705 research outputs found

    Considerations of high altitude emissions

    Get PDF
    The status of the Federal Aviation Administration's High Altitude Pollution Program is described which was instituted to develop the detailed quantitative information needed to judge whether or not regulatory action to limit such exhaust emissions would be necessary. The complexities of this question and the nature and magnitude of uncertainties still present in our scientific understanding of the potential interactions between aircraft exhaust emissions and stratospheric ozone and climate are reviewed. The direction and scope of future Federal and international activities are described

    Three-dimensional magnetic and abundance mapping of the cool Ap star HD 24712 I. Spectropolarimetric observations in all four Stokes parameters

    Get PDF
    High-resolution spectropolarimetric observations provide simultaneous information about stellar magnetic field topologies and three-dimensional distributions of chemical elements. Here we present analysis of a unique full Stokes vector spectropolarimetric data set, acquired for the cool magnetic Ap star HD 24712. The goal of our work is to examine circular and linear polarization signatures inside spectral lines and to study variation of the stellar spectrum and magnetic observables as a function of rotational phase. HD 24712 was observed with the HARPSpol instrument at the 3.6-m ESO telescope over a period of 2010-2011. The resulting spectra have S/N ratio of 300-600 and resolving power exceeding 100000. The multiline technique of least-squares deconvolution (LSD) was applied to combine information from the spectral lines of Fe-peak and rare-earth elements. We used the HARPSPol spectra of HD 24712 to study the morphology of the Stokes profile shapes in individual spectral lines and in LSD Stokes profiles corresponding to different line masks. From the LSD Stokes V profiles we measured the longitudinal component of the magnetic field, , with an accuracy of 5-10 G. We also determined the net linear polarization from the LSD Stokes Q and U profiles. We determined an improved rotational period of the star, P_rot = 12.45812 +/- 0.00019d. We measured from the cores of Halpha and Hbeta lines. The analysis of measurements showed no evidence for a significant radial magnetic field gradient in the atmosphere of HD 24712. We used our and net linear polarization measurements to determine parameters of the dipolar magnetic field topology. We found that magnetic observables can be reasonably well reproduced by the dipolar model. We discovered rotational modulation of the Halpha core and related it a non-uniform surface distribution of rare-earth elements.Comment: Accepted for publication in A&

    Gas Absorption in the KH 15D System: Further Evidence for Dust Settling in the Circumbinary Disk

    Get PDF
    Na I D lines in the spectrum of the young binary KH 15D have been analyzed in detail. We find an excess absorption component that may be attributed to foreground interstellar absorption, and to gas possibly associated with the solids in the circumbinary disk. The derived column density is log N_NaI = 12.5 cm^-2, centered on a radial velocity that is consistent with the systemic velocity. Subtracting the likely contribution of the ISM leaves log N_NaI ~ 12.3 cm^-2. There is no detectable change in the gas column density across the "knife edge" formed by the opaque grain disk, indicating that the gas and solids have very different scale heights, with the solids being highly settled. Our data support a picture of this circumbinary disk as being composed of a very thin particulate grain layer composed of millimeter-sized or larger objects that are settled within whatever remaining gas may be present. This phase of disk evolution has been hypothesized to exist as a prelude to the formation of planetesimals through gravitational fragmentation, and is expected to be short-lived if much gas were still present in such a disk. Our analysis also reveals the presence of excess Na I emission relative to the comparison spectrum at the radial velocity of the currently visible star that plausibly arises within the magnetosphere of this still-accreting young star.Comment: Accepted for publication in ApJ, 23 pages, 6 figure

    Simultaneous Multi-Wavelength Observations of Magnetic Activity in Ultracool Dwarfs. I. The Complex Behavior of the M8.5 Dwarf TVLM513-46546

