{i}^{n}\left[0_{1}^{n},\right)_{2}^{n}, \ldots, 0_{r}^{n}\right] \leq 0  \tag{2}\\
& (n=1,2, \ldots, N ; \quad i=1,2, \ldots, r)
\end{align*}
$$

which makes a function of the state variable of the final stage

$$
\begin{equation*}
S=\sum_{i=1}^{S} c_{i} x_{i}^{N}, \quad\left(c_{i}=\text { constant }\right) \tag{3}
\end{equation*}
$$

an extremum when the initial condition $x^{0}=\alpha$ is given. The function, $S$, which is to be maximized (or minimized), is the objective function of the process.

The prowedure for solving such in opelmi\%ation problem hy the diserele ataximum principle is to introduce an s-dimenslonal adjoint vector $\%^{\text {" }}$ and a Hamiltonian function $H^{n}$, which satisfy the following relatiotis:

$$
\begin{align*}
& n^{n}=\left(2^{n}\right)^{1} x^{n}=\prod_{i=1}^{s} z_{i}^{n} r_{i}^{n}\left(x^{n-1} ; 0^{n}\right),  \tag{4}\\
& \quad(n=1,2, \ldots, N) \\
& z_{i}^{n-1}=\frac{\partial H^{n}}{\partial x_{i}^{n-1}} \quad(i=1,2, \ldots, s ; n=1,2, \ldots, N) \tag{5}
\end{align*}
$$

and

$$
\begin{equation*}
(i=1,2, \ldots, s) \tag{6}
\end{equation*}
$$

If the optimal decision vector function $\bar{n}^{n}$, which makes the objective Eunction $S$ an extremum, is interior to the set of admissible decisions "n, the set given by equation (2), a necessary condition for $S$ to be (local) extremum with respect to $\theta^{n}$ is

$$
\begin{equation*}
\frac{\partial H^{n}}{\partial \theta^{n}}=0, \tag{7}
\end{equation*}
$$

$$
(\mathrm{n}=1,2, \ldots, \mathrm{~N})
$$

If $\pi^{n}$ is at a boundary of the set, it can be determined from the condirion that $H^{n}$ is (locally) extremum.

Further detials un the discrete maximum principle fan be found in the text by Fan and Wang (1964).

## REFERENCE

Fan, L. T., and C. S. Wang, The Discrete Maximum Principle, Wiley, New York (1964).

## A3. THE GENERALIZED REDUCÉD GRADIENT METHOD (GRC)

The generalized reduced gradient method is a method of nonlinear programming proposed by Abadie and Carpentier $(1965,1966,1969)$. The method is essentially a generalization of the Wolfe reduced gradient technique [Wolfe, 1963], wh1ch solves problems having a nonlinear obJective function and linear (equality) constraints. In the Wolfe method, the variables are classed as independent and dependent. From the set of linear (equality) constraints, the dependent variables are obtained in terms of the independent variables, and the expressions thus obtained are substituted into the objective function. The original problem, therefore, is reduced to an unconstrafned one with reduced dimension. A variety of optimization techniques may then be used to find the optimum solution. Applying the same concepts to problems with nonlinear constain:s adds to the computational difficulties, but is not altogether impossible.

The general nonlinear programing problem with nonlinear equality constralnts is defined as follows:

Determine vector $\bar{X}$ so as to maximize

$$
\begin{equation*}
\mathfrak{E}_{0}(\overline{\mathrm{X}}) \tag{A.L}
\end{equation*}
$$

subject to the constraints:

$$
\begin{equation*}
\bar{f}(\bar{X})=0 \tag{A2}
\end{equation*}
$$

and the boundary conditions:

$$
\begin{equation*}
\bar{a} \leq x \leq \bar{b} \tag{A3}
\end{equation*}
$$

 M-bimensional colum vector of constraint manctions in terms of vector $\overline{\mathrm{V}}(\mathrm{V}>11)$. Inequality constrants may be employed by the appropriate aditizion of slack variables.

The problem is solved by partitioning the vector of variables into the independent and dependent sets of variables, of $N-M$ and $M$ dimensions, respectively. Let

$$
\begin{equation*}
\bar{x}=[\bar{x}, \bar{y}] \tag{A4}
\end{equation*}
$$

where $\bar{x}$ is the $(N-M)$-dimensional set of independent (hasic) variables, and $\bar{y}$ the M-dimensional set of dependent (nonbusic) variablec. If the constraint functions satisfy the requirements of the Implicit Function lheorem (ipostol, 1957), then the non-degeneracy assumption is that the denen!ent variables can be expressed as functions of the indenendent variables, i.e.,

$$
\bar{y}=\bar{p}(\bar{x}),
$$

such that $\bar{y}$ is within the boundary:

$$
\bar{a} \leq \bar{x}=[\bar{x}, \bar{y}] \leq \bar{b} .
$$

inon thas condition does not hold, the basis is changed until a fels ible sulution is obtained.

