246 research outputs found
Addition of rituximab to CHOP-like chemotherapy in first line treatment of primary mediastinal B-cell lymphoma
Background: The addition of rituximab (R) to CHOP (cyclophosphamide, doxorubicin, vincristine and prednisone) -like therapy has improved survival in primary mediastinal B-cell lymphoma (PMBCL) patients. However, these results were obtained in young low risk patients and a reevaluation in an unselected patient cohort is warranted. Methods: In this study, we analyzed 80 PMBCL patients treated with a CHOP-based regimen with and without rituximab. Results: In the non-rituximab cohort 10-year progression free survival (PFS) was 67% and 10-year overall survival (OS) was 72% versus a PFS of 95% and a OS of 92% in the rituximab group, PFS PÂ =Â 0.001, OS PÂ =Â 0.023. A subgroup PFS analysis by international prognostic index (IPI) risk revealed that all risk groups benefit from addition of rituximab to induction chemotherapy. In addition, OS probability was higher in the group of non-low risk patients who were treated with rituximab compared to those patients who did not receive rituximab (PÂ =Â 0.035). In multivariate analysis, only addition of rituximab to induction chemotherapy and reaching complete remission (CR) after first line therapy had a beneficial effect on both PFS and OS, whereas IPI, age, upfront high dose (HD) chemotherapy/autologous blood stem cell transplantation (ABSCT) and rituximab maintenance had no impact on survival. Conclusions: Our data demonstrate a survival benefit in unselected PMBCL patients treated with CHOP-like induction regimen and additional rituximab independently of the IPI risk score
Germline genetic variants of the renin-angiotensin system, hypoxia and angiogenesis in non-small cell lung cancer progression: Discovery and validation studies
Introduction: The reninâangiotensin system (RAS) is involved in cell proliferation, immunoinflammatory response, hypoxia and angiogenesis, which are critical biological processes in lung cancer. Our aim was to study the association of putatively functional genetic polymorphisms in genes coding for proteins involved in RAS, hypoxia and angiogenesis with non-small cell lung cancer (NSCLC) prognosis. Methods: Genotyping of 52 germline variants from genes of the RAS and hypoxic/angiogenic factors/receptors was performed using MassARRAY iPLEX Gold in a retrospective cohort (n = 167) of advanced NSCLC patients. Validation of the resulting genetic markers was conducted in an independent group (n = 190), matched by clinicopathological characteristics. Results: Multivariate analysis on the discovery set revealed that MME rs701109 C carriers were protected from disease progression in comparison with homozygous T (hazard ratio (HR) = 0.5, 95% confidence interval (CI) = 0.2â0.8, p = 0.010). Homozygous A and T genotypes for KDR rs1870377 were at increased risk for disease progression and death compared to heterozygous (HR = 1.7, 95% CI = 1.2â2.5, p = 0.005 and HR = 2.1, 95% CI = 1.2â3.4, p = 0.006, respectively). Carriers of homozygous genotypes for ACE2 rs908004 presented increased risk for disease progression, only in the subgroup of patients without tumour actionable driver mutations (HR = 2.9, 95% CI = 1.3â6.3, p = 0.010). Importantly, the association of homozygous genotypes in MME rs701109 with risk for disease progression was confirmed after multivariate analysis in the validation set. Conclusion: This study provides evidence that MME polymorphism, which encodes neprilysin, may modulate progression-free survival in advanced NSCLC. Present genetic variation findings will foster basic, translational, and clinical research on their role in NSCLC.M.J.C. was supported by the Associação de Estudos RespiratĂłrios and the Portuguese Pulmonology Society
Canonical NF-ÎșB promotes lung epithelial cell tumour growth by downregulating the metastasis suppressor CD82 and enhancing epithelial-to-mesenchymal cell transition
