78 research outputs found

    Performance in managing marine resources in the Bay of Bengal

    Get PDF
    The eight member countries were assessed as to their sustainable use of resources within their Exclusive Economic Zones(EEZs). Indicators included; investment in Marine Protected Areas (MPAs), impact of trawling, mariculture sustainability, protection of seabirds and marine mammals,ecosystem impacts, economic health and levels of reporting and compliance

    Revisiting safe biological limits in fisheries

    Get PDF
    The appropriateness of three official fisheries management reference points used in the north-east Atlantic was investigated: (i) the smallest stock size that is still within safe biological limits (SSBpa), (ii) the maximum sustainable rate of exploitation (F-msy) and (iii) the age at first capture. As for (i), in 45% of the examined stocks, the official value for SSBpa was below the consensus estimates determined from three different methods. With respect to (ii), the official estimates of F-msy exceeded natural mortality M in 76% of the stocks, although M is widely regarded as natural upper limit for F-msy. And regarding (iii), the age at first capture was below the age at maturity in 74% of the stocks. No official estimates of the stock size (SSBmsy) that can produce the maximum sustainable yield (MSY) are available for the north-east Atlantic. An analysis of stocks from other areas confirmed that twice SSBpa provides a reasonable preliminary estimate. Comparing stock sizes in 2013 against this proxy showed that 88% were below the level that can produce MSY. Also, 52% of the stocks were outside of safe biological limits, and 12% were severely depleted. Fishing mortality in 2013 exceeded natural mortality in 73% of the stocks, including those that were severely depleted. These results point to the urgent need to re-assess fisheries reference points in the north-east Atlantic and to implement the regulations of the new European Common Fisheries Policy regarding sustainable fishing pressure, healthy stock sizes and adult age/size at first capture

    Revisiting Safe Biological Limits in Fisheries

    Get PDF
    The appropriateness of three official fisheries management reference points used in the north-east Atlantic was investigated: (i) the smallest stock size that is still within safe biological limits (SSBpa), (ii) the maximum sustainable rate of exploitation (Fmsy) and (iii) the age at first capture. As for (i), in 45% of the examined stocks, the official value for SSBpa was below the consensus estimates determined from three different methods. With respect to (ii), the official estimates of Fmsy exceeded natural mortality M in 76% of the stocks, although M is widely regarded as natural upper limit for Fmsy. And regarding (iii), the age at first capture was below the age at maturity in 74% of the stocks. No official estimates of the stock size (SSBmsy) that can produce the maximum sustainable yield (MSY) are available for the north-east Atlantic. An analysis of stocks from other areas confirmed that twice SSBpa provides a reasonable preliminary estimate. Comparing stock sizes in 2013 against this proxy showed that 88% were below the level that can produce MSY. Also, 52% of the stocks were outside of safe biological limits, and 12% were severely depleted. Fishing mortality in 2013 exceeded natural mortality in 73% of the stocks, including those that were severely depleted. These results point to the urgent need to re-assess fisheries reference points in the north-east Atlantic and to implement the regulations of the new European Common Fisheries Policy regarding sustainable fishing pressure, healthy stock sizes and adult age/size at first capture

    Estimating fisheries reference points from catch and resilience

    Get PDF
    This study presents a Monte Carlo method (CMSY) for estimating fisheries reference points from catch, resilience and qualitative stock status information on data-limited stocks. It also presents a Bayesian state-space implementation of the Schaefer production model (BSM), fitted to catch and biomass or catch-per-unit-of-effort (CPUE) data. Special emphasis was given to derive informative priors for productivity, unexploited stock size, catchability and biomass from population dynamics theory. Both models gave good predictions of the maximum intrinsic rate of population increase r, unexploited stock size k and maximum sustainable yield MSY when validated against simulated data with known parameter values. CMSY provided, in addition, reasonable predictions of relative biomass and exploitation rate. Both models were evaluated against 128 real stocks, where estimates of biomass were available from full stock assessments. BSM estimates of r, k and MSY were used as benchmarks for the respective CMSY estimates and were not significantly different in 76% of the stocks. A similar test against 28 data-limited stocks, where CPUE instead of biomass was available, showed that BSM and CMSY estimates of r, k and MSY were not significantly different in 89% of the stocks. Both CMSY and BSM combine the production model with a simple stock-recruitment model, accounting for reduced recruitment at severely depleted stock sizes

    Effects of climate change and variability on large pelagic fish in the Northwest Atlantic Ocean: implications for improving climate resilient management for pelagic longline fisheries

    Get PDF
    Climate change influences marine environmental conditions and is projected to increase future environmental variability. In the North Atlantic, such changes will affect the behavior and spatiotemporal distributions of large pelagic fish species (i.e., tunas, billfishes, and sharks). Generally, studies on these species have focused on specific climate-induced changes in abiotic factors separately (e.g., water temperature) and on the projection of shifts in species abundance and distribution based on these changes. In this review, we consider the latest research on spatiotemporal effects of climate-induced environmental changes to HMS’ life history, ecology, physiology, distribution, and habitat selection, and describe how the complex interplay between climate-induced changes in biotic and abiotic factors, including fishing, drives changes in species productivity and distribution in the Northwest Atlantic. This information is used to provide a baseline for investigating implications for management of pelagic longline fisheries and to identify knowledge gaps in this region. Warmer, less oxygenated waters may result in higher post-release mortality in bycatch species. Changes in climate variability will likely continue to alter the dynamics of oceanographic processes regulating species behavior and distribution, as well as fishery dynamics, creating challenges for fishery management. Stock assessments need to account for climate-induced changes in species abundance through the integration of species-specific responses to climate variability. Climate-induced changes will likely result in misalignment between current spatial and temporal management measures and the spatiotemporal distribution of these species. Finally, changes in species interactions with fisheries will require focused research to develop best practices for adaptive fisheries management and species recovery

