45 research outputs found

    The High Eccentricity of the Planet Around 16 Cyg B

    Full text link
    We consider the high eccentricity, 0.66, of the newly discovered planet around 16 Cyg B, using the fact that the parent star is part of a wide binary. We show that the high eccentricity of the planet could be the result of tidal forces exerted on 16 Cyg B and its planet by 16 Cyg A, the distant companion in the system. By following stellar triple systems with parameters similar to those of 16 Cyg, we have established that the orbital eccentricity of the planet could have gone through strong modulation, with an amplitude of 0.8 or even larger, with typical timescale of tens of millions years. The amplitude of the planet eccentricity strongly depends on the relative inclination between the plane of motion of the planet and that of the wide binary 16 Cyg AB. To account for the present eccentricity of the planet we have to assume that the angle between the two planes of motion is large, at least 60 deg. We argue that this assumption is reasonable for wide binaries like 16 Cyg AB.Comment: 2 Figures, Latex, submitted for publication to ApJ

    Studies of multiple stellar systems - III. Modulation of orbital elements in the triple-lined system HD 109648

    Get PDF
    The triple-lined spectroscopic triple system HD 109648 has one of the shortest periods known for the outer orbit in a late-type triple, 120.5 days, and the ratio between the periods of the outer and inner orbits is small, 22:1. With such extreme values, this system should show orbital element variations over a timescale of about a decade. We have monitored the radial velocities of HD 109648 with the CfA Digital Speedometers for eight years, and have found evidence for modulation of some orbital elements. While we see no definite evidence for modulation of the inner binary eccentricity, we clearly observe variations in the inner and outer longitudes of periastron, as well as in the radial velocity amplitudes of the three components. The observational results, combined with numerical simulations, allow us to put constraints on the orientation of the orbits.Comment: 11 pages, 7 figures, accepted by MNRA

    Improved equations for eccentricity generation in hierarchical triple systems

    Full text link
    In a series of papers, we developed a technique for estimating the inner eccentricity in hierarchical triple systems, with the inner orbit being initially circular. However, for certain combinations of the masses and the orbital elements, the secular part of the solution failed. In the present paper, we derive a new solution for the secular part of the inner eccentricity, which corrects the previous weakness. The derivation applies to hierarchical triple systems with coplanar and initially circular orbits. The new formula is tested numerically by integrating the full equations of motion for systems with mass ratios from 10^(-3) to 10^(3). We also present more numerical results for short term eccentricity evolution, in order to get a better picture of the behaviour of the inner eccentricity.Comment: Accepted for publication in MNRA

    Dynamical analysis and constraints for the HD 196885 system

    Full text link
    The HD\,196885 system is composed of a binary star and a planet orbiting the primary. The orbit of the binary is fully constrained by astrometry, but for the planet the inclination with respect to the plane of the sky and the longitude of the node are unknown. Here we perform a full analysis of the HD\,196885 system by exploring the two free parameters of the planet and choosing different sets of angular variables. We find that the most likely configurations for the planet is either nearly coplanar orbits (prograde and retrograde), or highly inclined orbits near the Lidov-Kozai equilibrium points, i = 44^{\circ} or i = 137^{\circ} . Among coplanar orbits, the retrograde ones appear to be less chaotic, while for the orbits near the Lidov-Kozai equilibria, those around \omega= 270^{\circ} are more reliable, where \omega_k is the argument of pericenter of the planet's orbit with respect to the binary's orbit. From the observer's point of view (plane of the sky) stable areas are restricted to (I1, \Omega_1) \sim (65^{\circ}, 80^{\circ}), (65^{\circ},260^{\circ}), (115^{\circ},80^{\circ}), and (115^{\circ},260^{\circ}), where I1 is the inclination of the planet and \Omega_1 is the longitude of ascending node.Comment: 10 pages, 7 figures. A&A Accepte