Copyright: © 2021 by the authors. Background: The development of non-small cell lung cancer (NSCLC) involves the progressive accumulation of genetic and epigenetic changes. These include somatic oncogenic KRAS and EGFR mutations and inactivating TP53 tumour suppressor mutations, leading to activation of canonical NF-ÎșB. However, the mechanism(s) by which canonical NF-ÎșB contributes to NSCLC is still under investigation. Methods: Human NSCLC cells were used to knock-down RelA/p65 (RelA/p65KD) and investigate its impact on cell growth, and its mechanism of action by employing RNA-seq analysis, qPCR, immunoblotting, immunohistochemistry, immunofluorescence and functional assays. Results: RelA/p65KD reduced the proliferation and tumour growth of human NSCLC cells grown in vivo as xenografts in immune-compromised mice. RNA-seq analysis identified canonical NF-ÎșB targets mediating its tumour promoting function. RelA/p65KD resulted in the upregulation of the metastasis suppressor CD82/KAI1/TSPAN27 and downregulation of the proto-oncogene ROS1, and LGR6 involved in Wnt/ÎČ-catenin signalling. Immunohistochemical and bioinformatics analysis of human NSCLC samples showed that CD82 loss correlated with malignancy. RelA/p65KD suppressed cell migration and epithelial-to-mesenchymal cell transition (EMT), mediated, in part, by CD82/KAI1, through integrin-mediated signalling involving the mitogenic ERK, Akt1 and Rac1 proteins. Conclusions: Canonical NF-ÎșB signalling promotes NSCLC, in part, by downregulating the metastasis suppressor CD82/KAI1 which inhibits cell migration, EMT and tumour growth.Institutional Program Grant for the Development of Research Institutes âAdvanced research activities in biomedical and agro-alimentary technologies, ARABAT (BITAD)â (MIS5002469) of the operational program âCompetitiveness, Entrepreneurship and Innovationâ (NSRF2014-20, EU-ERDF); research grant in Biomedical Sciences from FONDATION SANTĂ; STAVROS NIARCHOS Foundation-FORTH Fellowship for PhD candidates of the program ARCHERS: Advancing young researchersâ human capital in cutting edge technologies in the preservation of cultural heritage and the tackling of societal challenges; Biomedical Research Division, IMBB-FORTH; University of Ioannina Research Committee
Modern microwave methods in solid state inorganic materials chemistry: from fundamentals to manufacturing
No abstract available
PITX2 as a sensitive and specific marker of midgut neuroendocrine tumors: results from a cohort of 1157 primary neuroendocrine neoplasms
As Neuroendocrine Tumors (NET) often present as metastatic lesions, immunohistochemical assignment to a site of origin is one of the most important tasks in their pathological assessment. Since a fraction of NETs eludes the typical expression profiles of their primary localization, additional sensitive and specific markers are required to improve diagnostic certainty.
We investigated the expression of the transcription factor Pituitary Homeobox 2 (PITX2) in a large-scale cohort of 909 NET and 248 Neuroendocrine Carcinomas (NEC) according to the Immunoreactive Score (IRS) and correlated PITX2 expression groups with general tumor groups and localization of the primary.
PITX2 expression (all expression groups) was highly sensitive (98.1%) for midgut-derived NET, but not perfectly specific, as non-midgut NET (especially pulmonary/duodenal) were quite frequently weak or moderately positive. The specificity rose to 99.5% for a midgut origin of NET if only a strong PITX2 expression was considered, which was found in only 0.5% (one pancreatic/one pulmonary) of non-midgut NET. In metastases of midgut-derived NET, PITX2 was expressed in all cases (87.5% strong, 12.5% moderate), while CDX2 was negative or only weakly expressed in 31.3% of the metastases. In NEC, a fraction of cases (14%) showed a weak or moderate PITX2 expression, which was not associated with a specific tumor localization.
