21 research outputs found

    āļˆāļĨāļ™āļĻāļēāļŠāļ•āļĢāđŒāđāļĨāļ°āđ„āļ­āđ‚āļ‹āđ€āļ—āļ­āļĢāđŒāļĄāļāļēāļĢāļ”āļđāļ”āļ‹āļąāļšāļ­āļ°āļ—āļĢāļēāļ‹āļĩāļ™āđ‚āļ”āļĒāđ„āļšāđ‚āļ­āļŠāļēāļĢāđŒāđ„āļĄāđ‰āđ„āļœāđˆKinetic and Isotherm Adsorption of Atrazine by Bamboo Biochar

    No full text
    āļ‡āļēāļ™āļ§āļīāļˆāļąāļĒāļ™āļĩāđ‰āļĄāļĩāļ§āļąāļ•āļ–āļļāļ›āļĢāļ°āļŠāļ‡āļ„āđŒāđ€āļžāļ·āđˆāļ­āļ›āļĢāļ°āđ€āļĄāļīāļ™āļ›āļĢāļ°āļŠāļīāļ—āļ˜āļīāļ āļēāļžāļāļēāļĢāļ”āļđāļ”āļ‹āļąāļšāļ­āļ°āļ—āļĢāļēāļ‹āļĩāļ™āļ”āđ‰āļ§āļĒāđ„āļšāđ‚āļ­āļŠāļēāļĢāđŒāļ—āļĩāđˆāļŠāļąāļ‡āđ€āļ„āļĢāļēāļ°āļŦāđŒāļˆāļēāļāđ„āļĄāđ‰āđ„āļœāđˆ āđ‚āļ”āļĒāļĻāļķāļāļĐāļēāļ„āļļāļ“āļŠāļĄāļšāļąāļ•āļīāļ—āļēāļ‡āļāļēāļĒāļ āļēāļžāđāļĨāļ°āđ€āļ„āļĄāļĩāļ‚āļ­āļ‡āđ„āļšāđ‚āļ­āļŠāļēāļĢāđŒāđ„āļĄāđ‰āđ„āļœāđˆ āđāļĨāļ°āļĻāļķāļāļĐāļēāļĢāļ°āļĒāļ°āđ€āļ§āļĨāļēāļŠāļĄāļ”āļļāļĨ āļ›āļĢāļ°āļŠāļīāļ—āļ˜āļīāļ āļēāļžāļāļēāļĢāļ”āļđāļ”āļ‹āļąāļš āđ„āļ­āđ‚āļ‹āđ€āļ—āļ­āļĄ āļĢāļ§āļĄāļ—āļąāđ‰āļ‡āđāļšāļšāļˆāļģāļĨāļ­āļ‡āļˆāļĨāļ™āļĻāļēāļŠāļ•āļĢāđŒāļāļēāļĢāļ”āļđāļ”āļ‹āļąāļšāļ­āļ°āļ—āļĢāļēāļ‹āļĩāļ™āļ‚āļ­āļ‡āđ„āļšāđ‚āļ­āļŠāļēāļĢāđŒāđ„āļĄāđ‰āđ„āļœāđˆ āļ”āđ‰āļ§āļĒāļāļēāļĢāļ—āļ”āļĨāļ­āļ‡āđāļšāļšāļāļ° āļˆāļēāļāļ„āļļāļ“āļŠāļĄāļšāļąāļ•āļīāļ—āļēāļ‡āļāļēāļĒāļ āļēāļžāđāļĨāļ°āđ€āļ„āļĄāļĩ āļžāļšāļ§āđˆāļē āđ„āļšāđ‚āļ­āļŠāļēāļĢāđŒāđ„āļĄāđ‰āđ„āļœāđˆāļĄāļĩāļ„āđˆāļē D50 āđ€āļ—āđˆāļēāļāļąāļš 200 āđ„āļĄāđ‚āļ„āļĢāđ€āļĄāļ•āļĢ āļžāļ·āđ‰āļ™āļ—āļĩāđˆāļœāļīāļ§āđ€āļ—āđˆāļēāļāļąāļš 756.43 āļ•āļēāļĢāļēāļ‡āđ€āļĄāļ•āļĢāļ•āđˆāļ­āļāļĢāļąāļĄ āđāļĨāļ°āļĄāļĩāļ›āļĢāļīāļĄāļēāļ•āļĢāļĢāļđāļžāļĢāļļāļ™āđ€āļ—āđˆāļēāļāļąāļš 0.32 āļĨāļđāļāļšāļēāļĻāļāđŒāđ€āļ‹āļ™āļ•āļīāđ€āļĄāļ•āļĢāļ•āđˆāļ­āļāļĢāļąāļĄ āđāļŠāļ”āļ‡āđƒāļŦāđ‰āđ€āļŦāđ‡āļ™āļ§āđˆāļēāđ€āļ›āđ‡āļ™āļ§āļąāļŠāļ”āļļāļ”āļđāļ”āļ‹āļąāļšāđāļšāļš Micropore āđ€āļ™āļ·āđˆāļ­āļ‡āļˆāļēāļāļĄāļĩāļ‚āļ™āļēāļ”āļĢāļđāļžāļĢāļļāļ™āļ āļēāļĒāđƒāļ™āđ€āļ‰āļĨāļĩāđˆāļĒāđ€āļ—āđˆāļēāļāļąāļš 1.69 āļ™āļēāđ‚āļ™āđ€āļĄāļ•āļĢ āļ™āļ­āļāļˆāļēāļāļ™āļąāđ‰āļ™āļžāļšāļ§āđˆāļē āļĄāļĩāļāļēāļĢāļ•āļĢāļ§āļˆāļžāļšāļŦāļĄāļđāđˆāļŸāļąāļ‡āļāđŒāļŠāļąāļ™āļ‚āļ­āļ‡āđ„āļŪāļ”āļĢāļ­āļāļ‹āļīāļĨ (O-H) āđ„āļŪāđ‚āļ”āļĢāļ„āļēāļĢāđŒāļšāļ­āļ™āļ›āļĢāļ°āđ€āļ āļ—āļ­āļąāļĨāļ„āļīāļĨ (C-H) āļ­āļ°āļĨāļīāļŸāļēāļ•āļīāļ (C-H) āđāļĨāļ°āļ­āļ°āđ‚āļĢāļĄāļēāļ•āļīāļ (C=C) āļ—āļĩāđˆāļŠāđˆāļ‡āļœāļĨāļ•āđˆāļ­āļ„āļ§āļēāļĄāļŠāļēāļĄāļēāļĢāļ–āđƒāļ™āļāļēāļĢāļ”āļđāļ”āļ‹āļąāļšāļŠāļēāļĢāļ­āļ°āļ—āļĢāļēāļ‹āļĩāļ™ āđƒāļ™āļŠāđˆāļ§āļ™āļāļēāļĢāļ›āļĢāļ°āđ€āļĄāļīāļ™āļ›āļĢāļ°āļŠāļīāļ—āļ˜āļīāļ āļēāļžāđƒāļ™āļāļēāļĢāļ”āļđāļ”āļ‹āļąāļšāļŠāļēāļĢāļ­āļ°āļ—āļĢāļēāļ‹āļĩāļ™āļžāļšāļ§āđˆāļē āđƒāļŦāđ‰āļ›āļĢāļ°āļŠāļīāļ—āļ˜āļīāļ āļēāļžāđƒāļ™āļāļēāļĢāļ”āļđāļ”āļ‹āļąāļš 92.1 āđ€āļ›āļ­āļĢāđŒāđ€āļ‹āđ‡āļ™āļ•āđŒ āļŦāļĨāļąāļ‡āļˆāļēāļāđ€āļ‚āđ‰āļēāļŠāļđāđˆāļĢāļ°āļĒāļ°āđ€āļ§āļĨāļēāļŠāļĄāļ”āļļāļĨāļ—āļĩāđˆ 24 āļŠāļąāđˆāļ§āđ‚āļĄāļ‡ āļŠāļ­āļ”āļ„āļĨāđ‰āļ­āļ‡āļāļąāļšāļŠāļĄāļāļēāļĢāđ„āļ­āđ‚āļ‹āđ€āļ—āļ­āļĢāđŒāļĄāđāļšāļšāļŸāļĢāļļāļ™āļ”āļīāļŠ āđ‚āļ”āļĒāļĄāļĩāļ„āđˆāļēāļ„āļ‡āļ—āļĩāđˆāļŠāļąāļĄāļžāļąāļ™āļ˜āđŒāļāļąāļšāļ„āļ§āļēāļĄāļŠāļēāļĄāļēāļĢāļ–āđƒāļ™āļāļēāļĢāļ”āļđāļ”āļ‹āļąāļš (KF) āđ€āļ—āđˆāļēāļāļąāļš 0.77 āđ„āļĄāđ‚āļ„āļĢāļāļĢāļąāļĄāļ•āđˆāļ­āļāļĢāļąāļĄ āđāļĨāļ°āļāļēāļĢāļĻāļķāļāļĐāļēāđāļšāļšāļˆāļģāļĨāļ­āļ‡āļˆāļĨāļ™āļĻāļēāļŠāļ•āļĢāđŒāļāļēāļĢāļ”āļđāļ”āļ‹āļąāļšāļŠāļĩāđ‰āđƒāļŦāđ‰āđ€āļŦāđ‡āļ™āļ§āđˆāļēāđ€āļ›āđ‡āļ™āđ„āļ›āļ•āļēāļĄāđāļšāļšāļˆāļģāļĨāļ­āļ‡āļ­āļąāļ™āļ”āļąāļšāļ—āļĩāđˆāļŠāļ­āļ‡āđ€āļ—āļĩāļĒāļĄ āļ”āđ‰āļ§āļĒāļ„āđˆāļē R2 āđāļĨāļ° SSE āđ€āļ—āđˆāļēāļāļąāļš 0.9998 āđāļĨāļ° 0.0015 āļ•āļēāļĄāļĨāļģāļ”āļąāļš āđ€āļĄāļ·āđˆāļ­āļžāļīāļˆāļēāļĢāļ“āļēāļ„āđˆāļēāļ„āļ‡āļ—āļĩāđˆāļ­āļąāļ•āļĢāļēāđ€āļĢāđ‡āļ§āļ›āļāļīāļāļīāļĢāļīāļĒāļēāļ­āļąāļ™āļ”āļąāļšāļŠāļ­āļ‡ (K2) āļĄāļĩāļ„āđˆāļēāđ€āļ—āđˆāļēāļāļąāļš 0.1306 āđ„āļĄāđ‚āļ„āļĢāļāļĢāļąāļĄāļ•āđˆāļ­āļāļĢāļąāļĄāļ•āđˆāļ­āļ™āļēāļ—āļĩ āļˆāļķāļ‡āļŠāļĢāļļāļ›āđ„āļ”āđ‰āļ§āđˆāļēāļāļēāļĢāļ”āļđāļ”āļ‹āļąāļšāļ­āļēāļĻāļąāļĒāļāļĨāđ„āļāļ—āļąāđ‰āļ‡āļ—āļēāļ‡āļ”āđ‰āļēāļ™āļāļēāļĒāļ āļēāļžāđāļĨāļ°āđ€āļ„āļĄāļĩ āļœāļĨāļāļēāļĢāļ—āļ”āļĨāļ­āļ‡āļ—āļąāđ‰āļ‡āļŦāļĄāļ”āđāļŠāļ”āļ‡āđƒāļŦāđ‰āđ€āļŦāđ‡āļ™āļ§āđˆāļēāđ„āļšāđ‚āļ­āļŠāļēāļĢāđŒāđ„āļĄāđ‰āđ„āļœāđˆāļĄāļĩāļ„āļļāļ“āļ āļēāļžāļŠāļđāļ‡āđƒāļ™āļāļēāļĢāđ€āļ›āđ‡āļ™āļ§āļąāļŠāļ”āļļāļ”āļđāļ”āļ‹āļąāļšāļŠāļēāļĢāļ­āļ°āļ—āļĢāļēāļ‹āļĩāļ™ āļ‹āļķāđˆāļ‡āļˆāļąāļ”āđ€āļ›āđ‡āļ™āļ§āļąāļ”āļŠāļļāļ”āļđāļ”āļ‹āļąāļšāļ—āļĩāđˆāļĄāļĩāļ•āđ‰āļ™āļ—āļļāļ™āļ•āđˆāļģāļŠāļģāļŦāļĢāļąāļšāļ›āđ‰āļ­āļ‡āļāļąāļ™āļŠāļēāļĢāđ€āļ„āļĄāļĩāļ—āļēāļ‡āļāļēāļĢāđ€āļāļĐāļ•āļĢāļ­āļ­āļāļŠāļđāđˆāļ™āļ­āļāļžāļ·āđ‰āļ™āļ—āļĩāđˆāđāļĨāļ°āđ€āļ‚āđ‰āļēāļĄāļēāđƒāļ™āļžāļ·āđ‰āļ™āļ—āļĩāđˆThis research aims to evaluate the