    Hot Jupiters from Secular Planet--Planet Interactions

    Full text link
    About 25 per cent of `hot Jupiters' (extrasolar Jovian-mass planets with close-in orbits) are actually orbiting counter to the spin direction of the star. Perturbations from a distant binary star companion can produce high inclinations, but cannot explain orbits that are retrograde with respect to the total angular momentum of the system. Such orbits in a stellar context can be produced through secular (that is, long term) perturbations in hierarchical triple-star systems. Here we report a similar analysis of planetary bodies, including both octupole-order effects and tidal friction, and find that we can produce hot Jupiters in orbits that are retrograde with respect to the total angular momentum. With distant stellar mass perturbers, such an outcome is not possible. With planetary perturbers, the inner orbit's angular momentum component parallel to the total angular momentum need not be constant. In fact, as we show here, it can even change sign, leading to a retrograde orbit. A brief excursion to very high eccentricity during the chaotic evolution of the inner orbit allows planet-star tidal interactions to rapidly circularize that orbit, decoupling the planets and forming a retrograde hot Jupiter.Comment: accepted for publication by Nature, 3 figures (version after proof - some typos corrected

    Observational Evidence for Tidal Interaction in Close Binary Systems

    Full text link
    This paper reviews the rich corpus of observational evidence for tidal effects in short-period binaries. We review the evidence for ellipsoidal variability and for the observational manifestation of apsidal motion in eclipsing binaries. Among the long-term effects, circularization was studied the most, and a transition period between circular and eccentric orbits has been derived for eight coeval samples of binaries. As binaries are supposed to reach synchronization before circularization, one can expect finding eccentric binaries in pseudo-synchronization state, the evidence for which is reviewed. The paper reviews the Rossiter-McLaughlin effect and its potential to study spin-orbit alignment. We discuss the tidal interaction in close binaries that are orbited by a third distant companion, and review the effect of pumping the binary eccentricity by the third star. We then discuss the idea that the tidal interaction induced by the eccentricity modulation can shrink the binary separation. The paper discusses the extrasolar planets and the observational evidence for tidal interaction with their parent stars which can induce radial drift of short-period planets and circularization of planetary orbits. The paper reviews the revolution of the study of binaries that is currently taking place, driven by large-scaled photometric surveys that are detecting many thousands of new binaries and tens of extrasolar planets. In particular, we review several studies that have been used already thousands of lightcurves of eclipsing binaries to study tidal circularization of early-type stars in the LMC.Comment: 67 pages. Review Paper. To appear in "Tidal effects in stars, planets and disks", M.-J. Goupil and J.-P. Zahn (eds.), EAS Publications Serie

    Distinguishing Easy and Hard Instances

    No full text
    Error analysis is a key step in developing statistical parsers. In doing this, we manually discover typical cases by examining parser output. In this paper we argue that the process can be speeded up by considering the output from an ensemble of parsers. We do this by resampling small proportions (10% and up) from the training data, and exploiting the high diversity of the resulting parsers - resulting from the sparseness of natural-language data. Varying the sample size, we can trace the gradual learning of each instance and classify instances into a few types. This division helps in distinguishing instances which are hard for the system, from instances which may be learned in principle. We suggest that such analysis can yield a qualitative approach to evaluation of statistical parsers

    BioCreative Task 2.1: The Edinburgh-Stanford system

    No full text
    We describe a system for BioCreative Task 2.1: finding evidence that suppports a GO term annotation for a given protein in a given biomedical paper. We approach the problem as a question answering task, where the query is constructed from a protein name, a GO term and its definition

    Using the Distribution of Performance for Studying Statistical Nlp Systems And Corpora

    No full text
    Statistical NLP systems are frequently evaluated and compared on the basis of their performances on a single split of training and test data. Results obtained using a single split are, however, subject to sampling noise. In this paper we argue in favour of reporting a distribution of performance figures, obtained by resampling the training data, rather than a single number. Th
    corecore