553 research outputs found

    Witnessing the magnetospheric boundary at work in Vela X-1

    Full text link
    We present an analysis of the Vela X-1's "off-states" based on Suzaku observations taken in June 2008. Defined as states in which the flux sudden decreases below the instrumental sensitivity, these "off-states" have been interpreted by several authors as the onset of the "propeller regime". For the first time ever, however, we find that the source does not turn off and, although the flux drops by a factor of 20 during the three recorded "off-states", pulsations are still observed. The spectrum and the pulse-profiles of the "off-states" are also presented. Eventually, we discuss our findings in framework of the "gated accretion" scenario and conclude that most likely the residual flux is due to the accretion of matter leaking through the magnetosphere by means of Kelvin-Helmholz instabilities (KHI).Comment: 4 pages 4 figures; accepted for publication in A&A letters (20/02/2011); v1.1 - some changes in language + added 3 reference

    Study of the cyclotron feature in MXB 0656-072

    Get PDF
    We have monitored a type II outburst of the Be/X-ray binary MXB 0656−072 in a series of pointed RXTE observations during October through December 2003. The source spectrum shows a cyclotron resonance scattering feature at 32.8 +0.5 −0.4 keV, corresponding to a magnetic field strength of 3.67 +0.06 −0.04 × 10 12 G and is stable through the outburst and over the pulsar spin phase. The pulsar, with an average pulse period of 160.4 ± 0.4s,shows a spin-up of 0.45 s over the duration of the outburst. From optical data, the source distance is estimated to be 3.9 ± 0.1 kpc and this is used to estimate the X-ray luminosity and a theoretical prediction of the pulsar spin-up during the outburst

    INTEGRAL broadband spectroscopy of Vela X-1

    Full text link
    The wind-accreting X-ray binary pulsar and cyclotron line source Vela X-1 has been observed extensively during INTEGRAL Core Program observations of the Vela region in June-July and November-December 2003. In the latter set of observations the source showed intense flaring -- see also Staubert et al. (2004), these proceedings. We present early results on time averaged and time resolved spectra, of both epochs of observations. A cyclotron line feature at ~53 keV is clearly detected in the INTEGRAL spectra and its broad shape is resolved in SPI spectra. The remaining issues in the calibration of the instruments do not allow to resolve the question of the disputed line feature at 20-25 keV. During the first main flare the average luminosity increases by a factor of \~10, but the spectral shape remains very similar, except for a moderate softening.Comment: Accepted for proceedings of 5th INTEGRAL Worksho

    On the cyclotron line in Cepheus X-4

    Get PDF
    Context. Accreting X-ray pulsars provide us with laboratories for the study of extreme gravitational and magnetic fields, hence accurate descriptions of their observational properties contribute to our understanding of this group of objects. Aims. We aim to detect a cyclotron resonance scattering feature in the Be/X-ray binary Cep X-4 and to investigate pulse profile and spectral changes through the outburst. Methods. Spectral fitting and timing analysis are employed to probe the properties of Cep X-4 during an outburst in 2002 June. Results. A previously announced cyclotron feature at 30.7 keV is confirmed, while the source shows spectral behaviour and luminosity related changes similar to those observed in previous outbursts. The long-term X-ray lightcurve shows a periodicity at 20.85 d, which could be attributed to the orbit in this Be system

    Is there a highly magnetized neutron star in GX 301-2?

    Get PDF
    We present the results of an in-depth study of the long-period X-ray pulsar GX 301-2. Using archival data of INTEGRAL, RXTE ASM, and CGRO BATSE, we study the spectral and timing properties of the source. Comparison of our timing results with previously published work reveals a secular decay of the orbital period at a rate of \simeq -3.25 \times 10^{-5} d yr^{-1}, which is an order of magnitude faster than for other known systems. We argue that this is probably result either of the apsidal motion or of gravitational coupling of the matter lost by the optical companion with the neutron star, although current observations do not allow us to distinguish between those possibilities. We also propose a model to explain the observed long pulse period. We find that a very strong magnetic field B \sim 10^{14} G can explain the observed pulse period in the framework of existing models for torques affecting the neutron star. We show that the apparent contradiction with the magnetic field strength B_{CRSF} \sim 4 \times 10^{12} G derived from the observed cyclotron line position may be resolved if the line formation region resides in a tall accretion column of height \sim 2.5 - 3 R_{NS}. The color temperature measured from the spectrum suggests that such a column may indeed be present, and our estimates show that its height is sufficient to explain the observed cyclotron line position.Comment: 10 pages, 7 figures, accepted for publication in Astronomy and Astrophysics. Referee comments are implemented

    INTEGRAL and XMM-Newton observations towards the unidentified MeV source GRO J1411-64

