569 research outputs found

    Muon identification for LHCb Run 3

    Full text link
    Muon identification is of paramount importance for the physics programme of LHCb. In the upgrade phase, starting from Run 3 of the LHC, the trigger of the experiment will be solely based on software. The luminosity increase to 2×10332\times10^{33} cm−2^{-2}s−1^{-1} will require an improvement of the muon identification criteria, aiming at performances equal or better than those of Run 2, but in a much more challenging environment. In this paper, two new muon identification algorithms developed in view of the LHCb upgrade are presented, and their performance in terms of signal efficiency versus background reduction is shown

    An overview of the mid-infrared spectro-interferometer MATISSE: science, concept, and current status

    Full text link
    MATISSE is the second-generation mid-infrared spectrograph and imager for the Very Large Telescope Interferometer (VLTI) at Paranal. This new interferometric instrument will allow significant advances by opening new avenues in various fundamental research fields: studying the planet-forming region of disks around young stellar objects, understanding the surface structures and mass loss phenomena affecting evolved stars, and probing the environments of black holes in active galactic nuclei. As a first breakthrough, MATISSE will enlarge the spectral domain of current optical interferometers by offering the L and M bands in addition to the N band. This will open a wide wavelength domain, ranging from 2.8 to 13 um, exploring angular scales as small as 3 mas (L band) / 10 mas (N band). As a second breakthrough, MATISSE will allow mid-infrared imaging - closure-phase aperture-synthesis imaging - with up to four Unit Telescopes (UT) or Auxiliary Telescopes (AT) of the VLTI. Moreover, MATISSE will offer a spectral resolution range from R ~ 30 to R ~ 5000. Here, we present one of the main science objectives, the study of protoplanetary disks, that has driven the instrument design and motivated several VLTI upgrades (GRA4MAT and NAOMI). We introduce the physical concept of MATISSE including a description of the signal on the detectors and an evaluation of the expected performances. We also discuss the current status of the MATISSE instrument, which is entering its testing phase, and the foreseen schedule for the next two years that will lead to the first light at Paranal.Comment: SPIE Astronomical Telescopes and Instrumentation conference, June 2016, 11 pages, 6 Figure

    An introduction to InP-based generic integration technology

    Get PDF
    Photonic integrated circuits (PICs) are considered as the way to make photonic systems or subsystems cheap and ubiquitous. PICs still are several orders of magnitude more expensive than their microelectronic counterparts, which has restricted their application to a few niche markets. Recently, a novel approach in photonic integration is emerging which will reduce the R&D and prototyping costs and the throughput time of PICs by more than an order of magnitude. It will bring the application of PICs that integrate complex and advanced photonic functionality on a single chip within reach for a large number of small and larger companies and initiate a breakthrough in the application of Photonic ICs. The paper explains the concept of generic photonic integration technology using the technology developed by the COBRA research institute of TU Eindhoven as an example, and it describes the current status and prospects of generic InP-based integration technology

    An introduction to InP-based generic integration technology

    Get PDF
    Photonic integrated circuits (PICs) are considered as the way to make photonic systems or subsystems cheap and ubiquitous. PICs still are several orders of magnitude more expensive than their microelectronic counterparts, which has restricted their application to a few niche markets.Recently, a novel approach in photonic integration is emerging which will reduce the R&D and prototyping costs and the throughput time of PICs by more than an order of magnitude. It will bring the application of PICs that integrate complex and advanced photonic functionality on a single chip within reach for a large number of small and larger companies and initiate a breakthrough in the application of Photonic ICs. The paper explains the concept of generic photonic integration technology using the technology developed by the COBRA research institute of TU Eindhoven as an example, and it describes the current status and prospects of generic InP-based integration technology.Funding is acknowledged by the EU-projects ePIXnet, EuroPIC and PARADIGM and the Dutch projects NRC Photonics, MEMPHIS, IOP Photonic Devices and STW GTIP. Many others have contributed and the authors would like to thank other PARADIGM and EuroPIC partners for their help in discussions, particularly Michael Robertson (CIP).This is the final published version distributed under a Creative Commons Attribution License. It can also be viewed on the publisher's website at: http://iopscience.iop.org/0268-1242/29/8/08300

