38 research outputs found

    Optimization of Patterned Surfaces for Improved Superhydrophobicity Through Cost-Effective Large-Scale Computations

    Full text link
    The growing need for creating surfaces with specific wetting properties, such as superhyrdophobic behavior, asks for novel methods for their efficient design. In this work, a fast computational method for the evaluation of patterned superhyrdophobic surfaces is introduced. The hydrophobicity of a surface is quantified in energy terms through an objective function. The increased computational cost led to the parallelization of the method with the Message Passing Interface (MPI) communication protocol that enables calculations on distributed memory systems allowing for parametric investigations at acceptable time frames. The method is demonstrated for a surface consisting of an array of pillars with inverted conical (frustum) geometry. The parallel speedup achieved allows for low cost parametric investigations on the effect of the fine features (curvature and slopes) of the pillars on the superhydophobicity of the surface and consequently for the optimization of superhyrdophobic surfaces.Comment: 18 pages, 18 figure

    VisIVO - Integrated Tools and Services for Large-Scale Astrophysical Visualization

    Full text link
    VisIVO is an integrated suite of tools and services specifically designed for the Virtual Observatory. This suite constitutes a software framework for effective visual discovery in currently available (and next-generation) very large-scale astrophysical datasets. VisIVO consists of VisiVO Desktop - a stand alone application for interactive visualization on standard PCs, VisIVO Server - a grid-enabled platform for high performance visualization and VisIVO Web - a custom designed web portal supporting services based on the VisIVO Server functionality. The main characteristic of VisIVO is support for high-performance, multidimensional visualization of very large-scale astrophysical datasets. Users can obtain meaningful visualizations rapidly while preserving full and intuitive control of the relevant visualization parameters. This paper focuses on newly developed integrated tools in VisIVO Server allowing intuitive visual discovery with 3D views being created from data tables. VisIVO Server can be installed easily on any web server with a database repository. We discuss briefly aspects of our implementation of VisiVO Server on a computational grid and also outline the functionality of the services offered by VisIVO Web. Finally we conclude with a summary of our work and pointers to future developments

    Integrating virtual reality and gis tools for geological mapping, data collection and analysis: An example from the metaxa mine, santorini (Greece)

    Get PDF
    In the present work we highlight the effectiveness of integrating different techniques and tools for better surveying, mapping and collecting data in volcanic areas. We use an Immersive Virtual Reality (IVR) approach for data collection, integrated with Geographic Information System (GIS) analysis in a well-known volcanological site in Santorini (Metaxa mine), a site where volcanic processes influenced the island’s industrial development, especially with regard to pumice mining. Specifically, we have focused on: (i) three-dimensional (3D) high-resolution IVR scenario building, based on Structure from Motion photogrammetry (SfM) modeling; (ii) subsequent geological survey, mapping and data collection using IVR; (iii) data analysis, e.g., calculation of extracted volumes, as well as production of new maps in a GIS environment using input data directly from the IVR survey; and finally, (iv) presentation of new outcomes that highlight the importance of the Metaxa Mine as a key geological and volcanological geosite

    Physical forcing and physical/biochemical variability of the Mediterranean Sea: a review of unresolved issues and directions for future research

    Get PDF
    This paper is the outcome of a workshop held in Rome in November 2011 on the occasion of the 25th anniversary of the POEM (Physical Oceanography of the Eastern Mediterranean) program. In the workshop discussions, a number of unresolved issues were identified for the physical and biogeochemical properties of the Mediterranean Sea as a whole, i.e., comprising the Western and Eastern sub-basins. Over the successive two years, the related ideas were discussed among the group of scientists who participated in the workshop and who have contributed to the writing of this paper. Three major topics were identified, each of them being the object of a section divided into a number of different sub-sections, each addressing a specific physical, chemical or biological issue: 1. Assessment of basin-wide physical/biochemical properties, of their variability and interactions. 2. Relative importance of external forcing functions (wind stress, heat/moisture fluxes, forcing through straits) vs. internal variability. 3. Shelf/deep sea interactions and exchanges of physical/biogeochemical properties and how they affect the sub-basin circulation and property distribution. Furthermore, a number of unresolved scientific/methodological issues were also identified and are reported in each sub-section after a short discussion of the present knowledge. They represent the collegial consensus of the scientists contributing to the paper. Naturally, the unresolved issues presented here constitute the choice of the authors and therefore they may not be exhaustive and/or complete. The overall goal is to stimulate a broader interdisciplinary discussion among the scientists of the Mediterranean oceanographic community, leading to enhanced collaborative efforts and exciting future discoveries

    Robust estimation of bacterial cell count from optical density

    Get PDF
    Optical density (OD) is widely used to estimate the density of cells in liquid culture, but cannot be compared between instruments without a standardized calibration protocol and is challenging to relate to actual cell count. We address this with an interlaboratory study comparing three simple, low-cost, and highly accessible OD calibration protocols across 244 laboratories, applied to eight strains of constitutive GFP-expressing E. coli. Based on our results, we recommend calibrating OD to estimated cell count using serial dilution of silica microspheres, which produces highly precise calibration (95.5% of residuals <1.2-fold), is easily assessed for quality control, also assesses instrument effective linear range, and can be combined with fluorescence calibration to obtain units of Molecules of Equivalent Fluorescein (MEFL) per cell, allowing direct comparison and data fusion with flow cytometry measurements: in our study, fluorescence per cell measurements showed only a 1.07-fold mean difference between plate reader and flow cytometry data