    Get PDF
    The COMPTEL unidentified source GRO J1411-64 was observed by INTEGRAL, and its central part, also by XMM-Newton. The data analysis shows no hint for new detections at hard X-rays. The upper limits in flux herein presented constrain the energy spectrum of whatever was producing GRO J1411-64, imposing, in the framework of earlier COMPTEL observations, the existence of a peak in power output located somewhere between 300-700 keV for the so-called low state. The Circinus Galaxy is the only source detected within the 4σ\sigma location error of GRO J1411-64, but can be safely excluded as the possible counterpart: the extrapolation of the energy spectrum is well below the one for GRO J1411-64 at MeV energies. 22 significant sources (likelihood >10> 10) were extracted and analyzed from XMM-Newton data. Only one of these sources, XMMU J141255.6-635932, is spectrally compatible with GRO J1411-64 although the fact the soft X-ray observations do not cover the full extent of the COMPTEL source position uncertainty make an association hard to quantify and thus risky. The unique peak of the power output at high energies (hard X-rays and gamma-rays) resembles that found in the SED seen in blazars or microquasars. However, an analysis using a microquasar model consisting on a magnetized conical jet filled with relativistic electrons which radiate through synchrotron and inverse Compton scattering with star, disk, corona and synchrotron photons shows that it is hard to comply with all observational constrains. This and the non-detection at hard X-rays introduce an a-posteriori question mark upon the physical reality of this source, which is discussed in some detail

    A 0535+26 in the August/September 2005 outburst observed by RXTE and INTEGRAL

    Get PDF
    In this Letter we present results from INTEGRAL and RXTE observations of the spectral and timing behavior of the High Mass X-ray Binary A 0535+26 during its August/September 2005 normal (type I) outburst with an average flux F(5-100keV)~400mCrab. The search for cyclotron resonance scattering features (fundamental and harmonic) is one major focus of the paper. Our analysis is based on data from INTEGRAL and RXTE Target of Opportunity Observations performed during the outburst. The pulse period is determined. X-ray pulse profiles in different energy ranges are analyzed. The broad band INTEGRAL and RXTE pulse phase averaged X-ray spectra are studied. The evolution of the fundamental cyclotron line at different luminosities is analyzed. The pulse period P is measured to be 103.39315(5)s at MJD 53614.5137. Two absorption features are detected in the phase averaged spectra at E_1~45keV and E_2~100keV. These can be interpreted as the fundamental cyclotron resonance scattering feature and its first harmonic and therefore the magnetic field can be estimated to be B~4x10^12G.Comment: 4 pages, 5 figures, accepted for publication in A&A Letter

    The 1999 Hercules X-1 Anomalous Low State

    Full text link
    A failed main-on in the 35d cycle of Her X-1 was observed with the Rossi X-Ray Timing Explorer (RXTE) on 1999 April 26. Exceptions to the normal 35d cycle have been seen only twice before; in 1983 and again 1993. We present timing and spectral results of this latest Anomalous Low State (ALS) along with comparisons to the main-on and normal low states. Pulsations were observed in the 3-18 keV band with a fractional RMS variation of (0.037+-0.003). Spectral analysis indicates that the ALS spectrum has the same shape as the main-on but is modified by heavy absorption and scattering. We find that 70% of the observed emission has passed through a cold absorber (N_H=5.0x10^{23}cm^{-2}). This partially absorbing spectral fit can be applied to the normal low state with similar results. We find that the ALS observations may be interpreted as a decrease in inclination of the accretion disk causing the central X-Ray source to be obscured over the entire 35d cycle.Comment: revised text, 6 revised figures, accepted for publication in Ap

    Completing the puzzle of the 2004-2005 outburst in V0332+53: the brightening phase included

    Full text link
    Analysis of the data obtained with the RXTE observatory during a powerful outburst of the X-ray pulsar V0332+53 in 2004-2005 is presented. Observational data covering the outburst brightening phase are analysed in detail for the first time. A comparison of source parameters and their evolution during the brightening and fading phases shows no evidence for any hysteresis behaviour. It is found that the dependences of the energy of the cyclotron absorption line on the luminosity during the brightening and fading phases are almost identical. The complete data sequence including the outburst brightening and fading phases makes it possible to impose the more stringent constraints on the magnetic field in the source. The pulse profile and pulsed fraction are studied as functions of the luminosity and photon energy.Comment: 9 pages, 10 figures, accepted for publication in MNRA

    The hard X-ray emission of X Per

    Full text link
    We present an analysis of the spectral properties of the peculiar X-ray pulsar X Per based on INTEGRAL observations. We show that the source exhibits an unusually hard spectrum and is confidently detected by ISGRI up to more than 100 keV. We find that two distinct components may be identified in the broadband 4-200 keV spectrum of the source. We interpret these components as the result of thermal and bulk Comptonization in the vicinity of the neutron star and describe them with several semi-phenomenological models. The previously reported absorption feature at ~30 keV is not required in the proposed scenario and therefore its physical interpretation must be taken with caution. We also investigated the timing properties of the source in the framework of existing torque theory, concluding that the observed phenomenology can be consistently explained if the magnetic field of the neutron star is ~10^14 G.Comment: Published as a letter in A&A; 4 pages, 2 figure
    corecore