    Angular analysis of D0→π+π−μ+μ−D^0 \to \pi^+\pi^-\mu^+\mu^- and D0→K+K−μ+μ−D^0 \to K^+K^-\mu^+\mu^- decays and search for CPCP violation

    Get PDF
    The first full angular analysis and an updated measurement of the decay-rate CPCP asymmetry of the D0→π+π−μ+μ−D^0 \to \pi^+\pi^-\mu^+\mu^- and D0→K+K−μ+μ−D^0 \to K^+K^-\mu^+\mu^- decays are reported. The analysis uses proton-proton collision data collected with the LHCb detector at centre-of-mass energies of 7, 8 and 13 TeV. The data set corresponds to an integrated luminosity of 9 fb−1^{-1}. The full set of CPCP-averaged angular observables and their CPCP asymmetries are measured as a function of the dimuon invariant mass. The results are consistent with expectations from the standard model and with CPCP symmetry.Comment: All figures and tables, along with any supplementary material and additional information, are available at https://cern.ch/lhcbproject/Publications/p/LHCb-PAPER-2021-035.html (LHCb public pages

    Measurement of the photon polarization in Λb→Λγ\Lambda_b \to \Lambda \gamma decays

    Get PDF
    The photon polarization in b→sγb \to s \gamma transitions is measured for the first time in radiative b-baryon decays exploiting the unique spin structure of Λb→Λγ\Lambda_b \to \Lambda \gamma decays. A data sample corresponding to an integrated luminosity of 6  fb−16\;fb^{-1} collected by the LHCb experiment in pppp collisions at a center-of-mass energy of 13  TeV13\;TeV is used. The photon polarization is measured to be αγ=0.82 − 0.26 − 0.13 + 0.17 + 0.04\alpha_{\gamma}= 0.82^{\,+\,0.17\,+\,0.04}_{\,-\,0.26\,-\,0.13}, where the first uncertainty is statistical and the second systematic. This result is in agreement with the Standard Model prediction and previous measurements in b-meson decays. Charge-parity breaking effects are studied for the first time in this observable and found to be consistent with CPCP symmetry.Comment: All figures and tables, along with machine-readable versions and any supplementary material and additional information, are available at https://cern.ch/lhcbproject/Publications/p/LHCb-PAPER-2021-030.html (LHCb public pages

    Observation of the Decay Λ0b→Λ+cτ−¯ν

    Get PDF
    The first observation of the semileptonic b-baryon decay Λb0→Λc+τ-ν¯τ, with a significance of 6.1σ, is reported using a data sample corresponding to 3 fb-1 of integrated luminosity, collected by the LHCb experiment at center-of-mass energies of 7 and 8 TeV at the LHC. The τ- lepton is reconstructed in the hadronic decay to three charged pions. The ratio K=B(Λb0→Λc+τ-ν¯τ)/B(Λb0→Λc+π-π+π-) is measured to be 2.46±0.27±0.40, where the first uncertainty is statistical and the second systematic. The branching fraction B(Λb0→Λc+τ-ν¯τ)=(1.50±0.16±0.25±0.23)% is obtained, where the third uncertainty is from the external branching fraction of the normalization channel Λb0→Λc+π-π+π-. The ratio of semileptonic branching fractions R(Λc+)B(Λb0→Λc+τ-ν¯τ)/B(Λb0→Λc+μ-ν¯μ) is derived to be 0.242±0.026±0.040±0.059, where the external branching fraction uncertainty from the channel Λb0→Λc+μ-ν¯μ contributes to the last term. This result is in agreement with the standard model prediction

    Searches for rare Bs0 and B 0 decays into four muons

    Get PDF
    Searches for rare Bs0 and B0 decays into four muons are performed using proton-proton collision data recorded by the LHCb experiment, corresponding to an integrated luminosity of 9 fb−1. Direct decays and decays via light scalar and J/ψ resonances are considered. No evidence for the six decays searched for is found and upper limits at the 95% confidence level on their branching fractions ranging between 1.8 × 10−10 and 2.6 × 10−9 are set. [Figure not available: see fulltext.
    • …
    corecore