14 research outputs found

    Plantation Forests: A Guarantee of Sustainable Management of Abandoned and Marginal Farmlands

    Get PDF
    The chapter summarises the research data on cultivating forest crops in abandoned and marginal farmlands (AL). The course of growth and productivity of different tree species in the local climatic conditions is clarified in a variety of agricultural soils. The research results show the most appropriate tree species for short-rotation or special end-use monoculture or mixed plantations, using Scots pine (Pinus sylvestris L.), Norway spruce (Picea abies (L.) Karst.), silver birch (Betula pendula Roth.), pedunculate oak (Quercus robur L.), grey alder (Alnus incana (L.) Moench), alder (Alnus glutinosa (L.) Gaertn.), wild cherry (Cerasus avium (L.) Moench syn. Prunus avium), aspen (Populus tremula L.), hybrid aspen (Populus tremula x tremuloides), and small-leaved lime (Tilia cordata Mill.). At the same time, research results show sustainability of management of plantation forests—positive impact on soil agrochemical properties, proportionate changes on above-ground vegetation, and improvement of economic benefits of farmlands

    Biochar in forestry. Status in the Nordic-Baltic countries

    Get PDF
    This report summarizes the status of biochar in forestry in the Nordic-Baltic countries today. Biochar is charred material formed by pyrolysis of organic materials. In addition to improving soil physical and chemical properties and plant growth, biochar is a promising negative emission technology for storing carbon (C) in soils. The report gives an overview of current and potential uses, production methods and facilities, legislation, current and future research as well as biochar properties and effects. Forests are both a source of feedstock for biochar production and a potential beneficiary for biochar use. Production is still limited in the Nordic-Baltic countries, but commercial production is on the rise and several enterprises are in the planning or start-up phase. In this report different biochar production technologies are described. As the (modern) use of biochar for agricultural and especially forestry purposes is relatively new, in many countries there are no specific legislation regulating its use. Sometimes the use of biochar is regulated through more general laws and regulations on e.g. fertilizers or soil amendment. However, both inside and outside EU several documents and standards exist, listing recommended physical and chemical limit values for biochar. So far, most biochar studies have been conducted on agricultural soils, though research in the forestry sector is starting to emerge. The first biochar field experiments in boreal forests support that wood biochar promotes tree growth. Also, studies on the use of biochar as an additive to the growing medium in tree nurseries show promising results. Because biochar C content is high, it is recalcitrant to decomposition, and application rates to soil can be high, biochar is a promising tool to enhance the C sequestration in boreal forests. However, available biomass and production costs may be barriers for the climate change mitigation potential of biochar. When it comes to effects on biodiversity, few field-based studies have been carried out. Some studies from the Nordic region show that biochar addition may affect microbial soil communities and vegetation, at least on a short time scale. There is clearly a need for more research on the effects of biochar in forestry in the Nordic-Baltic region. Long-term effects of biochar on e.g., forest growth, biodiversity, soil carbon and climate change mitigation potential should be studied in existing and new field experiments.Biochar in forestry. Status in the Nordic-Baltic countriespublishedVersio

    Risks, benefits, and knowledge gaps of non-native tree species in Europe

    Get PDF
    Changing ecosystem conditions and diverse socio-economical events have contributed to an ingrained presence of non-native tree species (NNTs) in the natural and cultural European landscapes. Recent research endeavors have focused on different aspects of NNTs such as legislation, benefits, and risks for forestry, emphasizing that large knowledge gaps remain. As an attempt to fulfill part of these gaps, within the PEN-CAFoRR COST Action (CA19128) network, we established an open-access questionnaire that allows both academic experts and practitioners to provide information regarding NNTs from 20 European countries. Then, we integrated the data originating from the questionnaire, related to the country-based assessment of both peer-reviewed and grey literature, with information from available datasets (EUFORGEN and EU-Forest), which gave the main structure to the study and led to a mixed approach review. Finally, our study provided important insights into the current state of knowledge regarding NNTs. In particular, we highlighted NNTs that have shown to be less commonly addressed in research, raising caution about those characterized by an invasive behavior and used for specific purposes (e.g., wood production, soil recultivation, afforestation, and reforestation). NNTs were especially explored in the context of resilient and adaptive forest management. Moreover, we emphasized the assisted and natural northward migration of NNTs as another underscored pressing issue, which needs to be addressed by joint efforts, especially in the context of the hybridization potential. This study represents an additional effort toward the knowledge enhancement of the NNTs situation in Europe, aiming for a continuously active common source deriving from interprofessional collaboration.info:eu-repo/semantics/publishedVersio

    Harmonised projections of future forest resources in Europe

    Get PDF
    Data PaperAbstract • Key message A dataset of forest resource projections in 23 European countries to 2040 has been prepared for fores trelated policy analysis and decision-making. Due to applying harmonised definitions, while maintaining country-specific forestry practices, the projections should be usable from national to international levels. The dataset can be accessed at https://doi.org/10.5061/dryad.4t880qh. The associated metadata are available at https://metadata-afs.nancy.inra.fr/ geonetwork/srv/eng/catalog.search#/metadata/8f93e0d6-b524-43bd-bdb8-621ad5ae6fa9info:eu-repo/semantics/publishedVersio

    Negociación colectiva y conflictividad social en el sector textil: Málaga 1960-1970

    No full text
    Este artículo intenta contribuir al conocimiento de las relaciones laborales en la última etapa del franquismo. Terminada la autarquía, la liberalización económica conlleva un cambio de esa dinámica basada en la negociación colectiva a través de instituciones oficiales, que fracasa con frecuencia

