178 research outputs found

    Antitubercular therapy decreases nitric oxide production in HIV/TB coinfected patients

    Get PDF
    BACKGROUND: Nitric oxide (NO) production is increased among patients with human immunodeficiency virus (HIV) infection and also among those with tuberculosis (TB). In this study we sought to determine if there was increased NO production among patients with HIV/TB coinfection and the effect of four weeks chemotherapy on this level. METHODS: 19 patients with HIV/TB coinfection were studied. They were treated with standard four drug antitubercular therapy and sampled at baseline and four weeks. 20 patients with HIV infection, but no opportunistic infections, were disease controls and 20 individuals were healthy controls. Nitrite and citrulline, surrogate markers for NO, were measured spectrophotometrically. RESULTS: The mean age of HIV/TB patients was 28.4 ± 6.8 years and CD4 count was 116 ± 36.6/mm. Mean nitrite level among HIV/TB coinfected was 207.6 ± 48.8 nmol/ml. This was significantly higher than 99.7 ± 26.5 nmol/ml, the value for HIV infected without opportunistic infections and 46.4 ± 16.2 nmol/ml, the value for healthy controls (p value < 0.01). The level of HIV/TB coinfected NO in patients declined to 144.5 ± 34.4 nmol/ml at four weeks of therapy (p value < 0.05). Mean citrulline among HIV/TB coinfected was 1446.8 ± 468.8 nmol/ml. This was significantly higher than 880.8 ± 434.8 nmol/ml, the value for HIV infected without opportunistic infections and 486.6 ± 212.5 nmol/ml, the value for healthy controls (p value < 0.01). Levels of citrolline in HIV/TB infected declined to 1116.2 ± 388.6 nmol/ml at four weeks of therapy (p value < 0.05). CONCLUSIONS: NO production is elevated among patients with HIV infection, especially so among HIV/TB coinfected patients, but declines significantly following 4 weeks of antitubercular therapy

    Characterizing the conformational dynamics of metal-free PsaA using molecular dynamics simulations and electron paramagnetic resonance spectroscopy

    Get PDF
    Prokaryotic metal-ion receptor proteins, or solute-binding proteins, facilitate the acquisition of metal ions from the extracellular environment. Pneumococcal surface antigen A (PsaA) is the primary Mn2+-recruiting protein of the human pathogen Streptococcus pneumoniae and is essential for its in vivo colonization and virulence. The recently reported high-resolution structures of metal- free and metal-bound PsaA have provided the first insights into the mechanism of PsaA-facilitated metal binding. However, the conformational dynamics of metal-free PsaA in solution remain unknown. Here, we use continuous wave electron paramagnetic resonance (EPR) spectroscopy and molecular dynamics (MD) simulations to study the relative flexibility of the structural domains in metal-free PsaA and its distribution of conformations in solution. The results show that the crystal structure of the metal-free PsaA is a good representation of the dominant conformation in solution, but the protein also samples structurally distinct conformations that are not captured by the crystal structure. Further, these results suggest that the metal binding site is larger and more solvent exposed than indicated by the metal-free crystal structure. Collectively, this study provides atomic-resolution insight into the conformational dynamics of PsaA prior to metal binding and lays the groundwork for future EPR and MD based studies of PsaA in solution

    Lymphoid Tissue Damage in HIV-1 Infection Depletes Naïve T Cells and Limits T Cell Reconstitution after Antiretroviral Therapy

    Get PDF
    Highly active antiretroviral therapy (HAART) can suppress HIV-1 replication and normalize the chronic immune activation associated with infection, but restoration of naïve CD4+ T cell populations is slow and usually incomplete for reasons that have yet to be determined. We tested the hypothesis that damage to the lymphoid tissue (LT) fibroblastic reticular cell (FRC) network contributes to naïve T cell loss in HIV-1 infection by restricting access to critical factors required for T cell survival. We show that collagen deposition and progressive loss of the FRC network in LTs prior to treatment restrict both access to and a major source of the survival factor interleukin-7 (IL-7). As a consequence, apoptosis within naïve T cell populations increases significantly, resulting in progressive depletion of both naïve CD4+ and CD8+ T cell populations. We further show that the extent of loss of the FRC network and collagen deposition predict the extent of restoration of the naïve T cell population after 6 month of HAART, and that restoration of FRC networks correlates with the stage of disease at which the therapy is initiated. Because restoration of the FRC network and reconstitution of naïve T cell populations are only optimal when therapy is initiated in the early/acute stage of infection, our findings strongly suggest that HAART should be initiated as soon as possible. Moreover, our findings also point to the potential use of adjunctive anti-fibrotic therapies to avert or moderate the pathological consequences of LT fibrosis, thereby improving immune reconstitution