    The Mediterranean Decision Support System for Marine Safety dedicated to oil slicks predictions

    Get PDF
    In the Mediterranean sea the risk from oil spill pollution is high due to the heavy traffic of merchant vessels for transporting oil and gas, especially after the recent enlargement of the Suez canal and to the increasing coastal and offshore installations related to the oil industry in general. The basic response to major oil spills includes different measures and equipment. However, in order to strengthen the maritime safety related to oil spill pollution in the Mediterranean and to assist the response agencies, a multi-model oil spill prediction service has been set up, known as MEDESS-4MS (Mediterranean Decision Support System for Marine Safety). The concept behind the MEDESS-4MS service is the integration of the existing national ocean forecasting systems in the region with the Copernicus Marine Environmental Monitoring Service (CMEMS) and their interconnection, through a dedicated network data repository, facilitating access to all these data and to the data from the oil spill monitoring platforms, including the satellite data ones, with the well established oil spill models in the region. The MEDESS-4MS offer a range of service scenarios, multi-model data access and interactive capabilities to suite the needs of REMPEC (Regional Marine Pollution Emergency Response Centre for the Mediterranean Sea) and EMSA-CSN (European Maritime Safety Agency-CleanseaNet)

    Robust estimation of bacterial cell count from optical density

    Get PDF
    Optical density (OD) is widely used to estimate the density of cells in liquid culture, but cannot be compared between instruments without a standardized calibration protocol and is challenging to relate to actual cell count. We address this with an interlaboratory study comparing three simple, low-cost, and highly accessible OD calibration protocols across 244 laboratories, applied to eight strains of constitutive GFP-expressing E. coli. Based on our results, we recommend calibrating OD to estimated cell count using serial dilution of silica microspheres, which produces highly precise calibration (95.5% of residuals &lt;1.2-fold), is easily assessed for quality control, also assesses instrument effective linear range, and can be combined with fluorescence calibration to obtain units of Molecules of Equivalent Fluorescein (MEFL) per cell, allowing direct comparison and data fusion with flow cytometry measurements: in our study, fluorescence per cell measurements showed only a 1.07-fold mean difference between plate reader and flow cytometry data

    Variability of water exchanges through the Strait of Hormuz

    No full text
    The variability of the water mass exchange between the Arabian Gulf and the Indian Ocean is investigated using a high-resolution (1/36°) ocean model. We focus on the period from December 1996 to March 1998, having as reference in situ measurements at the Strait of Hormuz. Previous studies, based on models and observations, suggested a perpetual deep outflow, mainly in the southern part of the Strait, and a variable flow in the upper layers. In the present study, we confirm that there is a permanent core of a deep outflow in the Strait at depths greater than 40 m, characterised by high-salinity waters. In addition, we show that there is a seasonal signal in the upper layers net flow in the southern part of the Strait, altering from net inflow during winter/spring to net outflow during summer/fall. The mean annual inflow through the Strait is estimated at 0.22 ± 0.01 Sv and the deep outflow at 0.147 ± 0.01 Sv. The water mass exchange through the Strait is controlled by synoptic processes with high variability net transport fields. These processes characterise the structure and the intensity of the transport patterns, exhibiting 2- to 5-day period. On synoptic time scales, winds drive an immediate baroclinic flow at the Strait of Hormuz, affecting mostly the upper layers, and a quasi-barotropic flow that peaks approximately 2 days later. © 2020, Springer-Verlag GmbH Germany, part of Springer Nature

    Optimization of patterned surfaces for Improved superhydrophobicity through cost-effective large-scale computations

    No full text
    The pattern design of superhydrophobic surfaces can be significantly aided by computations that predict the Cassie–Baxter (CB) to Wenzel (W) transition, which is responsible for the break-down of superhydrophobic behavior. We present a computational framework for the optimization of patterned surfaces based on the energy barriers of the CB–W transitions which comprises the following elements: (a) design of structured surface patterns, for example, arrays of pillars, with parameterized geometric features such as size, pitch, slope, and roundness. (b) Computation of the wetting states with a modified Young–Laplace equation that facilitates the introduction of solid/liquid interactions for complex surface patterns and has significantly lower computational cost than other commonly used methods, such as the volume-of-fluid, phase-field, and so forth. (c) Incorporation of the modified Young–Laplace in the simplified string method, allowing the calculation of the minimum energy paths of wetting transitions which, apart from the energy barriers, also reveal the transition mechanisms (CB failure modes). (d) Accommodation of large-scale problems with good parallel performance and scalability on multicore-distributed memory systems using fast iterative solvers and the Message Passing Interface communication protocol. We demonstrate the computational framework with a shape optimization study of inverted conical frustum pillars. The optimization objective function is the resistance to the CB–W transition, which is quantified by the energy barrier—a relatively large energy barrier suggests improved superhydrophobicity. We also report the parallel performance, in terms of parallel speedup for problems ranging from three hundred thousands to 12 million degrees of freedom, solved using up to 40 processing cores
    corecore