Abstract

Recently an alternative description of 2d supergravities in terms of graded Poisson-Sigma models (gPSM) has been given. As pointed out previously by the present authors a certain subset of gPSMs can be interpreted as "genuine" supergravity, fulfilling the well-known limits of supergravity, albeit deformed by the dilaton field. In our present paper we show that precisely that class of gPSMs corresponds one-to-one to the known dilaton supergravity superfield theories presented a long time ago by Park and Strominger. Therefore, the unique advantages of the gPSM approach can be exploited for the latter: We are able to provide the first complete classical solution for any such theory. On the other hand, the straightforward superfield formulation of the point particle in a supergravity background can be translated back into the gPSM frame, where "supergeodesics" can be discussed in terms of a minimal set of supergravity field degrees of freedom. Further possible applications like the (almost) trivial quantization are mentioned.Comment: 48 pages, 1 figure. v3: after final version, typos correcte

    Similar works

    Full text

    thumbnail-image

    Available Versions

    Last time updated on 02/01/2020