82 research outputs found

    On secondary new particle formation in China

    Get PDF
    Formation of new atmospheric aerosol particles is a global phenomenon that has been observed to take place in even heavily-polluted environments. However, in all environments there appears to be a threshold value of the condensation sink (due to pre-existing aerosol particles) after which the formation rate of 3 nm particles is no longer detected. In China, new particle production has been observed at very high pollution levels (condensation sink about 0.1 s(-1)) in several megacities, including Beijing, Shanghai and Nanjing as well as in Pearl River Delta (PRD). Here we summarize the recent findings obtained from these studies and discuss the various implications these findings will have on future research and policy. (C) Higher Education Press and Springer-Verlag Berlin Heidelberg 2016Peer reviewe

    Atmospheric gaseous hydrochloric and hydrobromic acid in urban Beijing, China : detection, source identification and potential atmospheric impacts

    Get PDF
    Gaseous hydrochloric (HCl) and hydrobromic acid (HBr) are vital halogen species that play essential roles in tropospheric physicochemical processes. Yet, the majority of the current studies on these halogen species were conducted in marine or coastal areas. Detection and source identification of HCl and HBr in inland urban areas remain scarce, thus limiting the full understanding of halogen chemistry and potential atmospheric impacts in the environments with limited influence from the marine sources. Here, both gaseous HCl and HBr were concurrently measured in urban Beijing, China, during winter and early spring of 2019. We observed significant HCl and HBr concentrations ranging from a minimum value at 1 x 10(8) molecules cm(-3) (4 ppt) and 4 x 10(7) molecules cm 3 (1 ppt) up to 6 x 10(9) molecules cm(-3) (222 ppt) and 1 x 10(9) molecules cm(-3) (37 ppt), respectively. The HCl and HBr concentrations are enhanced along with the increase of atmospheric temperature, UVB and levels of gaseous HNO3. Based on the air mass analysis and high correlations of HCl and HBr with the burning indicators (HCN and HCNO), gaseous HCl and HBr are found to be related to anthropogenic burning aerosols. The gas-particle partitioning may also play a dominant role in the elevated daytime HCl and HBr. During the daytime, the reactions of HCl and HBr with OH radicals lead to significant production of atomic Cl and Br, up to 2 x 10(4) molecules cm(-3) s(-1) and 8 x 10(4) molecules cm(-3) s(-1), respectively. The production rate of atomic Br (via HBr + OH) is 2-3 times higher than that of atomic Cl (via HCl + OH), highlighting the potential importance of bromine chemistry in the urban area. On polluted days, the production rates of atomic Cl and Br are faster than those on clean days. Furthermore, our observations of elevated HCl and HBr may suggest an important recycling pathway of halogen species in inland megacities and may provide a plausible explanation for the widespread halogen chemistry, which could affect the atmospheric oxidation in China.Peer reviewe

    Size-segregated particle number and mass concentrations from different emission sources in urban Beijing

    Get PDF
    Although secondary particulate matter is reported to be the main contributor of PM2.5 during haze in Chinese megacities, primary particle emissions also affect particle concentrations. In order to improve estimates of the contribution of primary sources to the particle number and mass concentrations, we performed source apportionment analyses using both chemical fingerprints and particle size distributions measured at the same site in urban Beijing from April to July 2018. Both methods resolved factors related to primary emissions, including vehicular emissions and cooking emissions, which together make up 76% and 24% of total particle number and organic aerosol (OA) mass, respectively. Similar source types, including particles related to vehicular emissions (1.6 +/- 1.1 mu gm(-3); 2.4 +/- 1.8 x 10(3) cm(-3) and 5.5 +/- 2.8 x 10(3) cm(-3) for two traffic-related components), cooking emissions (2.6 +/- 1.9 mu gm(-3) and 5.5 +/- 3.3 x 10(3) cm(-3)) and secondary aerosols (51 +/- 41 mu gm(-3) and 4.2 +/- 3.0 x 10(3) cm(-3)), were resolved by both methods. Converted mass concentrations from particle size distributions components were comparable with those from chemical fingerprints. Size distribution source apportionment separated vehicular emissions into a component with a mode diameter of 20 nm ("traffic-ultrafine") and a component with a mode diameter of 100 nm ("traffic-fine"). Consistent with similar day- and nighttime diesel vehicle PM2.5 emissions estimated for the Beijing area, traffic-fine particles, hydrocarbon-like OA (HOA, traffic-related factor resulting from source apportionment using chemical fingerprints) and black carbon (BC) showed similar diurnal patterns, with higher concentrations during the night and morning than during the afternoon when the boundary layer is higher. Traffic-ultrafine particles showed the highest concentrations during the rush-hour period, suggesting a prominent role of local gasoline vehicle emissions. In the absence of new particle formation, our re-sults show that vehicular-related emissions (14% and 30% for ultrafine and fine particles, respectively) and cooking-activity-related emissions (32 %) dominate the particle number concentration, while secondary particulate matter (over 80 %) governs PM2.5 mass during the non-heating season in Beijing.Peer reviewe