By substitutine, the vector $\bar{y}$ into the objective function, the problem may now be simply defined as:

$$
\begin{equation*}
\text { Maximize } \quad f_{0}(\bar{x})=f_{0}(\bar{x}, \bar{y})=\dot{f}_{0}(\bar{x}, \bar{p}(\bar{x})) \equiv \ddot{r}(\bar{x}) \tag{17}
\end{equation*}
$$

sutjec: to:

$$
\begin{equation*}
\bar{a} \leq \bar{x} \leq 5 \tag{13}
\end{equation*}
$$

## Computational Procedure

The procedure for using the GRG, method is summarized below [Abadie, 1970; Hwang, et al., 19721:

Step 1. Compute the direction of movement, $\bar{h}^{0}$, at the starting point $\bar{x}^{0}=\left[\vec{x}^{0}, \bar{y}^{0}\right]$, by computing the "reduced gradients" at this point:

$$
\begin{equation*}
\bar{g}^{-O T}=\frac{\partial F(\bar{x})}{\partial \bar{x}^{-0}}=\frac{\partial f_{o}}{\partial \bar{x}^{-0}}+\frac{\partial f_{o}}{\partial \bar{y}^{-0}} \cdot \frac{\partial \bar{y}^{\circ}}{\partial \bar{x}^{\circ}} . \tag{A9}
\end{equation*}
$$

But from (A2) we have:

$$
\begin{equation*}
\frac{\partial \bar{f}}{\partial \bar{x}}+\frac{\partial \bar{E}}{\partial \bar{y}} \cdot \frac{\partial \bar{y}}{\partial \bar{x}}=0 . \tag{A10}
\end{equation*}
$$

Solving for $\partial \bar{y} / \partial \bar{x}$, we obtain

$$
\begin{equation*}
\frac{\partial \bar{y}}{\partial \bar{x}}=-\left(\frac{\partial \bar{f}}{\partial \bar{y}}\right)^{-1} \cdot \frac{\partial \bar{f}}{\partial \bar{x}} . \tag{All}
\end{equation*}
$$

Substituting (All) into (A9) gives:

$$
\begin{equation*}
\bar{g}^{o T}=\frac{\partial E_{0}}{\partial \bar{x}^{-0}}-\frac{\partial F_{o}}{\partial y^{-0}}\left(\frac{\partial \bar{f}}{\partial \bar{y}^{-0}}\right)^{-1} \cdot \frac{\partial \bar{f}}{\partial \bar{x}} \tag{A12}
\end{equation*}
$$

Now the "projected reduced gradinets", $\overline{\mathrm{P}}^{\circ}$, for each component of the independent vector $\bar{x}$, are computed in the following manner:

$$
\begin{align*}
& \stackrel{P}{i}_{0}^{=} \begin{cases}0 & \text { if } x_{i}=\text { lower bound and } g_{i}^{0} \leq 0 \\
0 & \text { if } x_{i}=\text { upper bound and } g_{i}^{\circ} \geq 0 \\
g_{1}^{\circ} & \text { otherwise. }\end{cases}  \tag{A13}\\
& 1=1,2, \ldots, N-M
\end{align*}
$$

Now

$$
\begin{equation*}
\bar{h}^{0}=\bar{p}^{0} \tag{A1i}
\end{equation*}
$$

Step 2. It is desirable to stay in the feasible region, or at least close to it, by selecting a proper direction of movement. The steps for vectors $\bar{x}^{0}$ and $\bar{y}^{0}$ are $\bar{x}^{0}+\theta \bar{h}^{0}$, and $\bar{y}^{0}+\theta \bar{k}^{0}$, respectively. The desired movement is along the surface of the constraints. It is accomp!ished by Einding the tangent to $\bar{f}\left(\bar{x}^{0}+\partial \bar{h}^{0}, \bar{y}^{0}+\theta \bar{k}^{0}\right)=0$ at point $\left(\bar{x}^{0}, \bar{y}^{-0}\right)$, that is:

$$
\frac{\partial \overline{\mathrm{F}}}{\partial \bar{x}^{-0}} \cdot \bar{h}^{-0}+\frac{\partial \overrightarrow{\mathrm{F}}}{\partial \bar{y}^{-0}} \cdot \bar{K}^{0}=0
$$

This yields

$$
\bar{K}^{0}=-\left(\frac{\partial \overline{\hat{I}}}{\partial \bar{y}^{0}}\right)^{-1}\left(\frac{\partial \overline{\hat{E}}}{\partial \bar{x}}\right) \bar{h}^{0}
$$

Now,

$$
\bar{F}\left(\bar{x}^{-0}+u h^{-0}, \bar{y}^{-0}+\theta \bar{K}^{0}\right)
$$

is to be optimized for $\partial$ using a one-dimensional search technicue.

