3,314 research outputs found

    Conformal anomaly in 2d dilaton-scalar theory

    Full text link
    The discrepancy between the anomaly found by Bousso and Hawking (hep-th/9705236) and that of other workers is explained by the omission of a zero mode contribution to the effective action.Comment: 5 pages, JyTeX. References added with brief remar

    Novel Symmetry of Non-Einsteinian Gravity in Two Dimensions

    Full text link
    The integrability of R2R^2-gravity with torsion in two dimensions is traced to an ultralocal dynamical symmetry of constraints and momenta in Hamiltonian phase space. It may be interpreted as a quadratically deformed iso(2,1)iso(2,1)-algebra with the deformation consisting of the Casimir operators of the undeformed algebra. The locally conserved quantity encountered in the explicit solution is identified as an element of the centre of this algebra. Specific contractions of the algebra are related to specific limits of the explicit solutions of this model.Comment: 17 pages, TUW-92-04 (LaTeX

    Absolute conservation law for black holes

    Get PDF
    In all 2d theories of gravity a conservation law connects the (space-time dependent) mass aspect function at all times and all radii with an integral of the matter fields. It depends on an arbitrary constant which may be interpreted as determining the initial value together with the initial values for the matter field. We discuss this for spherically reduced Einstein-gravity in a diagonal metric and in a Bondi-Sachs metric using the first order formulation of spherically reduced gravity, which allows easy and direct fixations of any type of gauge. The relation of our conserved quantity to the ADM and Bondi mass is investigated. Further possible applications (ideal fluid, black holes in higher dimensions or AdS spacetimes etc.) are straightforward generalizations.Comment: LaTex, 17 pages, final version, to appear in Phys. Rev.

    Generalized Virasoro anomaly and stress tensor for dilaton coupled theories

    Get PDF
    We derive the anomalous transformation law of the quantum stress tensor for a 2D massless scalar field coupled to an external dilaton. This provides a generalization of the Virasoro anomaly which turns out to be consistent with the trace anomaly. We apply it together with the equivalence principle to compute the expectation values of the covariant quantum stress tensor on a curved background. Finally we briefly illustrate how to evaluate vacuum polarization and Hawking radiation effects from these results.Comment: enlarged version of hep-th/0307096 containing the quantum stress tensor for arbitrary geometries and discussion of the Hawking effect. To appear in Phys. Lett.

    Universal conservation law and modified Noether symmetry in 2d models of gravity with matter

    Get PDF
    It is well-known that all 2d models of gravity---including theories with nonvanishing torsion and dilaton theories---can be solved exactly, if matter interactions are absent. An absolutely (in space and time) conserved quantity determines the global classification of all (classical) solutions. For the special case of spherically reduced Einstein gravity it coincides with the mass in the Schwarzschild solution. The corresponding Noether symmetry has been derived previously by P. Widerin and one of the authors (W.K.) for a specific 2d model with nonvanishing torsion. In the present paper this is generalized to all covariant 2d theories, including interactions with matter. The related Noether-like symmetry differs from the usual one. The parameters for the symmetry transformation of the geometric part and those of the matterfields are distinct. The total conservation law (a zero-form current) results from a two stage argument which also involves a consistency condition expressed by the conservation of a one-form matter ``current''. The black hole is treated as a special case.Comment: 3

    Symmetries in two-dimensional dilaton gravity with matter

    Get PDF
    The symmetries of generic 2D dilaton models of gravity with (and without) matter are studied in some detail. It is shown that δ2\delta_2, one of the symmetries of the matterless models, can be generalized to the case where matter fields of any kind are present. The general (classical) solution for some of these models, in particular those coupled to chiral matter, which generalizes the Vaidya solution of Einstein Gravity, is also given.Comment: Minor changes have been made; the references have been updated and some added; 11 pages. To appear in Phys. Rev.

    Minimal long-term neurobehavioral impairments after endovascular perforation subarachnoid hemorrhage in mice

    Get PDF
    AbstractCognitive deficits are among the most severe and pervasive consequences of aneurysmal subarachnoid hemorrhage (SAH). A critical step in developing therapies targeting such outcomes is the characterization of experimentally-tractable pre-clinical models that exhibit multi-domain neurobehavioral deficits similar to those afflicting humans. We therefore searched for neurobehavioral abnormalities following endovascular perforation induction of SAH in mice, a heavily-utilized model. We instituted a functional screen to manage variability in injury severity, then assessed acute functional deficits, as well as activity, anxiety-related behavior, learning and memory, socialization, and depressive-like behavior at sub-acute and chronic time points (up to 1 month post-injury). Animals in which SAH was induced exhibited reduced acute functional capacity and reduced general activity to 1 month post-injury. Tests of anxiety-related behavior including central area time in the elevated plus maze and thigmotaxis in the open field test revealed increased anxiety-like behavior at subacute and chronic time-points, respectively. Effect sizes for subacute and chronic neurobehavioral endpoints in other domains, however, were small. In combination with persistent variability, this led to non-significant effects of injury on all remaining neurobehavioral outcomes. These results suggest that, with the exception of anxiety-related behavior, alternate mouse models are required to effectively analyze cognitive outcomes after SAH.</jats:p

    Comment on: ``Trace anomaly of dilaton coupled scalars in two dimensions''

    Get PDF
    The trace anomaly for nonminimally coupled scalars in spherically reduced gravity obtained by Bousso and Hawking (hep-th/9705236) is incorrect. We explain the reasons for the deviations from our correct (published) result which is supported by several other recent papers.Comment: 2 page

    The Complete Solution of 2D Superfield Supergravity from graded Poisson-Sigma Models and the Super Pointparticle

    Full text link
    Recently an alternative description of 2d supergravities in terms of graded Poisson-Sigma models (gPSM) has been given. As pointed out previously by the present authors a certain subset of gPSMs can be interpreted as "genuine" supergravity, fulfilling the well-known limits of supergravity, albeit deformed by the dilaton field. In our present paper we show that precisely that class of gPSMs corresponds one-to-one to the known dilaton supergravity superfield theories presented a long time ago by Park and Strominger. Therefore, the unique advantages of the gPSM approach can be exploited for the latter: We are able to provide the first complete classical solution for any such theory. On the other hand, the straightforward superfield formulation of the point particle in a supergravity background can be translated back into the gPSM frame, where "supergeodesics" can be discussed in terms of a minimal set of supergravity field degrees of freedom. Further possible applications like the (almost) trivial quantization are mentioned.Comment: 48 pages, 1 figure. v3: after final version, typos correcte
    • …
    corecore