    Unprecedented Ambient Sulfur Trioxide (SO3) Detection : Possible Formation Mechanism and Atmospheric Implications

    Get PDF
    Sulfur trioxide (SO3) is a crucial compound for atmospheric sulfuric acid (H2SO4) formation, acid rain formation, and other atmospheric physicochemical processes. During the daytime, SO3 is mainly produced from the photo-oxidation of SO2 by OH radicals. However, the sources of SO3 during the early morning and night, when OH radicals are scarce, are not fully understood. We report results from two field measurements in urban Beijing during winter and summer 2019, using a nitrate-CI-APi-LTOF (chemical ionization-atmospheric pressure interface-long-time-offlight) mass spectrometer to detect atmospheric SO3 and H2SO4. Our results show the level of SO3 was higher during the winter than during the summer, with high SO3 levels observed especially during the early morning (similar to 05:00 to similar to 08:30) and night (similar to 18:00 to similar to 05:00 the next day). On the basis of analysis of SO2, NOx, black carbon, traffic flow, and atmospheric ions, we suggest SO3 could be formed from the catalytic oxidation of SO2 on the surface of traffic-related black carbon. This previously unidentified SO3 source results in significant H2SO4 formation in the early morning and thus promotes sub-2.5 nm particle formation. These findings will help in understanding urban SO3 and formulating policies to mitigate secondary particle formation in Chinese megacities.Peer reviewe

    Estimating fine-root production by tree species and understorey functional groups in two contrasting peatland forests

    Get PDF
    Background and aims Estimation of root-mediated carbon fluxes in forested peatlands is needed for understanding ecosystem functioning and supporting greenhouse gas inventories. Here, we aim to determine the optimal methodology for utilizing ingrowth cores in estimating annual fine-root production (FRP) and its vertical distribution in trees, shrubs and herbs. Methods We used 3-year data obtained with modified ingrowth core method and tested two calculation methods: 'ingrowth-dividing' and `ingrowth-subtracting'. Results The ingrowth-dividing method combined with a 2-year incubation of ingrowth cores can be used for the 'best estimate' of FRP. The FRP in the nutrient-rich fen forest (561 g m(-2)) was more than twice that in the nutrient-poor bog forest (244 g m(-2)). Most FRP occurred in the top 20-cm layer (76-82 %). Tree FRP accounted for 71 % of total FRP in the bog and 94 % in the fen forests, respectively, following the aboveground vegetation patterns; however, in fen forest the proportions of spruce and birch in FRP were higher than their proportions in stand basal area. Conclusions Our methodology may be used to study peatland FRP patterns more widely and will reduce the volume of labour-intensive work, but will benefit from verification with other methods, as is the case in all in situ FRP studies.Peer reviewe

    The effect of COVID-19 restrictions on atmospheric new particle formation in Beijing