    Seminaphthofluorescein-Based Fluorescent Probes for Imaging Nitric Oxide in Live Cells

    Get PDF
    Fluorescent turn-on probes for nitric oxide based on seminaphthofluorescein scaffolds were prepared and spectroscopically characterized. The Cu(II) complexes of these fluorescent probes react with NO under anaerobic conditions to yield a 20–45-fold increase in integrated emission. The seminaphthofluorescein-based probes emit at longer wavelengths than the parent FL1 and FL2 fluorescein-based generations of NO probes, maintaining emission maxima between 550 and 625 nm. The emission profiles depend on the excitation wavelength; maximum fluorescence turn-on is achieved at excitations between 535 and 575 nm. The probes are highly selective for NO over other biologically relevant reactive nitrogen and oxygen species including NO3–, NO2–, HNO, ONOO–, NO2, OCl–, and H2O2. The seminaphthofluorescein-based probes can be used to visualize endogenously produced NO in live cells, as demonstrated using Raw 264.7 macrophages.National Science Foundation (U.S.) (CHE-0611944)National Institutes of Health (U.S.) (K99GM092970

    Visualization and Identification of IL-7 Producing Cells in Reporter Mice

    Get PDF
    Interleukin-7 (IL-7) is required for lymphocyte development and homeostasis although the actual sites of IL-7 production have never been clearly identified. We produced a bacterial artificial chromosome (BAC) transgenic mouse expressing ECFP in the Il7 locus. The construct lacked a signal peptide and ECFP (enhanced cyan fluorescent protein ) accumulated inside IL-7-producing stromal cells in thoracic thymus, cervical thymus and bone marrow. In thymus, an extensive reticular network of IL-7-containing processes extended from cortical and medullary epithelial cells, closely contacting thymocytes. Central memory CD8 T cells, which require IL-7 and home to bone marrow, physically associated with IL-7-producing cells as we demonstrate by intravital imaging

    CD40, autophagy and Toxoplasma gondii

    Full text link
    Toxoplasmagondii represents a pathogen that survives within host cells by preventing the endosomal-lysosomal compartments from fusing with the parasitophorous vacuoles. The dogma had been that the non-fusogenic nature of these vacuoles is irreversible. Recent studies revealed that this dogma is not correct. Cell-mediated immunity through CD40 re-routes the parasitophorous vacuoles to the lysosomal compartment by a process called autophagy. Autophagosome formation around the parasitophorous vacuole results in killing of the T. gondii. CD40-induced autophagy likely contributes to resistance against T. gondii particularly in neural tissue

    Visualization and Identification of IL-7 Producing Cells in Reporter Mice

    Get PDF
    Interleukin-7 (IL-7) is required for lymphocyte development and homeostasis although the actual sites of IL-7 production have never been clearly identified. We produced a bacterial artificial chromosome (BAC) transgenic mouse expressing ECFP in the Il7 locus. The construct lacked a signal peptide and ECFP (enhanced cyan fluorescent protein ) accumulated inside IL-7-producing stromal cells in thoracic thymus, cervical thymus and bone marrow. In thymus, an extensive reticular network of IL-7-containing processes extended from cortical and medullary epithelial cells, closely contacting thymocytes. Central memory CD8 T cells, which require IL-7 and home to bone marrow, physically associated with IL-7-producing cells as we demonstrate by intravital imaging

    Nucleotide receptor signalling and the generation of reactive oxygen species

    Get PDF
    Elevated levels of extracellular nucleotides are present at sites of inflammation, platelet degranulation and cellular damage or lysis. These extracellular nucleotides can lead to the activation of purinergic (nucleotide) receptors on various leukocytes, including monocytes, macrophages, eosinophils, and neutrophils. In turn, nucleotide receptor activation has been linked to increased cellular production and release of multiple inflammatory mediators, including superoxide anion, nitric oxide and other reactive oxygen species (ROS). In the present review, we will summarize the evidence that extracellular nucleotides can facilitate the generation of multiple ROS by leukocytes. In addition, we will discuss several potential mechanisms by which nucleotide-enhanced ROS production may occur. Delineation of these mechanisms is important for understanding the processes associated with nucleotide-induced antimicrobial activities, cell signalling, apoptosis, and pathology
    • …
    corecore