19 research outputs found
Quantifizierung von Wurzelparametern in Abhängigkeit von Bodeneigenschaften in einem Silomaisbestand
Information zur Wurzelverteilung stellt eine wichtige Größe für die Charakterisierung und Modellierung von Wasser- und Nährstoffaufnahme, Biomasseproduktion sowie Rhizodeposition dar. Detaillierte, räumlich hochaufgelöste Daten zur Wurzel-, Wasser-, Nährstoff- und Kohlenstoffverteilung im Feld zur Kalibrierung von Modellen stehen aber nur sehr begrenzt zur Verfügung. Ziel der Untersuchungen war es beispielhaft einen solchen Datensatz für einen Silomaisbestand zu erstellen und hierbei durch die Erfassung von geo- und bodenphysikalischen sowie pflanzenphysiologischen Parametern eine räumliche Korrelation zwischen diesen Größen zu testen
KEYLINK: towards a more integrative soil representation for inclusion in ecosystem scale models. I. review and model concept
The relatively poor simulation of the below-ground processes is a severe drawback for many ecosystem models, especially when predicting responses to climate change and management. For a meaningful estimation of ecosystem production and the cycling of water, energy, nutrients and carbon, the integration of soil processes and the exchanges at the surface is crucial. It is increasingly recognized that soil biota play an important role in soil organic carbon and nutrient cycling, shaping soil structure and hydrological properties through their activity, and in water and nutrient uptake by plants through mycorrhizal processes. In this article, we review the main soil biological actors (microbiota, fauna and roots) and their effects on soil functioning. We review to what extent they have been included in soil models and propose which of them could be included in ecosystem models. We show that the model representation of the soil food web, the impact of soil ecosystem engineers on soil structure and the related effects on hydrology and soil organic matter (SOM) stabilization are key issues in improving ecosystem-scale soil representation in models. Finally, we describe a new core model concept (KEYLINK) that integrates insights from SOM models, structural models and food web models to simulate the living soil at an ecosystem scale
Ensemble modelling, uncertainty and robust predictions of organic carbon in long-term bare-fallow soils
ACKNOWLEDGEMENTS This study was supported by the project “C and N models inter-comparison and improvement to assess management options for GHG mitigation in agro-systems worldwide” (CN-MIP, 2014- 2017), which received funding by a multi-partner call on agricultural greenhouse gas research of the Joint Programming Initiative ‘FACCE’ through national financing bodies. S. Recous, R. Farina, L. Brilli, G. Bellocchi and L. Bechini received mobility funding by way of the French Italian GALILEO programme (CLIMSOC project). The authors acknowledge particularly the data holders for the Long Term Bare-Fallows, who made their data available and provided additional information on the sites: V. Romanenkov, B.T. Christensen, T. Kätterer, S. Houot, F. van Oort, A. Mc Donald, as well as P. Barré. The input of B. Guenet and C. Chenu contributes to the ANR “Investissements d’avenir” programme with the reference CLAND ANR-16-CONV-0003. The input of P. Smith and C. Chenu contributes to the CIRCASA project, which received funding from the European Union's Horizon 2020 Research and Innovation Programme under grant agreement no 774378 and the projects: DEVIL (NE/M021327/1) and Soils‐R‐GRREAT (NE/P019455/1). The input of B. Grant and W. Smith was funded by Science and Technology Branch, Agriculture and Agri-Food Canada, under the scope of project J-001793. The input of A. Taghizadeh-Toosi was funded by Ministry of Environment and Food of Denmark as part of the SINKS2 project. The input of M. Abdalla contributes to the SUPER-G project, which received funding from the European Union's Horizon 2020 Research and Innovation Programme under grant agreement no 774124.Peer reviewedPostprin
Simulation-based assessment of the soil organic carbon sequestration in grasslands in relation to management and climate change scenarios
Soil organic carbon (SOC) is crucial for the quality and productivity of terrestrial ecosystems and its sequestration plays an important role in mitigating climate change. Understanding the effects of agricultural management under future climate on the SOC balance helps decision making in environmental policies. Thereby, grasslands will play a key role, since future climate change may prolong the vegetation period.We used 24 representative grassland sites in Germany to assess the SOC balance obtained from the CANDY model in relation to ten management regimes, 18 future climate change scenarios and different soil types. Simulations were conducted over a period of 110 years.For most of the selected grassland sites an increase in both air temperature and precipitation was observed in the future climate. The effect of management on the SOC balance largely exceeded the effect of soil type and climate. An increasing management intensity (i.e. three to five cuts) generally increased the SOC balance, while extensive management (i.e. two or fewer cuts) lead to SOC losses. The seasonal variation of precipitation was the most important climate metric, with increased SOC sequestration rates being observed with increasing growing season precipitation. Clay soils had the potential for both highest gains and highest losses depending on management and precipitation. Given an overall lower SOC storage potential in sands and loams, the SOC balance in those soil types varied the least in response to climate change.We conclude that fostering SOC sequestration is possible in grassland soils by increasing management intensity, which involves increased fertilizer input and field traffic. This however may stand in conflict with other policy aims, such as preserving biodiversity. Multicriterial assessments are required to estimate the nett greenhouse gas balance and other aspects associated with these management practices at a farm scale