    Get PDF
    During the COVID-19 lockdown, the dramatic reduction of anthropogenic emissions provided a unique opportunity to investigate the effects of reduced anthropogenic activity and primary emissions on atmospheric chemical processes and the consequent formation of secondary pollutants. Here, we utilize comprehensive observations to examine the response of atmospheric new particle formation (NPF) to the changes in the atmospheric chemical cocktail. We find that the main clustering process was unaffected by the drastically reduced traffic emissions, and the formation rate of 1.5 nm particles remained unaltered. However, particle survival probability was enhanced due to an increased particle growth rate (GR) during the lockdown period, explaining the enhanced NPF activity in earlier studies. For GR at 1.5-3 nm, sulfuric acid (SA) was the main contributor at high temperatures, whilst there were unaccounted contributing vapors at low temperatures. For GR at 3-7 and 7-15 nm, oxygenated organic molecules (OOMs) played a major role. Surprisingly, OOM composition and volatility were insensitive to the large change of atmospheric NOx concentration; instead the associated high particle growth rates and high OOM concentration during the lockdown period were mostly caused by the enhanced atmospheric oxidative capacity. Overall, our findings suggest a limited role of traffic emissions in NPF.Peer reviewe

    Pan-Eurasian Experiment (PEEX): Towards a holistic understanding of the feedbacks and interactions in the land-Atmosphere-ocean-society continuum in the northern Eurasian region

    Get PDF
    The northern Eurasian regions and Arctic Ocean will very likely undergo substantial changes during the next decades. The Arctic-boreal natural environments play a crucial role in the global climate via albedo change, carbon sources and sinks as well as atmospheric aerosol production from biogenic volatile organic compounds. Furthermore, it is expected that global trade activities, demographic movement, and use of natural resources will be increasing in the Arctic regions. There is a need for a novel research approach, which not only identifies and tackles the relevant multi-disciplinary research questions, but also is able to make a holistic system analysis of the expected feedbacks. In this paper, we introduce the research agenda of the Pan-Eurasian Experiment (PEEX), a multi-scale, multi-disciplinary and international program started in 2012 (https://www.atm.helsinki.fi/peex/). PEEX sets a research approach by which large-scale research topics are investigated from a system perspective and which aims to fill the key gaps in our understanding of the feedbacks and interactions between the land-Atmosphere-Aquatic-society continuum in the northern Eurasian region. We introduce here the state of the art for the key topics in the PEEX research agenda and present the future prospects of the research, which we see relevant in this context

    Ototoxicity of cisplatin plus standard radiation therapy vs. accelerated radiation therapy in glioblastoma patients

    Full text link
    Purpose : To assess the effect of cisplatin (CDDP) plus concurrent radiation therapy on hearing loss. Methods : 451 patients with glioblastoma multiforme (GBM) were randomly assigned after surgery to: Arm A: Carmustine (BCNU) + standard radiation therapy (SRT); Arm B: BCNU + accelerated radiation therapy (ART: 160 cGy twice daily for 15 days); Arm C: CDDP + BCNU + SRT; or Arm D: CDDP + BCNU + ART. Patients on arms C and D received audiograms at baseline, and prior to the start of RT, and prior to cycles 3 and 6. Otologic toxicities were recorded at each visit. Results : 56% of patients had hearing loss at baseline. 13% and 50% of patients experienced worsening ototoxicity after 1 year of treatment in arms A and B vs. C and D, respectively, with 13% of those on arms C and D experiencing significant ototoxicity (≥ grade 3) at 6 months. Increasing age was associated with an increased risk of ototoxicity. Conclusions : Increased exposure to CDDP increases the risk of ototoxicity over time. Older patients are more susceptible to hearing loss with CDDP. The low proportion of patients with clinically significant ototoxicity suggests that baseline screening is unnecessary in GBM patients.Peer Reviewedhttp://deepblue.lib.umich.edu/bitstream/2027.42/43476/1/11060_2005_Article_9049.pd

    Pan-Eurasian Experiment (PEEX) : towards a holistic understanding of the feedbacks and interactions in the land–atmosphere–ocean–society continuum in the northern Eurasian region