Our study independently validates PITX2 as a very sensitive and specific immunohistochemical marker of midgut-derived NET in a very large collective of Neuroendocrine Neoplasms. Therefore, our data argue towards implementation into diagnostic panels applied for NET as a first line midgut marker
Classification of cancer cell lines using matrix-assisted laser desorption/ionization time-of-flight mass spectrometry and statistical analysis
Over the past decade, matrix-assisted laser desorption/ionization timeâofâflight mass spectrometry (MALDIâTOF MS) has been established as a valuable platform for microbial identification, and it is also frequently applied in biology and clinical studies to identify new markers expressed in pathological conditions. The aim of the present study was to assess the potential of using this approach for the classification of cancer cell lines as a quantifiable method for the proteomic profiling of cellular organelles. Intact protein extracts isolated from different tumor cell lines (human and murine) were analyzed using MALDIâTOF MS and the obtained mass lists were processed using principle component analysis (PCA) within Bruker BiotyperŸ software. Furthermore, reference spectra were created for each cell line and were used for classification. Based on the intact protein profiles, we were able to differentiate and classify six cancer cell lines: two murine melanoma (B16âF0 and B164A5), one human melanoma (A375), two human breast carcinoma (MCF7 and MDAâMBâ231) and one human liver carcinoma (HepG2). The cell lines were classified according to cancer type and the species they originated from, as well as by their metastatic potential, offering the possibility to differentiate nonâinvasive from invasive cells. The obtained results pave the way for developing a broadâbased strategy for the identification and classification of cancer cell
Classification of cancer cell lines using matrix-assisted laser desorption/ionization time-of-flight mass spectrometry and statistical analysis
Over the past decade, matrix-assisted laser desorption/ionization timeâofâflight mass spectrometry (MALDIâTOF MS) has been established as a valuable platform for microbial identification, and it is also frequently applied in biology and clinical studies to identify new markers expressed in pathological conditions. The aim of the present study was to assess the potential of using this approach for the classification of cancer cell lines as a quantifiable method for the proteomic profiling of cellular organelles. Intact protein extracts isolated from different tumor cell lines (human and murine) were analyzed using MALDIâTOF MS and the obtained mass lists were processed using principle component analysis (PCA) within Bruker BiotyperŸ software. Furthermore, reference spectra were created for each cell line and were used for classification. Based on the intact protein profiles, we were able to differentiate and classify six cancer cell lines: two murine melanoma (B16âF0 and B164A5), one human melanoma (A375), two human breast carcinoma (MCF7 and MDAâMBâ231) and one human liver carcinoma (HepG2). The cell lines were classified according to cancer type and the species they originated from, as well as by their metastatic potential, offering the possibility to differentiate nonâinvasive from invasive cells. The obtained results pave the way for developing a broadâbased strategy for the identification and classification of cancer cell
Clinical and molecular practice of European thoracic pathology laboratories during the COVID-19 pandemic. The past and the near future
BACKGROUND: This study evaluated the consequences in Europe of the COVID-19 outbreak on pathology laboratories orientated toward the diagnosis of thoracic diseases. MATERIALS AND METHODS: A survey was sent to 71 pathology laboratories from 21 European countries. The questionnaire requested information concerning the organization of biosafety, the clinical and molecular pathology, the biobanking, the workload, the associated research into COVID-19, and the organization of education and training during the COVID-19 crisis, from 15 March to 31 May 2020, compared with the same period in 2019. RESULTS: Questionnaires were returned from 53/71 (75%) laboratories from 18 European countries. The biosafety procedures were heterogeneous. The workload in clinical and molecular pathology decreased dramatically by 31% (range, 3%-55%) and 26% (range, 7%-62%), respectively. According to the professional category, between 28% and 41% of the staff members were not present in the laboratories but did teleworking. A total of 70% of the laboratories developed virtual meetings for the training of residents and junior pathologists. During the period of study, none of the staff members with confirmed COVID-19 became infected as a result of handling samples. CONCLUSIONS: The COVID-19 pandemic has had a strong impact on most of the European pathology laboratories included in this study. Urgent implementation of several changes to the organization of most of these laboratories, notably to better harmonize biosafety procedures, was noted at the onset of the pandemic and maintained in the event of a new wave of infection occurring in Europe
Clinical and molecular practice of European thoracic pathology laboratories during the COVID-19 pandemic. The past and the near future.
This study evaluated the consequences in Europe of the COVID-19 outbreak on pathology laboratories orientated toward the diagnosis of thoracic diseases.
A survey was sent to 71 pathology laboratories from 21 European countries. The questionnaire requested information concerning the organization of biosafety, the clinical and molecular pathology, the biobanking, the workload, the associated research into COVID-19, and the organization of education and training during the COVID-19 crisis, from 15 March to 31 May 2020, compared with the same period in 2019.
Questionnaires were returned from 53/71 (75%) laboratories from 18 European countries. The biosafety procedures were heterogeneous. The workload in clinical and molecular pathology decreased dramatically by 31% (range, 3%-55%) and 26% (range, 7%-62%), respectively. According to the professional category, between 28% and 41% of the staff members were not present in the laboratories but did teleworking. A total of 70% of the laboratories developed virtual meetings for the training of residents and junior pathologists. During the period of study, none of the staff members with confirmed COVID-19 became infected as a result of handling samples.
The COVID-19 pandemic has had a strong impact on most of the European pathology laboratories included in this study. Urgent implementation of several changes to the organization of most of these laboratories, notably to better harmonize biosafety procedures, was noted at the onset of the pandemic and maintained in the event of a new wave of infection occurring in Europe
- âŠ