Effects of Agricultural Management Practices on the Temporal Variability of Soil Temperature under Different Crop Rotations in Bad Lauchstaedt-Germany
To investigate the effects of management practices on the dynamics of soil temperature, during 2014–2017, a field experiment was carried out in Bad Lauchstaedt, Germany. In this study, four management systems are compared for determining management-induced changes in soil temperature at different depths: (i) conventional tillage (TC) with the standard rate of N fertilizer (P1N1), (ii) conventional tillage with the half-standard rate of N fertilizer (P1N0), (iii) reduced tillage (TR) with the standard rate of N fertilizer (P0N1), and iv) reduced tillage with the half-standard rate of N fertilizer (P0N0). Temporal analysis of soil temperature is assessed to examine data observed at a specific time to achieve a better understanding of the soil temperature dynamic that occurs at different time scales. The results showed that the soil temperature has decreasing amplitudes and increasing phase shifts with increasing soil depth, i.e., the deeper the measurement depth, the smoother the soil temperature changes cycle and the smaller the variability. Results showed that the diurnal temperature variation is found up to 45 cm depth of soil whereas annual temperature variation is up to a depth of 180 cm. The results, moreover, revealed that soil temperature dynamic was affected by tillage systems and fertilization and a time lag is observed between the temperature fluctuations at the surface and deeper layers, due to induced management effects on plant cover, residues, and soil properties. Although higher soil temperature at the sowing stage under TR is contributed to higher amounts of surface crop residues in crop rotations, the effect of residues on soil temperature variation reduces with an increase in percent plant cover and shading of soil, which happens in the last stage of plant growth. At the last stage of crop development regardless of tillage systems, applying more N fertilization increased crop yield, resulting in cooling soil temperature
Effects of Agricultural Management Practices on the Temporal Variability of Soil Temperature under Different Crop Rotations in Bad Lauchstaedt-Germany
To investigate the effects of management practices on the dynamics of soil temperature, during 2014–2017, a field experiment was carried out in Bad Lauchstaedt, Germany. In this study, four management systems are compared for determining management-induced changes in soil temperature at different depths: (i) conventional tillage (TC) with the standard rate of N fertilizer (P1N1), (ii) conventional tillage with the half-standard rate of N fertilizer (P1N0), (iii) reduced tillage (TR) with the standard rate of N fertilizer (P0N1), and iv) reduced tillage with the half-standard rate of N fertilizer (P0N0). Temporal analysis of soil temperature is assessed to examine data observed at a specific time to achieve a better understanding of the soil temperature dynamic that occurs at different time scales. The results showed that the soil temperature has decreasing amplitudes and increasing phase shifts with increasing soil depth, i.e., the deeper the measurement depth, the smoother the soil temperature changes cycle and the smaller the variability. Results showed that the diurnal temperature variation is found up to 45 cm depth of soil whereas annual temperature variation is up to a depth of 180 cm. The results, moreover, revealed that soil temperature dynamic was affected by tillage systems and fertilization and a time lag is observed between the temperature fluctuations at the surface and deeper layers, due to induced management effects on plant cover, residues, and soil properties. Although higher soil temperature at the sowing stage under TR is contributed to higher amounts of surface crop residues in crop rotations, the effect of residues on soil temperature variation reduces with an increase in percent plant cover and shading of soil, which happens in the last stage of plant growth. At the last stage of crop development regardless of tillage systems, applying more N fertilization increased crop yield, resulting in cooling soil temperature
Use of a green biomass in a biorefinery platform
The emerging environmental issues due to the use of fossil resources are encouraging the exploration of new renewable resources. Biomasses are attracting more interest due to the low environmental impacts, low costs, and high availability on earth. In this scenario, green biorefineries are a promising platform in which green biomasses are used as feedstock. Grasses are mainly composed of cellulose and hemicellulose, and lignin is available in a small amount. In this work, a perennial ryegrass was used as feedstock to develop a green bio-refinery platform. Firstly, the grass was mechanically pretreated, thus obtaining a press juice and a press cake fraction. The press juice has high nutritional values and can be employed as part of fermentation media. The press cake can be employed as a substrate either in enzymatic hydrolysis or in solid-state fermentation. The overall aim of this work was to demonstrate different applications of both the liquid and the solid fractions. For this purpose, the filamentous fungus A. niger and the yeast Y. lipolythica were selected for their ability to produce citric acid. Finally, the possibility was assessed to use the press juice as part of fermentation media to cultivate S. cerevisiae and lactic acid bacteria for ethanol and lactic acid fermentation
Utilization of Lolium perenne varieties as a renewable substrate for single-cell proteins, lactate, and composite materials