    Get PDF
    Contributors: Hanna K. Lappalainen1,2, Veli-Matti Kerminen1, Tuukka Petäjä1, Theo Kurten3, Aleksander Baklanov4,5, Anatoly Shvidenko6, Jaana Bäck7, Timo Vihma2, Pavel Alekseychik1, Stephen Arnold8, Mikhail Arshinov9, Eija Asmi2, Boris Belan9, Leonid Bobylev10, Sergey Chalov11, Yafang Cheng12, Natalia Chubarova11, Gerrit de Leeuw1,2, Aijun Ding13, Sergey Dobrolyubov11, Sergei Dubtsov14, Egor Dyukarev15, Nikolai Elansky16, Kostas Eleftheriadis17, Igor Esau18, Nikolay Filatov19, Mikhail Flint20, Congbin Fu13, Olga Glezer21, Aleksander Gliko22, Martin Heimann23, Albert A. M. Holtslag24, Urmas Hõrrak25, Juha Janhunen26, Sirkku Juhola27, Leena Järvi1, Heikki Järvinen1, Anna Kanukhina28, Pavel Konstantinov11, Vladimir Kotlyakov29, Antti-Jussi Kieloaho1, Alexander S. Komarov30, Joni Kujansuu1, Ilmo Kukkonen31, Ella Kyrö1, Ari Laaksonen2, Tuomas Laurila2, Heikki Lihavainen2, Alexander Lisitzin32, Aleksander Mahura5, Alexander Makshtas33, Evgeny Mareev34, Stephany Mazon1, Dmitry Matishov35,†, Vladimir Melnikov36, Eugene Mikhailov37, Dmitri Moisseev1, Robert Nigmatulin33, Steffen M. Noe38, Anne Ojala7, Mari Pihlatie1, Olga Popovicheva39, Jukka Pumpanen40, Tatjana Regerand19, Irina Repina16, Aleksei Shcherbinin27, Vladimir Shevchenko33, Mikko Sipilä1, Andrey Skorokhod16, Dominick V. Spracklen8, Hang Su12, Dmitry A. Subetto19, Junying Sun41, Arkady Yu Terzhevik19, Yuri Timofeyev42, Yuliya Troitskaya34, Veli-Pekka Tynkkynen42, Viacheslav I. Kharuk43, Nina Zaytseva22, Jiahua Zhang44, Yrjö Viisanen2, Timo Vesala1, Pertti Hari7, Hans Christen Hansson45, Gennady G. Matvienko9, Nikolai S. Kasimov11, Huadong Guo44, Valery Bondur46, Sergej Zilitinkevich1,2,11,34, and Markku Kulmala1 1Department of Physics, University of Helsinki, 00014 Helsinki, Finland 2Finnish Meteorological Institute, Research and Development, 00101 Helsinki, Finland 3Department of Chemistry, University of Helsinki, 00014 Helsinki, Finland 4World Meteorological Organization, 1211 Genève, Switzerland 5Danish Meteorological Institute, Research and Development Department, 2100, Copenhagen 6International Institute for Applied Systems Analysis, 2361 Laxenburg, Austria 7Department of Forest Sciences, University of Helsinki, 00014 Helsinki, Finland 8Institute for Climate and Atmospheric Science, School of Earth and Environment, University of Leeds, Leeds, LS2 9JT, UK 9Institute of Atmospheric Optics, Russian Academy of Sciences, Tomsk 634021, Russia 10Nansen International Environmental and Remote Sensing Center, St. Petersburg, Russia 11Lomonosov Moscow State University, Faculty of Geography, Moscow 119899, Russia 12Max Planck Institute for Chemistry, 55128 Mainz, Germany 13Institute for Climate and Global Change Research & School of Atmospheric Sciences, Nanjing University, 210023 Nanjing, China 14Institute of Chemical Kinetics & Combustion, Russian Academy of Sciences, 630090 Novosibirsk, Russia 15Institute of Monitoring of Climatic & Ecological Systems SB RAS, 634055 Tomsk, Russia 16A. M. Obukhov Institute of Atmospheric Physics, Russian Academy of Sciences, Russia 17National Centre of Scientific Research "DEMOKRITOS", Greece 18Nansen Environmental and Remote Sensing Center/Bjerknes Centre for Climate Research, 5006 Bergen, Norway 19Northern Water Problems Institute, Karelian Research Center, Russian Academy of Sciences,185003 Petrozavodsk, Russia 20P. P. Shirshov, Institute of Oceanology, Russian Academy of Sciences, Russian Academy of Sciences, 117997 Moscow, Russia 21Institute of Geography, Russian Academy of Sciences, Moscow, Russia 22Depart ment of Earth Sciences