Step 3. After calclilating:

$$
\begin{aligned}
& \dot{x}^{1}=x^{-0}+\theta \bar{h}^{-0} \\
& \tilde{y}^{1}=\bar{y}^{-0}+\theta \bar{x}^{0} \\
& \dot{I}_{0}\left(\tilde{x}^{1}, \tilde{y}^{1}\right)
\end{aligned}
$$

 $\bar{I}=\bar{x} \leq \bar{b}$ as Eollums:

$$
\begin{align*}
& x_{j}^{1}=\left\{\begin{array}{l}
\text { lower bound if } x_{j}^{0}+6 h_{j}^{0} \leq l o w e r ~ b o u n d ~ \\
\text { upper bound if } x_{j}^{0}+b r_{j}^{0} \geq \text { upper bound } \\
x_{j}^{0}+\theta h_{j}^{0} \text { otherwise }
\end{array}\right.  \tag{A17}\\
& j=1,2, \ldots, N-M
\end{align*}
$$

Step 4. A feasible solution is developed by solving the following by an iterative method:

$$
\bar{f}\left(\bar{x}^{1}, \bar{y}^{1}\right)=0 .
$$

The existence of $\bar{y}^{-1}=\bar{\phi}\left(\bar{x}^{-1}\right)$ is insured by the Implicit Function Theoren as mentioned before. If a component of $\bar{y}^{-1}$ violates a boundary condition (degeneracy), a change of basis occurs. Two cases may arise at the end:
a) if the iterative procedure does not converge to a $\bar{y}^{1}$, then $\bar{x}^{1}$ is out of the functional domain. This is alleviated by reducing and returning to step 3.
b) if the solution obtained is $\bar{y}^{1}$, then the solution vector is $\bar{x}^{1}=\left[\bar{x}^{-1}, \bar{y}^{1}\right]$. If the solution vector does not improve the objective function, $\exists$ is reduced by half and the procedure is returned to step 3.

Step 5. At this step, $\bar{X}^{0}$ is set equal to $\bar{X}^{1}$ and the algorithm is repeat:ed. However, if a better value for $\theta$ can be somehow determined, a return to step 3 is made before the iteration proceeds.

The termination criterion for the GRG method is, theoretically, when:

$$
\bar{p}_{i}^{c}=0, \quad i=1,2, \ldots, N-M .
$$

In practice, however, the following three stopping criteria are used:

1) $\left\|\bar{P}^{0}\right\|=\sqrt{\sum_{i=1}^{N-M}\left(P_{i}^{0}\right)^{2}}<\varepsilon_{1}$,
2) $P_{i}^{0}<\varepsilon_{2}$
3) $\left|f_{0}\left(\bar{X}^{1}\right)-f_{0}\left(\bar{X}^{0}\right)\right|<\varepsilon_{3}$.

The GRG method has been studied extensively, and coded in FORTRAN by Abadie (1969), Abadie and Guigou (1969, 1970), and Guigou (1969, 1971). Three generations of the program have been developed. The first, called GRG 66, was an experimental code, followed by the second one, GRG 69. An improved code, GREG, is the outgrowth of the first two, and by far, the most improved one. It is obtainable through J. Abadie, Electricité de France, Paris, France.


(STEP 1.3) COMPUTE THE DIRECTIOM MF MOVENENT, $\vec{h}$, FOR $\vec{x}$
A SIMPLE EXAMPLE :S $\hat{h}=\overrightarrow{0}$
(STEP 2) COMPUTE THE DIRECTION DF MOVEMENT F?, FOP.
$\vec{y}^{-}$
(STEP 2.1)

$$
\vec{k}=-\left[\frac{\partial \bar{F}}{\vec{a} \vec{y}}\right]^{-1}\left[\frac{\partial F}{\partial \vec{x}}\right]^{-\vec{n}} \vec{n}^{n}
$$

STED 2.2) USE A ONE-DIMENSIONAL

$$
\text { SEARCH TO MAX }=0(\vec{x}+\theta \vec{h}, \vec{y}+\theta \vec{k})
$$

$V$



## A4. CEOAETRIC PROCRAMMING

In an earlier section we saw how linear programming problemis coold be formulated in terms of buth primal and dual problems. By employing the inequality which states that the arithmetic mean is at least as great as the geometric mean, a dual problem for many optimal design problems may be formulated. Geometric programming uses this inequality and the relationsips of the primal and dual problems to solve optimization problems. The primal problem is expressed in terms of a class of runctions which we call positive polynomials, or posynomisls for short.