adsorption efficiency of atrazine using biochar synthesized from bamboo. The study primarily focuses on these aspects: bamboo biochar physical and chemical properties, the equilibrium time, adsorption efficiency, isotherm as well as adsorption kinetic model with batch testing. Regarding physical and chemical properties, bamboo biochar exhibited the D50 of 200 Ξm, surface area of 756.43 m2/g, average pore size of 1.69 nm and pore volume of 0.32 cm3/g. Considering these properties, the substance can be defined as a microporous carbon adsorbent. Also, the functional groups of bamboo biochar show the groups of hydroxyls (O-H), alkyl (C-H), aliphatic (C-H), and aromatic carbon (C=C), which have a positive effect on adsorption of atrazine. Form the evaluation of atrazine adsorption properties, the bamboo biochar has the adsorption efficiency of 92.1% after 24 h equilibrium time, corresponding to the Freundlich adsorption isotherm. The Freundlich constant (KF) is 0.77 Ξg/g. In term of adsorption kinetic model, the results indicated being the pseudo second order reaction kinetics with R2 value and SSE are 0.9998 and 0.0015, respectively. The pseudo-second order rate constant (K2) shows 0.1306 Ξg/g.min. This can be concluded that the adsorption of bamboo biochar used both physical and chemical mechanisms. Overall results indicated that bamboo biochar can be used as an effective, low-cost adsorbent for atrazine removal. Thus, the biochar can be used as a chemical barrier for controlling agrochemical contaminants into agricultural land

    Comparative study on the preparation of belite cement from nano-silicas extracted from different agricultural wastes with calcium carbide residue

    No full text
    Belite cement was prepared using nano-silicas extracted from three different agricultural wastes–black rice husk ash (BRHA), bagasse ash (BA), and palm oil fuel ash (POFA)–which were reacted at 1200 − 1400 °C with CaC2 residue as calcium source. The product was compared with that from CaCO3. Nano-silica extracted from BRHA was of very fine particle size (surface area 312.4 m2/g and V/S ratio 0.35 × 106 cm) and being highly reactive, forms