of the Russian Academy of Sciences, Russian Academy of Sciences, 119991, Moscow, Russia 23Max-Planck-Institute for Biogeochemistry, 07745 Jena, Germany 24Wageningen University, 6708 Wageningen, Nederland 25Institute of Physics, University of Tartu, 18 Ülikooli St., 50090 Tartu, Estonia 26University of Helsinki, Department of World Cultures, 00014 Helsinki, Finland 27Department of Environmental Sciences, University of Helsinki, 00014 Helsinki, Finland 28Russian State Hydrometeorological University, 195196 Saint Petersburg, Russia 29Institute of Geography, Russian Academy of Sciences, Moscow, Russia 30Institute of Physico-chemical & Biological Problems in Soil Science, Russian Academy of Sciences, 142290 Institutskaya, Russia 31University of Helsinki, Geophysics and Astronomy, 00014 Helsinki, Finland 32Shirshov Institute of Oceanology, Russian Academy of Sciences, 117997 Moscow, Russia 33Actic & Antarctic Research Institute, Russian Academy of Sciences, St. Petersburg 199397, Russia 34Department of Radiophysics, Nizhny Novgorod State University, Nizhny Novgorod, Russia 35Southern Center of Russian Academy of Sciences, Rostov on Don, Russia 36Tyumen Scientific Center, Siberian Branch, Russian Academy of Science, Russia 37Saint Petersburg State University, 7/9 Universitetskaya nab., St. Petersburg, 199034 Russia 38Institute of Agricultural and Environmental Sciences, Estonian University of Life Sciences, 51014 Tartu, Estonia 39Skobeltsyn Institute of Nuclear Physics, Moscow State University, Department Microelectronics, Russia 40University of Eastern Finland, Department of Environmental Science, P.O. Box 1627, FI-70211 Kuopio, Finland 41Craduate University of Chinese Academy of Sciences, 100049 Beijing, China 42Aleksanteri Institute and Department of Social Research, 00014 University of Helsinki, Finland 43Sukachev Forest Institute, Russian Academy of Sciences, Krasnoyarsk 660036, Russia 44Institute of Remote Sensing and Digital Earth, Chinese Academy of Sciences, Beijing, 100094, China 45Environmental Science and Analytical Chemistry, Stockholm University, Sweden 46AEROCOSMOS Research Institute for Aerospace Monitoring, 105064, Moscow, Russia †deceased, 20 August 2015The Northern Eurasian regions and Arctic Ocean will very likely undergo substantial changes during the next decades. The arctic-boreal natural environments play a crucial role in the global climate via the albedo change, carbon sources and sinks, as well as atmospheric aerosol production via biogenic volatile organic compounds. Furthermore, it is expected that the global trade activities, demographic movement and use of natural resources will be increasing in the Arctic regions. There is a need for a novel research approach, which not only identifies and tackles the relevant multi-disciplinary research questions, but is also able to make a holistic system analysis of the expected feedbacks. In this paper, we introduce the research agenda of the Pan-Eurasian Experiment (PEEX), a multi-scale, multi-disciplinary and international program started in 2012 (https://www.atm.helsinki.fi/peex/). PEEX is setting a research approach where large-scale research topics are investigated from a system perspective and which aims to fill the key gaps in our understanding of the feedbacks and interactions between the land–atmosphere–aquatic–society continuum in the Northern Eurasian region. We introduce here the state of the art of the key topics in the PEEX research agenda and give the future prospects of the research which we see relevant in this context.Peer reviewe
    corecore