Lolium perenne (perennial ryegrass) is aproductive and high-quality forage grass indigenous to Southern Europe, temperate Asia, and North Africa. Nowadays it is widespread and the dominant grass species on green areas in temperate climates. This abundant source of biomass is suitable for the development of bioeconomic processes because of its high cellulose and water-soluble carbohydrate content. In this work, novel breeds of the perennial ryegrass are being examined with regards to their quality parameters and biotechnological utilization options within the context of bioeconomy. Three processing operations are presented. In the first process, the perennial ryegrass is pretreated by pressing or hydrothermal extraction to derive glucosevia subsequent enzymatic hydrolysis of cellulose. A yield of up to 82 % glucose was achieved when using the hydrothermal ex-traction as pretreatment. In a second process, the ryegrass is used to produce lactic acid in high concentrations. The influence of the growth conditions and the cutting time on the carboxylic acid yield is investigated. A yield of lactic acid of above 150 g kg⁻¹ dry matter was achieved. The third process is to use Lolium perenne as a substrate in the fermentation of K. marxianus for the microbial production of single-cell proteins. The perennial ryegrass is screw-pressed and the press juice is used as medium. When supplementing the press juice with yeast media components, a biomass concentration of up to 16 g L⁻¹ could be achieved
Sustainable production of lactic acid using a perennial ryegrass as feedstock—a comparative study of fermentation at the bench- and reactor-scale, and ensiling
Perennial ryegrass (Lolium perenne) is an underutilized lignocellulosic biomass that has several benefits such as high availability, renewability, and biomass yield. The grass press-juice obtained from the mechanical pretreatment can be used for the bio-based production of chemicals. Lactic acid is a platform chemical that has attracted consideration due to its broad area of applications. For this reason, the more sustainable production of lactic acid is expected to increase. In this work, lactic acid was produced using complex medium at the bench- and reactor scale, and the results were compared to those obtained using an optimized press-juice medium. Bench-scale fermentations were carried out in a pH-control system and lactic acid production reached approximately 21.84 ± 0.95 g/L in complex medium, and 26.61 ± 1.2 g/L in press-juice medium. In the bioreactor, the production yield was 0.91 ± 0.07 g/g, corresponding to a 1.4-fold increase with respect to the complex medium with fructose. As a comparison to the traditional ensiling process, the ensiling of whole grass fractions of different varieties harvested in summer and autumn was performed. Ensiling showed variations in lactic acid yields, with a yield up to 15.2% dry mass for the late-harvested samples, surpassing typical silage yields of 6–10% dry mass
Manure processing as a pathway to enhanced nutrient recycling : Report of SuMaNu platform
Circular economy is increasingly demanded across the world to minimize the need for non-renewable sources of materials and energy. The need to introduce new nutrients into the current demand from mineral resources could be reduced significantly via nutrient recycling. This means recovery of nutrients from different nutrient-rich side-streams and their reuse in different measures, the most significant being food production. Nutrients, especially phosphorus (P) and nitrogen (N), are vital for crops to grow. The amounts required as fertilizer products are large. Still, at the time of writing nutrients are not effectively recycled, but a significant share is lost as final disposal and emissions.
Recyclable nutrients are available in different side-streams from agriculture, municipalities and industry. The most significant recyclable material is animal manure which is traditionally used as a fertilizer. However, due to segregation of crop and animal production, manure is often regionally concentrated so that its nutrients may be available in excess to the region’s need. This may result in excessive use of manure in the regions of concentrated animal production, while the crop producing regions need to rely on mineral fertilizers. Both have negative environmental consequences.
Thus, solutions for regional manure reallocation via improving the transportability of manure are needed to reallocate the nutrients to areas in nutrient deficit. To enable such transportation over long distances and to separate P and N from each other and thus enhance their reuse, manure processing could be used.
Manure can be processed with different technologies providing various end-products. The aim of processing is usually to reduce the mass of manure and to concentrate nutrients to improve their transportability. An important aim is also to produce such fertilizer products that replace mineral fertilizers and provide reduced emissions into the environment. Several processing technologies are available and more are being developed.
At the time of writing, manure processing is still limited mainly due to challenges with profitability. The investment into large-scale manure processing as required by regional nutrient reallocation is significant and the market for the novel manure-based fertilizer products is only starting to develop. Development of practices for the storage and spreading of the products is also still required.
In this report, examples of regions in need of nutrient reallocation via manure processing are described for the Baltic Sea Region and the potential and challenges of manure processing as one solution to reduced nutrient emissions discussed. Summaries of available processing technologies and their end-products as fertilizer products are also presented.202