400 research outputs found

    Optical susceptibilities of supported indium tin oxide thin films

    Get PDF
    The third-order nonlinear optical susceptibility of indium tin oxide (ITO) thin films on glass substrates, χ(3)ITO, was determined in the near-IR spectral region using degenerate four wave mixing (DFWM)spectroscopy with 100fs laser pulses. A DFWM method for measuring thin films on thick substrates was refined for the characterization of films less than 100nm thick and applied to ∼25nm thick ITO films. It was found that χ(3)ITO is purely electronic at 900–1300nm (11000–7700cm−1) and has a value of (2.16±0.18)×10−18m2V−2. Theχ(3)ITO value reaches (3.36±0.28)×10−18m2V−2 at 1500nm (6700cm−1) due to two-photon absorption by free carriers (electrons). Ultrafast electron relaxation was also observed. The ∼100fs lifetime of this process could reflect electron scattering in the conduction band

    Molecular AND logic gate based on electric dichroism of a photochromic dihydroindolizine

    Get PDF
    (Chemical Equation Presented) Very ANDy: A photochromic molecular switch has been found to act as an AND Boolean logic gate. The switch takes as input both UV light, which causes photo-isomerization of a dihydroindolizine to an open, dipolar form, and an electric field, which aligns this isomer in solution (see scheme). The output of the gate is read as the electric linear dichroism response of the open isomer. The gate can be reset with visible light. \ua9 2005 Wiley-VCH Verlag GmbH & Co. KGaA

    Comparison of Minority Carrier Lifetime Measurements in Superstrate and Substrate CdTe PV Devices: Preprint

    Get PDF
    We discuss typical and alternative procedures to analyze time-resolved photoluminescence (TRPL) measurements of minority carrier lifetime (MCL) with the hope of enhancing our understanding of how this technique may be used to better analyze CdTe photovoltaic (PV) device functionality. Historically, TRPL measurements of the fast recombination rate (t1) have provided insightful correlation with broad device functionality. However, we have more recently found that t1 does not correlate as well with smaller changes in device performance, nor does it correlate well with performance differences observed between superstrate and substrate CdTe PV devices. This study presents TRPL data for both superstrate and substrate CdTe devices where both t1 and the slower TRPL decay (t2) are analyzed. The study shows that changes in performance expected from small changes in device processing may correlate better with t2. Numerical modeling further suggests that, for devices that are expected to have similar drift field in the depletion region, effects of changes in bulk MCL and interface recombination should be more pronounced in t2. Although this technique may provide future guidance to improving CdS/CdTe device performance, it is often difficult to extract statistically precise values for t2, and therefore t2 data may demonstrate significant scatter when correlated with performance parameters

    Improved performance of porphyrin-based dye sensitised solar cells by phosphinic acid surface treatment

    Get PDF
    Chemical surface treatment of porphyrin-sensitised titania films using bis-(4-methoxyphenyl) phosphinic acid after dye adsorption, results in large improvements in DSSC efficiencies which originate primarily from higher short circuit currents. The result was attributed to a positive shift in the TiO2 quasi-Fermi level with simultaneous retardation of charge recombination. High device performances have been achieved even using simplified electrolyte matrices devoid of the common additives, LiI and t-butylpyridine

    Effects of internal luminescence and internal optics on V-oc and J(sc) of III-V solar cells

    Get PDF
    For solar cells dominated by radiative recombination, the performance can be significantly enhanced by improving the internal optics. Internally radiated photons can be directly emitted from the cell, but if confined by good internal reflectors at the front and back of the cell they can also be re-absorbed with a significant probability. This so-called photon recycling leads to an increase in the equilibrium minority carrier concentration and therefore the open-circuit voltage, Voc. In multijunction cells, the internal luminescence from a particular junction can also be coupled into a lower bandgap junction where it generates photocurrent in addition to the externally generated photocurrent, and affects the overall performance of the tandem. We demonstrate and discuss the implications of a detailed model that we have developed for real, non-idealized solar cells that calculates the external luminescent efficiency, accounting for wavelength-dependent optical properties in each layer, parasitic optical and electrical losses, multiple reflections within the cell and isotropic internal emission. The calculation leads to Voc, and we show data on high quality GaAs cells that agree with the trends in the model as the optics are systematically varied. For multijunction cells the calculation also leads to the luminescent coupling efficiency, and we show data on GaInP/GaAs tandems where the trends also agree as the coupling is systematically varied. In both cases, the effects of the optics are most prominent in cells with good material quality. The model is applicable to any solar cell for which the optical properties of each layer are well-characterized, and can be used to explore a wide phase space of design for single junction and multijunction solar cells

    Defect-mediated metastability and carrier lifetimes in polycrystalline (Ag,Cu)(In,Ga)Se-2 absorber materials

    Get PDF
    Using a combination of optical and electrical measurements, we develop a model for metastable defects in Ag-alloyed Cu(In,Ga)Se-2, one of the leading thin film photovoltaic materials. By controlling the pre-selenization conditions of the back contact prior to the growth of polycrystalline (Ag,Cu)(In,Ga)Se-2 absorbers and subsequently exposing them to various stresses (light soaking and dark-heat), we explore the nature and role of metastable defects on the electro-optical and photovoltaic performance of high-efficiency solar cell materials and devices. Positron annihilation spectroscopy indicates that dark-heat exposure results in an increase in the concentration of the selenium-copper divacancy complex (V-Se-V-Cu), attributed to depassivation of donor defects. Deep-level optical spectroscopy finds a corresponding increase of a defect at E-v+0.98eV, and deep-level transient spectroscopy suggests that this increase is accompanied by a decrease in the concentration of mid-bandgap recombination centers. Time-resolved photoluminescence excitation spectroscopy data are consistent with the presence of the V-Se-V-Cu divacancy complex, which may act as a shallow trap for the minority carriers. Light-soaking experiments are consistent with the V-Se-V-Cu optical cycle proposed by Lany and Zunger, resulting in the conversion of shallow traps into recombination states that limit the effective minority carrier recombination time (and the associated carrier diffusion length) and an increase in the doping density that limits carrier extraction in photovoltaic devices.Peer reviewe

    Extending Metal-to-Polyoxometalate Charge Transfer Lifetimes: The Effect of Heterometal Location

    Get PDF
    In an effort to develop robust molecular sensitizers for solar fuel production, the electronic structure and photodynamics of transition-metal-substituted polyoxometalates (POMs), a novel class of compound in this context, was examined. Experimental and computational techniques including femtosecond (fs) transient absorption spectroscopy have been used to study the cobalt-containing Keggin POMs, [CoIIW12O40]6− (1 a), [CoIIIW12O40]5− (2 a), [SiCoII(H2O)W11O39]6− (3 a), and [SiCoIII(H2O)W11O39]5− (4 a), finding the longest lived charge transfer excited state so far observed in a POM and elucidating the electronic structures and excited-state dynamics of these compounds at an unprecedented level. All species exhibit a bi-exponential decay in which early dynamic processes with time constants in the fs domain yield longer lived excited states which decay with time constants in the ps to ns domain. The initially formed states of 1 a and 3 a are considered to result from metal-to-polyoxometalate charge transfer (MPCT) from CoII to W, while the longer-lived excited state of 1 a is tentatively assigned to a localized intermediate MPCT state. The excited state formed by the tetrahedral cobalt(II) centered heteropolyanion (1 a) is far longer-lived (τ=420 ps in H2O; τ=1700 ps in MeCN) than that of 3 a (τ=1.3 ps), in which the single CoII atom is located in a pseudo-octahedral addendum site. Short-lived states are observed for the two CoIII-containing heteropolyanions 2 a (τ=4.4 ps) and 4 a (τ=6.3 ps) and assigned solely to OCoIII charge transfer. The dramatically extended lifetime for 1 a versus 3 a is ascribed to a structural change permitted by the coordinatively flexible central site, weak orbital overlap of the central Co with the polytungstate framework, and putative transient valence trapping of the excited electron on a single W atom, a phenomenon not noted previously in POMs
    • …
    corecore