The primal problem is that of minimizing a posynomial $S$ subject to constraints of a certain type. let Mdenote the anstrained minimum value wf the primal function $S$. Because of the inequality relating the arithmetic and geumetric means, there is a related maximization problem concerning a function $v$ which is the dual function. It will be shown that the dual problem is one of maximizing $v$ subject to certain linear constraints. We will also show that $M$ is the constrained maximum viaue of $v$ as well as the constrained minimun value of $S$.

Geometric programming is based primarily on the arithmetric mean geometric mean inequality which states that the arithmetic mean is at least as great as the geometric mean. For the general case, the wejgited arithmetic and gernetric: means satisfy the relation

$$
\begin{equation*}
\prod_{i=1}^{n} i_{i} u_{i}, \prod_{i=1}^{n} u_{i}^{n} \tag{1}
\end{equation*}
$$

where the $\delta_{i}$ are the weights which must sum to unity, that is, the mormality condition,

$$
\begin{equation*}
s_{1}+\delta_{2}+\ldots+\delta_{n}=1 \tag{2}
\end{equation*}
$$

must be sazisfied. Equation (1) is an equality if and only if all of the $U_{i}$ are equai.

Now, suppose we wish to find the minimum vjaul of the objective functon

$$
\begin{equation*}
s=\frac{x_{2}}{x_{1}^{2}}+x_{2}+2 \frac{x_{1}}{x_{2}} \tag{3}
\end{equation*}
$$

we have

$$
\begin{equation*}
S=\frac{1}{4}\left(\frac{4 x_{2}}{x_{1}^{2}}\right)+\frac{1}{4}\left(4 x_{2}\right)+\frac{2}{4}\left(\frac{4 x_{1}}{x_{2}}\right) \geq\left(\frac{4 x_{2}}{x_{1}^{2}}\right)^{\frac{1}{4}}\left(4 x_{2}\right)^{\frac{1}{4}}\left(\frac{4 x_{1}}{x_{2}}\right)^{\frac{2}{4}}=4 \tag{4}
\end{equation*}
$$

From this equation we find that 4 is a lower bound fur $S$, that is,

$$
\begin{equation*}
s \geq 4 \tag{5}
\end{equation*}
$$

Using differential calculus, we can show that 4 is the minimum vlaue of $S$ and that this occurs at $x_{1}=x_{2}=1$.

The preceding example has shown that we can obtain the minimum value of an objective function directly by properly choosing the weights of each term in the posynomial. If the geomeric mean is properly weighted, it is independent of its variables, and it is not necessary to determine the values of the variables prior to finding the minimur value of the objective function. [t is this unique property of the geometrif mean that makes it easy (u minimi\%e certain posy:umials.

The weighted arithmetic: mean - gemoetric mean inequality with the normality condition cian be written as
if we let $u_{i}=\delta U_{i}$ for $i=k, 2, \ldots, n$.
The left side of this inequality is the posynomid $\&$ that is to be minimized. For simplicity, we shall refer to equation ( 6 ) as the
geometric inequality, and we shall call the left side the primal function and the right side the predual function. Using $V$ to denote the predual Eunction, the inequalicy, equation (6) becomes

$$
\begin{equation*}
S>V \tag{7}
\end{equation*}
$$

[f the primal function is a posynomial and the $u_{j}$ are given by

$$
\begin{equation*}
u_{j}=C_{j} \|_{i=1}^{m} x_{i}^{a i} \tag{8}
\end{equation*}
$$

Substituting the above into

$$
\begin{equation*}
V=\left(\frac{u_{1}}{\delta_{1}}{ }^{\delta_{1}}{ }^{\delta^{u_{2}}}{ }_{2}^{\delta_{2}}{ }^{\delta_{2}} \quad \ldots \quad{ }^{\left(\frac{u_{n}}{\delta_{n}}\right)}\right. \tag{9}
\end{equation*}
$$

gives
wheres

$$
\begin{equation*}
\bar{v}_{j}=\sum_{i=1}^{n} j_{i} a_{i j}, j=1,2, \ldots, m \tag{11}
\end{equation*}
$$