    Get PDF
    [Abridged] We present the first simultaneous radio, X-ray, ultraviolet, and optical spectroscopic observations of the M8.5 dwarf TVLM513-46546, with a duration of 9 hours. These observations are part of a program to study the origin of magnetic activity in ultracool dwarfs, and its impact on chromospheric and coronal emission. Here we detect steady quiescent radio emission superposed with multiple short-duration, highly polarized flares; there is no evidence for periodic bursts previously reported for this object, indicating their transient nature. We also detect soft X-ray emission, with L_X/L_bol~10^-4.9, the faintest to date for any object later than M5, and a possible weak X-ray flare. TVLM513-46546 continues the trend of severe violation of the radio/X-ray correlation in ultracool dwarfs, by nearly 4 orders of magnitude. From the optical spectroscopy we find that the Balmer line luminosity exceeds the X-ray luminosity by a factor of a few, suggesting that, unlike in early M dwarfs, chromospheric heating may not be due to coronal X-ray emission. More importantly, we detect a sinusoidal H-alpha light curve with a period of 2 hr, matching the rotation period of TVLM513-46546. This is the first known example of such Balmer line behavior, which points to a co-rotating chromospheric hot spot or an extended magnetic structure, with a covering fraction of about 50%. This feature may be transitory based on the apparent decline in light curve peak during the four observed maxima. From the radio data we infer a large scale steady magnetic field of ~100 G, in good agreement with the value required for confinement of the X-ray emitting plasma. The radio flares, on the other hand, are produced in a component of the field with a strength of ~3 kG and a likely multi-polar configuration.Comment: 13 pages, 4 figure

    Chemical spots in the absence of magnetic field in the binary HgMn star 66 Eridani

    Full text link
    According to our current understanding, a subclass of the upper main sequence chemically peculiar stars, called mercury-manganese (HgMn), is non-magnetic. Nevertheless, chemical inhomogeneities were recently discovered on their surfaces. At the same time, no global magnetic fields stronger than 1-100 G are detected by modern studies. The goals of our study are to search for magnetic field in the HgMn binary system 66 Eri and to investigate chemical spots on the stellar surfaces of both components. Our analysis is based on high quality spectropolarimetric time-series observations obtained during 10 consecutive nights with the HARPSpol instrument at the ESO 3.6-m telescope. To increase the sensitivity of the magnetic field search we employed a least-squares deconvolution (LSD). We used spectral disentangling to measure radial velocities and study line profile variability. Chemical spot geometry was reconstructed using multi-line Doppler imaging. We report a non-detection of magnetic field in 66 Eri, with error bars 10-24 G for the longitudinal field. Circular polarization profiles also do not indicate any signatures of complex surface magnetic fields. For a simple dipolar field configuration we estimated an upper limit of the polar field strength to be 60-70 G. For the HgMn component we found variability in spectral lines of Ti, Ba, Y, and Sr with the rotational period equal to the orbital one. The surface maps of these elements reconstructed with the Doppler imaging technique, show relative underabundance on the hemisphere facing the secondary component. The contrast of chemical inhomogeneities ranges from 0.4 for Ti to 0.8 for Ba.Comment: 13 pages, 14 figure

    Constraints on the disk geometry of the T Tauri star AA Tau from linear polarimetry

    Full text link
    We have simultaneously monitored the photometric and polarimetric variations of the Classical T Tauri star AA Tau during the fall of 2002. We combine these data with previously published polarimetric data covering two earlier epochs. The phase coverage is complete, although not contiguous. AA Tau clearly shows cyclic variations coupled with the rotation of the system. The star-disk system produces a repeatable polarisation curve where the polarisation increases with decreasing brightness. The data fit well with the model put forward by Bouvier et al. (1999) where AA Tau is viewed almost edge-on and its disk is actively dumping material onto the central star via magnetospheric accretion. The inner edge of the disk is deformed by its interaction with the tilted magnetosphere, producing eclipses as it rotates and occults the photosphere periodically. From the shape of the polarisation curve in the QU-Plane we confirm that the accretion disk is seen at a large inclination, almost edge-on, and predict that its position angle is PA~90 deg., i.e., that the disk's major axis is oriented in the East-West direction.Comment: Astron. Astrophys., in pres

