12 research outputs found

    Application of 3D MAPs pipeline identifies the morphological sequence chondrocytes undergo and the regulatory role of GDF5 in this process

    Get PDF
    The activity of epiphyseal growth plates, which drives long bone elongation, depends on extensive changes in chondrocyte size and shape during differentiation. Here, we develop a pipeline called 3D Morphometric Analysis for Phenotypic significance (3D MAPs), which combines light-sheet microscopy, segmentation algorithms and 3D morphometric analysis to characterize morphogenetic cellular behaviors while maintaining the spatial context of the growth plate. Using 3D MAPs, we create a 3D image database of hundreds of thousands of chondrocytes. Analysis reveals broad repertoire of morphological changes, growth strategies and cell organizations during differentiation. Moreover, identifying a reduction in Smad 1/5/9 activity together with multiple abnormalities in cell growth, shape and organization provides an explanation for the shortening of Gdf5 KO tibias. Overall, our findings provide insight into the morphological sequence that chondrocytes undergo during differentiation and highlight the ability of 3D MAPs to uncover cellular mechanisms that may regulate this process

    Orthèses occlusales en France : évaluation des pratiques professionnelles

    No full text
    Occlusal appliances, commonly known as “occlusal splints”, are one of the most employed therapeutical solutions in case of temporomandibular disorder (TMD) nowadays. After a literature analyse revealing the actual consensus regarding the indication of occlusal appliances, the conception and elaboration principles, along with the directions for use in a first part, this thesis aims at evaluating the professional practices of the dental surgeons in France concerning those appliances, by completing a cross-sectional survey. A statistical analysis of the 771 answers with the use of a Chi-Square test led to several observations, indicating a true need of practices harmonization but also an appetite for this theme among the participating practitioners.Les orthèses occlusales, communément appelées « gouttières occlusales », sont une des solutions thérapeutiques les plus utilisées actuellement en cas de dysfonctionnements temporomandibulaires (DTM). Après une analyse de la littérature dévoilant les recommandations actuelles concernant l’indication des orthèses occlusales, les principes de conception et d’élaboration ainsi que les conseils de port dans une première partie, l’objectif de cette étude est d’évaluer les pratiques professionnelles des chirurgiens-dentistes en France concernant ces orthèses, en réalisant une enquête transversale. Une analyse statistique des 771 réponses à l’aide d’un test de Chi-2 a conduit à de nombreuses constatations, révélant un véritable besoin d’harmonisation des pratiques, mais également une appétence pour ce thème parmi les praticiens participants

    Joint Development Involves a Continuous Influx of Gdf5-Positive Cells

    Get PDF
    Synovial joints comprise several tissue types, including articular cartilage, the capsule, and ligaments. All of these compartments are commonly assumed to originate from an early set of Gdf5-expressing progenitors populating the interzone domain. Here, we provide evidence that joints develop through a continuous influx of cells into the interzone, where they contribute differentially to forming joint tissues. Using a knockin Gdf5-CreERT2 mouse, we show that early labeling of Gdf5-positive interzone cells failed to mark the entire organ. Conversely, multiple Cre activation steps indicated a contribution of these cells to various joint compartments later in development. Spatiotemporal differences between Gdf5 and tdTomato reporter expression support the notion of a continuous recruitment process. Finally, differential contribution of Gdf5-positive cells to various tissues suggests that the spatiotemporal dynamics of Gdf5 expression may instruct lineage divergence. This work supports the influx model of joint development, which may apply to other organogenic processes

    Deposition of collagen type I onto skeletal endothelium reveals a new role for blood vessels in regulating bone morphology

    No full text
    \u3cp\u3eRecently, blood vessels have been implicated in the morphogenesis of various organs. The vasculature is also known to be essential for endochondral bone development, yet the underlying mechanism has remained elusive. We show that a unique composition of blood vessels facilitates the role of the endothelium in bone mineralization and morphogenesis. Immunostaining and electron microscopy showed that the endothelium in developing bones lacks basement membrane, which normally isolates the blood vessel from its surroundings. Further analysis revealed the presence of collagen type I on the endothelial wall of these vessels. Because collagen type I is the main component of the osteoid, we hypothesized that the bone vasculature guides the formation of the collagenous template and consequently of the mature bone. Indeed, some of the bone vessels were found to undergo mineralization. Moreover, the vascular pattern at each embryonic stage prefigured the mineral distribution pattern observed one day later. Finally, perturbation of vascular patterning by overexpressing Vegf in osteoblasts resulted in abnormal bone morphology, supporting a role for blood vessels in bone morphogenesis. These data reveal the unique composition of the endothelium in developing bones and indicate that vascular patterning plays a role in determining bone shape by forming a template for deposition of bone matrix.\u3c/p\u3

    Deposition of collagen type I onto skeletal endothelium reveals a new role for blood vessels in regulating bone morphology

    Get PDF
    Recently, blood vessels have been implicated in the morphogenesis of various organs. The vasculature is also known to be essential for endochondral bone development, yet the underlying mechanism has remained elusive. We show that a unique composition of blood vessels facilitates the role of the endothelium in bone mineralization and morphogenesis. Immunostaining and electron microscopy showed that the endothelium in developing bones lacks basement membrane, which normally isolates the blood vessel from its surroundings. Further analysis revealed the presence of collagen type I on the endothelial wall of these vessels. Because collagen type I is the main component of the osteoid, we hypothesized that the bone vasculature guides the formation of the collagenous template and consequently of the mature bone. Indeed, some of the bone vessels were found to undergo mineralization. Moreover, the vascular pattern at each embryonic stage prefigured the mineral distribution pattern observed one day later. Finally, perturbation of vascular patterning by overexpressing Vegf in osteoblasts resulted in abnormal bone morphology, supporting a role for blood vessels in bone morphogenesis. These data reveal the unique composition of the endothelium in developing bones and indicate that vascular patterning plays a role in determining bone shape by forming a template for deposition of bone matrix

    Molecular characterization of the intact mouse muscle spindle using a multi-omics approach

    Get PDF
    The proprioceptive system is essential for the control of coordinated movement, posture, and skeletal integrity. The sense of proprioception is produced in the brain using peripheral sensory input from receptors such as the muscle spindle, which detects changes in the length of skeletal muscles. Despite its importance, the molecular composition of the muscle spindle is largely unknown. In this study, we generated comprehensive transcriptomic and proteomic datasets of the entire muscle spindle isolated from the murine deep masseter muscle. We then associated differentially expressed genes with the various tissues composing the spindle using bioinformatic analysis. Immunostaining verified these predictions, thus establishing new markers for the different spindle tissues. Utilizing these markers, we identified the differentiation stages the spindle capsule cells undergo during development. Together, these findings provide comprehensive molecular characterization of the intact spindle as well as new tools to study its development and function in health and disease

    Piezo2 expressed in proprioceptive neurons is essential for skeletal integrity

    No full text
    Mutations in human PIEZO2, encoding for a mechanosensitive ion channel, lead to skeletal abnormalities including scoliosis and hip dysplasia. Here, the authors show that deletion of Piezo2 in proprioceptive neurons, but not in skeletal lineages, recapitulated the human phenotype in mice
    corecore