    Evaluation of forest tree planting machine effectiveness

    No full text
    201

    Suitability of Fast-Growing Tree Species (<i>Salix</i> spp., <i>Populus</i> spp., <i>Alnus</i> spp.) for the Establishment of Economic Agroforestry Zones for Biomass Energy in the Baltic Sea Region

    No full text
    The main goal of this review was to provide an assessment of the potential of fast-growing tree species for the suitable transformation of agroforestry areas for biomass production in the Baltic Sea region. Our interest was to highlight the research on the management process of agroforestry zones by establishing short rotation plantations with the tree species Salix spp., Populus spp. and Alnus spp. to explore the prospects of planning these zones as biomass producers. Short rotation forestry (SRF) with trees whose rotation period is 15 to 30 years, depending on the species, is the most suitable approach for management of these agroforestry zones. Willows (Salix spp.) and poplars (Populus spp.) are suitable for short rotation coppice (SRC), as these tree species can be harvested at much shorter intervals, respectively, 1–5 and 4–10 years, facilitating their use in agricultural systems. The rotation period of Alnus spp. in short rotation plantations for energy wood production is generally assessed to be 15–30 years. The black alder plantations in agroforestry zones are used for sawnwood and firewood production, with a rotation period of 20–40 years. The calculated repayment period of the economic agroforestry zone is about 10–15 years, if 2021 costs and prices are used

    Remote-Sensed Tree Crown Diameter as a Predictor of Stem Diameter and Above-Ground Biomass in <i>Betula pendula</i> Roth and <i>Populus tremuloides</i> Michx. <i>× Populus tremula</i> L. Plantations

    No full text
    Striving for climate neutrality and wider implementation of climate change mitigation measures including tree introduction in agricultural land, request for approaches and general allometric models for estimating carbon (C) stock in tree above-ground biomass (AGB) based on relatively easily obtainable remote sensing data is increasing. Here, we present estimates of individual trees’ crown diameters (CDs) for Betula pendula Roth (B. pendula) and Populus tremuloides Michx. × Populus tremula L. (P. tremuloides × P. tremula) in 11-year-old tree plantations (tree height ranged up to 12.8 and 18.1 m, respectively) in the hemiboreal region of Europe (in Latvia). Individual trees’ CDs were measured using a drone orthophoto map. Afterwards, linear equations were developed to predict individual trees’ stem diameters at breast height (DBHs) and, consequently, tree AGB (which was then converted to C stock) from remote-sensed tree CD data. RMSEs of the prediction models of tree stem DBH were in the ranges of 1.87–2.12 cm for B. pendula and 2.50–3.12 cm for P. tremuloides × P. tremula. This demonstrated approach is applicable to carry out, for instance, a self-assessment and approximate C stock in the AGB of selected tree species by land owners, managers, and other implementers of climate change mitigation measures

    Highly comparable metabarcoding results from MGI-Tech and Illumina sequencing platforms

    No full text
    With the developments in DNA nanoball sequencing technologies and the emergence of new platforms, there is an increasing interest in their performance in comparison with the widely used sequencing-by-synthesis methods. Here, we test the consistency of metabarcoding results from DNBSEQ-G400RS (DNA nanoball sequencing platform by MGI-Tech) and NovaSeq 6000 (sequencing-by-synthesis platform by Illumina) platforms using technical replicates of DNA libraries that consist of COI gene amplicons from 120 soil DNA samples. By subjecting raw sequencing data from both platforms to a uniform bioinformatics processing, we found that the proportion of high-quality reads passing through the filtering steps was similar in both datasets. Per-sample operational taxonomic unit (OTU) and amplicon sequence variant (ASV) richness patterns were highly correlated, but sequencing data from DNBSEQ-G400RS harbored a higher number of OTUs. This may be related to the lower dominance of most common OTUs in DNBSEQ data set (thus revealing higher richness by detecting rare taxa) and/or to a lower effective read quality leading to generation of spurious OTUs. However, there was no statistical difference in the ASV and post-clustered ASV richness between platforms, suggesting that additional denoising step in the ASV workflow had effectively removed the ‘noisy’ reads. Both OTU-based and ASV-based composition were strongly correlated between the sequencing platforms, with essentially interchangeable results. Therefore, we conclude that DNBSEQ-G400RS and NovaSeq 6000 are both equally efficient high-throughput sequencing platforms to be utilized in studies aiming to apply the metabarcoding approach, but the main benefit of the former is related to lower sequencing cost

    Impact of Wood Ash and Sewage Sludge on Elemental Content in Hybrid Alder Clone

    No full text
    In this study, the focus was on evaluating the effects of the initial treatment of wood ash and sewage sludge on hybrid alder clones’ aboveground biomass and elemental content. To measure the element concentrations in the tree rings, laser ablation–inductively coupled plasma–mass spectrometry (LA-ICP-MS) was utilized, which is a valuable tool for dendrochemistry research, albeit with some challenges in accurate quantification. One important aspect of the study was the development and comparison of different “in-house” matrix-matched standards for the precise quantification of element concentrations in tree rings. It was found that the commercially available reference materials, IAEA 413 (algae) and IAEA 392 (algae), were the best choices due to their homogeneity. The study also revealed that the use of sewage sludge and wood ash as soil improvers significantly benefited the increase in hybrid alder biomass. However, no significant increase in element content was found in the obtained wood mass, and for some elements, there was a decrease in concentration
    corecore