    Estimating Fisheries Reference Points from Catch and Resilience

    Get PDF
    This study presents a Monte Carlo method (CMSY) for estimating fisheries reference points from catch, resilience and qualitative stock status information on data-limited stocks. It also presents a Bayesian state-space implementation of the Schaefer production model (BSM), fitted to catch and biomass or catch-per-unit-of-effort (CPUE) data. Special emphasis was given to derive informative priors for productivity, unexploited stock size, catchability and biomass from population dynamics theory. Both models gave good predictions of the maximum intrinsic rate of population increase r, unexploited stock size k and maximum sustainable yield MSY when validated against simulated data with known parameter values. CMSY provided, in addition, reasonable predictions of relative biomass and exploitation rate. Both models were evaluated against 128 real stocks, where estimates of biomass were available from full stock assessments. BSM estimates of r, k and MSY were used as benchmarks for the respective CMSY estimates and were not significantly different in 76% of the stocks. A similar test against 28 data-limited stocks, where CPUE instead of biomass was available, showed that BSM and CMSY estimates of r, k and MSY were not significantly different in 89% of the stocks. Both CMSY and BSM combine the production model with a simple stock–recruitment model, accounting for reduced recruitment at severely depleted stock sizes

    Trophic level-based indicators to track fishing impacts across marine ecosystems

    Get PDF
    Trophic level (TL)-based indicators have been widely used to examine fishing impacts in aquatic ecosystems and the induced biodiversity changes. However, much debate has ensued regarding discrepancies and challenges arising from the use of landings data from commercial fisheries to calculate TL indicators. Subsequent studies have started to examine survey-based and model-based indicators. In this paper, we undertake an extensive evaluation of a variety of TL indicators across 9 well-studied marine ecosystems by making use of model- as well as survey and catch-based TL indicators. Using detailed regional information and data on fishing history, fishing intensity, and environmental conditions, we evaluate how well TL indicators are capturing fishing effects at the community level of marine ecosystems. Our results highlight that the differences observed between TL indicator values and trends is dependent on the data source and the TL cut-off point used in the calculations and is not attributable to an intrinsic problem with TL based indicators. All 3 data sources provide useful information about the structural changes in the ecosystem as a result of fishing, but our results indicate that only model-based indicators represent fishing impacts at the whole ecosystem level.JRC.H.1-Water Resource

    Changing fish distributions challenge the effective management of European fisheries.

    Get PDF
    Changes in fish distribution are being observed across the globe. In Europe's Common Fisheries Policy, the share of the catch of each fish stock is split among management areas using a fixed allocation key known as ‘Relative Stability’: in each management area, member states get the same proportion of the total catch each year. That proportion is largely based on catches made by those member states in the 1970s. Changes in distribution can, therefore, result in a mismatch between quota shares and regional abundances within management areas, with potential repercussions for the status of fish stocks and the fisheries that depend on them. Assessing distribution changes is crucial to ensure adequate management and sustainable exploitation of our fish resources. We analysed scientific survey data using a three‐tiered analytical approach to provide, for the first time, an overview of changes in distribution for 19 northeast Atlantic fish species encompassing 73 commercial stocks over 30 yr. All species have experienced changes in distribution, five of which did so across management areas. A cross‐species analysis suggested that shifts in areas of suitable thermal habitat, and density‐dependent use of these areas, are at least partly responsible for the observed changes. These findings challenge the current use of relative stability to allocate quotas.acceptedVersio

    Situación actual y proyecciones futuras de las pesquerías multiespecíficas de peces en la región suroriental de Cuba: Situação atual e projecções futuras da pesca de peixes multiespecíficos na região sudeste de Cuba

    Get PDF
    Las pesquerías multiespecíficas de peces en Cuba incluyen alrededor de 150 especies, diferentes artes de pesca que se utilizan simultáneamente y un número elevado de puertos de desembarques, lo que dificulta el monitoreo y la evaluación de estos recursos, por lo cual el manejo ha sido limitado. Por ello nos propusimos evaluar el estado actual, así como las compensaciones futuras en biomasa, captura y ganancias de las especies más vulnerables bajo diferentes estrategias de manejo. Mediante el método Catch-MSY se estimó el estado actual, y un modelo bioeconómico se empleó para realizar las proyecciones a largo plazo de las salidas. Los stocks estudiados se encuentran agotados, y la mayoría con valores que implican un alto riesgo para la sustentabilidad de sus poblaciones. Además, la mayoría están sobreexplotados y sufren pesca ilegal. Sin embargo, a largo plazo bajo estrategias de manejo sustentable, muestran oportunidades de recuperación y de tener pesquerías económicamente rentables siempre que se elimine la pesca ilegal y se apliquen incentivos económicos
    corecore