Sometimes it is possible to choose the weights is in such a way that all of the exponents $D_{j}$ are zeru. filuen this is pussible, che predual function,
$V$ : does not depend on the variables $x_{1}, x_{2}, \ldots, x_{n}$. When all of the $D_{j}$ are zuru, equation (10) becomes

$$
\begin{equation*}
v=\left(\frac{C_{1}}{\delta_{1}}\right)^{\delta_{1}}\left(\frac{C_{2}}{\delta_{2}}\right)^{\delta_{2}} \ldots\left(\frac{C_{n}}{\delta_{n}}\right)^{\delta_{n}} \tag{12}
\end{equation*}
$$

which we shall refer to as the dual function, $v$.
From inequality (7), we know that out objective function, $S$ has a minimum point. We shall use $M$ to designate this positive greatest lower bound of $S$ which must satis£y the inequality

$$
\begin{equation*}
S=M \geqslant v \tag{13}
\end{equation*}
$$

Further details on how to solve optimization problems with ronstraints using geometric programming are provided in the texts by Duffin cit al. (1966) and Wilde and Beightler (1967).

## REFERENCES

Dufinn, R. J., E. L. Peterson, and C. Zener, Geometric Programming, John Wiley and Sons, Inc., New York (1956).

Wilde, D. J. and C. S. Beightler, Optimizarion Theory, Prentice-Hall, Englewood Cliffs, New Jersey (1967).

# OPTMMZATLON TECINIQUES FOR SYSTEAS 

RELIABIIITY UITH REDLNDANCY
by
WAY KLO

```
B.S. (Nuclear Encincering) National Tsing-Hua University, Taiwan, 1972
M.S. (V̛uciear Engineering) University of Cincinnati. Ohin, 1975
```

A ABGTRAC OF A "MSTER'S TMESIS
submitted in partial fulfillment of the
requirements fnr the degree

MASTER OF SCIENCE

Department of Tndustrial Engineering

KAISAS STATE UNIVERSITY

1978

The objectives of this thesis are:
(1) to make a critical review and classification of ali system reliabilicy optimization problems and various optimization rechniques which have been used;
(2) to study the optimization techniques of the generalized reduced gradient method (GRG) and a generalized Lagrangian functions method applied to solve the system reliability optimization problems. Both of the algorithms have not been applied in this field yet;
(3) to extend the reguiar system reliability optimization problems for simple reliability allocation problem or simple redundancy allocation problem to the one taking both of them in consideration.
(4) to propose new methods for determining integer solution, particularly, heuristic methods.

The rationale is that this "topic" is another step in the collection, c1assification, presentation and testing of nev problems and new technicutes that is vital to solving the system reliability optimization problems.

A stare-of-the-art review of the literature reiated $=0$ optimal system reitiability with redundancy is presented in Cnapter 2.

In Chapter 3, the optimization techniques are presented, which are (a) to maximize the system reliability of various system configurations subjec= to the 'cost' constraints, or (b) to minimize any specific 'cost' whie satisfying the minimum requirement of the system reliability. In the chapter, literacure published on optimal system reiiauilizy is classifiec and critically reviewed. Various problems are also classified and resolved by heuristic approacn, dynanic programing, and inceger programing.

These optimizarion techniques always give solution of integer numbers which meet the integer requirement of redundancy allocation problems.

Sequential Unconstrained Minimization Technique (SLMT) has been wideiy used in solving many optimization problems. The problem with a tangent form cost function is successfully solved by SUMP. Generalized Reduced Gradiant method (GRG) and generalized Lagrangian functions method have been used in solving the system reliability optimization probiems in Chapcer 3.

The maximum principle, the method of Lagrange multipliers and the KukinTucker conditions, geometric programing, and several miscellaneous optimization techniques (e.g. linear programing and separable programing) are also presented in Chapter 3 to cnver the comprehensive discussion of optimization rechniques having been uised in system reliability optimizatior problems.

The extension to the usual reliability optimization problems is presented in Chapter 4 . The problem is to include the determination of optimal level of component reliability and the number of redundancies in each $O E$ the stages simultaneously. The Hooke and Jeeves pattern search rechnique in combination with a heuristic approach is proposed to solve this mixed inseger nonlinear programing problem.


[^0]:    =IG. E: A STANDBY SYSTEM

[^1]:    ${ }^{b}$ Since no resource is available, stop the procedure.

[^2]:    The superscript $n$ indicates the stage number. The exponents are written with parencheses or brackets such as $\left(x^{n}\right)^{2}$ or $\left\{T^{n}\left(x^{m-1} ; \theta^{n}\right)\right\}^{2}$.