    The Transit Light Curve Project. IX. Evidence for a Smaller Radius of the Exoplanet XO-3b

    Full text link
    We present photometry of 13 transits of XO-3b, a massive transiting planet on an eccentric orbit. Previous data led to two inconsistent estimates of the planetary radius. Our data strongly favor the smaller radius, with increased precision: R_p = 1.217 +/- 0.073 R_Jup. A conflict remains between the mean stellar density determined from the light curve, and the stellar surface gravity determined from the shapes of spectral lines. We argue the light curve should take precedence, and revise the system parameters accordingly. The planetary radius is about 1 sigma larger than the theoretical radius for a hydrogen-helium planet of the given mass and insolation. To help in planning future observations, we provide refined transit and occultation ephemerides.Comment: To appear in ApJ [22 pages

    Follow-Up Observations of PTFO 8-8695: A 3 MYr Old T-Tauri Star Hosting a Jupiter-mass Planetary Candidate

    Get PDF
    We present Spitzer 4.5\micron\ light curve observations, Keck NIRSPEC radial velocity observations, and LCOGT optical light curve observations of PTFO~8-8695, which may host a Jupiter-sized planet in a very short orbital period (0.45 days). Previous work by \citet{vaneyken12} and \citet{barnes13} predicts that the stellar rotation axis and the planetary orbital plane should precess with a period of 300600300 - 600 days. As a consequence, the observed transits should change shape and depth, disappear, and reappear with the precession. Our observations indicate the long-term presence of the transit events (>3>3 years), and that the transits indeed do change depth, disappear and reappear. The Spitzer observations and the NIRSPEC radial velocity observations (with contemporaneous LCOGT optical light curve data) are consistent with the predicted transit times and depths for the $M_\star = 0.34\ M_\odot$ precession model and demonstrate the disappearance of the transits. An LCOGT optical light curve shows that the transits do reappear approximately 1 year later. The observed transits occur at the times predicted by a straight-forward propagation of the transit ephemeris. The precession model correctly predicts the depth and time of the Spitzer transit and the lack of a transit at the time of the NIRSPEC radial velocity observations. However, the precession model predicts the return of the transits approximately 1 month later than observed by LCOGT. Overall, the data are suggestive that the planetary interpretation of the observed transit events may indeed be correct, but the precession model and data are currently insufficient to confirm firmly the planetary status of PTFO~8-8695b.Comment: Accepted for publication in The Astrophysical Journa

    Observation of enhanced X-ray emission from the CTTS AA Tau during a transit of an accretion funnel

    Full text link
    AA Tau was observed for about 5h per XMM orbit (2 days) over 8 successive orbits, which covers two optical eclipse periods (8.2 days). The XMM optical/UV monitor simultaneously provided UV photometry with a ~15 min sampling rate. Some V-band photometry was also obtained from the ground during this period in order to determine the dates of the eclipses. Two X-ray and UV measurements were secured close to the center of the eclipse. The UV flux is the highest just before the eclipse starts and the lowest towards the end of it. We model the UV flux variations with a weekly modulation (inner disk eclipse), plus a daily modulation, which suggests a non-steady accretion. No eclipses are detected in X-rays. For one measurement, the X-ray count rate was nearly 50 times stronger than the minimum observed level, and the plasma temperature reached 60 MK, i.e., a factor of 2-3 higher than in the other observations. This X-ray event, observed close to the center of the optical eclipse, is interpreted as an X-ray flare. We identify the variable column density with the low-density accretion funnel flows blanketing the magnetosphere. The lack of X-ray eclipses indicates that X-ray emitting regions are located at high latitudes. Furthermore, the occurrence of a strong X-ray flare near the center of the optical eclipse suggests that the magnetically active areas are closely associated with the base of the high-density accretion funnel flow. We speculate that the impact of this free falling accretion flow onto the strong magnetic field of the stellar corona may boost the X-ray emission (abridged).Comment: 17 pages and 9 Figures. Accepted by A&
    corecore