Îē-C2S at lower firing temperatures; however, at higher temperatures, less-desirable Îģ-polymorphs are formed. Nano-silica extracted from POFA contains Na2O, Al2O3, and K2O impurities, which stabilize the Îē and Îą-forms and delay the transformation to Îģ-phase. This is reflected in relatively high compressive strength at firing temperature above 1200 °C, compared to other mixtures. Thus, these results indicate that the best combination of these waste materials for the preparation of belite cement phases is POFA ash and CaC2 residue

    Experimental study of lightweight concrete prepared from super absorbent polymers (SAPs) and glass fibers (GF)

    No full text
    This study investigates the effect of super absorbent polymers (SAPs) and glass fiber (GF) additions on the properties of lightweight concrete. The SAPs act as the pore-forming agent, with the addition of various GF contents (0.1-1.0% by weight of dry ingredients). The results indicate that the use of SAPs at 7% by weight of OPC produces a product with similar properties to conventional lightweight concretes which meet the ASTM C332-17 standard. The addition of GF to the mixture tends to reduce the dry density and compressive strength, but increases the porosity and flexural strength. The results indicate that the use of SAPs at 7% by weight of OPC produce a product with similar properties to conventional lightweight concretes which meet the ASTM C332-17 standard. The 28-day compressive strengths decreased from 7.04 ± 0.07 for control sample to 4.59 ± 0.11 MPa, while the flexural strengths increased from 3.89 ± 0.04 for control sample to 6.72 ± 0.06 MPa. High-porosity lightweight concrete prepared from SAPs and GF shows reduced thermal conductivity and an increased sorption rate. The initial rate of water absorption gradually increases from 2.48 × 10−1 mm/sec0.5 in the sample without GF up to 5.45 × 10−1 mm/sec0.5 in the sample containing 1.0 wt.% GF. Comparison with the literature indicates that the use of SAPs as pore-forming agents in conjunction with GF have the potential to produce fiber-reinforced lightweight concrete with improved properties
    corecore