73 research outputs found

    Genetic Mosaicism in a Group of Patients With Cornelia de Lange Syndrome

    Get PDF
    Background: Cornelia de Lange Syndrome (CdLS) is a heterogeneous disorder. Diverse expression of clinical symptoms can be caused by a variety of pathogenic variants located within the sequence of different genes correlated with the cohesin complex.Methods: Sixty-nine patients with confirmed clinical diagnosis of CdLS were enrolled in the study. Blood and buccal swab samples were collected for molecular studies. Mutational analysis was performed using the Next Generation (deep) Sequencing (NGS) covering 24 genes. In addition, the MLPA technique was applied to detect large rearrangements of NIPBL.Results: MLPA and NGS analysis were performed in 66 (95,7%) and 67 (97,1%) patients, respectively. Large rearrangements of NIPBL were not identified in the studied group. Germline pathogenic variants were detected in 18 (26,1%) patients. Fourteen variants (20,3%) were identified in NIPBL, two (2,9%) in SMC1A, and two (2,9%) in HDAC8. In total, 13 (18,8%) buccal swabs were suitable for deep sequencing. Mosaic variants were found in four (30,8%; 4/13) patients negative for germline alterations. Three mosaic substitutions were detected in NIPBL while one in KMT2A gene.Conclusions: Comprehensive and sensitive molecular techniques allow detecting novel pathogenic variants responsible for the molecular basis of CdLS. In addition, molecular testing of different tissues should be applied since such an approach allows detect mosaic variants specific for a subgroup of CdLS patients. Finally, to test possible pathogenicity of intronic variants, RNA analysis should be conducted

    Effect of apelin on mitosis, apoptosis and DNA repair enzyme OGG 1/2 expression in intestinal cell lines IEC-6 and Caco-2

    Get PDF
    Apelin is a regulatory peptide, identified as an endogenous ligand of the Apelin receptor (APJ). Both the apelin and the APJ were detected in brain, lung, heart, mammary gland, kidney, placenta, adipose tissues and the gastrointestinal tract. Apelin is considered an important regulatory gut peptide with a potential physiological role in gastrointestinal cytoprotection, regulation of food intake and drinking behaviour. The aim of the present study was to assess the effect of the apelin on mitosis, apoptosis and the expression of DNA repair enzyme (OGG 1/2), and APJ receptor in intestinal cell lines: rat crypt (IEC-6) and human enterocyte model (Caco-2). The cell cultures were incubated with the apelin-12 (10–8 M) for 4, 6, 12, 24 and 48 h and the apoptosis (caspase 3), mitosis (Ki-67) and DNA repair enzyme (OGG1/2) markers were studied by Real-Time qRT-PCR and immunofluorescent methods. The results of Real-Time qRT-PCR and immunocytochemical analysis showed that the levels of mRNAs were inversely related to the expression level of corresponding proteins. Immunofluorescent studies revealed inhibitory effect of apelin-12 on apoptosis, mitosis and the expression of OGG1/2 in the intestinal crypt cell line IEC-6. However, in the enterocyte model Caco-2 cells apelin stimulated apoptosis and mitosis, and reduced OGG1/2 expression. These findings suggest that apelin may be involved in the control of epithelial cell turnover in the gastrointestinal tract. (Folia Histochemica et Cytobiologica 2014, Vol. 52, No. 1, 51–59

    In vitro evaluation of degradable electrospun polylactic acid/bioactive calcium phosphate ormoglass scaffolds

    Get PDF
    Nowadays, the main limitation for clinical application of scaffolds is considered to be an insufficient vascularization of the implanted platforms and healing tissues. In our studies, we proposed a novel PLA-based hybrid platform with aligned and random fibrous internal structure and incorporated calcium phosphate (CaP) ormoglass nanoparticles (0, 10, 20 and 30 wt%) as an off-the-shelf method for obtaining scaffolds with pro-angiogenic properties. Complex morphological and physicochemical evaluation of PLA-CaP ormoglass composites was performed before and after in vitro degradation test in SBF solution to assess their biological potential. The degradation process of PLA-CaP ormoglass composites was accompanied by numerous CaP-based precipitations with extended topography and cauliflower-like shape which may enhance bonding of the material with the bone tissue and accelerate the regenerative process. Random fiber orientation was preferable for CaP compounds deposition upon in vitro degradation. CaP compounds precipitated firstly for randomly oriented composite nonwovens with 20 and 30 wt% addition of ormoglass. Moreover, the preliminary bioactivity test has shown that BSA adsorbed to PLA-CaP ormoglass composites (both aligned and randomly oriented) with 20 and 30 wt% of ormoglass nanoparticles which was not observed for pure PLA scaffolds

    Mosaic Intronic NIPBL Variant in a Family With Cornelia de Lange Syndrome

    Get PDF
    Cornelia de Lange Syndrome (CdLS) is a well described multiple malformation syndrome caused by alterations in genes encoding subunits or regulators of the cohesin complex. In approximately 70% of CdLS patients, pathogenic NIPBL variants are detected and 15% of them are predicted to affect splicing. Moreover, a large portion of genetic variants in NIPBL was shown to be somatic mosaicism. Here we report two family members with different expression of the CdLS phenotype. In both individuals, a c.869-2A>G (r.869_1495del) substitution was detected, affecting a conserved splice-acceptor site. Deep sequencing revealed the presence of somatic mosaicism in the mother. The substitution was detected in 23% of the sequencing reads using DNA derived from blood samples and 51% in DNA from buccal swabs. The analysis of blood DNA of the son excluded the presence of somatic mosaicism. Correlation of molecular and clinical data revealed that various distribution of genetic alteration in different cell types had an impact on the expression of observed clinical features in both individuals

    Heat treatment of NiTi alloys fabricated using laser powder bed fusion (LPBF) from elementally blended powders

    Get PDF
    The use of elemental metallic powders and in situ alloying in additive manufacturing (AM) is of industrial relevance as it offers the required flexibility to tailor the batch powder composition. This solution has been applied to the AM manufacturing of nickel-titanium (NiTi) shape memory alloy components. In this work, we show that laser powder bed fusion (LPBF) can be used to create a Ni55.7Ti44.3 alloyed component, but that the chemical composition of the build has a large heterogeneity. To solve this problem three different annealing heat treatments were designed, and the resulting porosity, microstructural homogeneity, and phase formation was investigated. The heat treatments were found to improve the alloy’s chemical and phase homogeneity, but the brittle NiTi2 phase was found to be stabilized by the 0.54 wt.% of oxygen present in all fabricated samples. As a consequence, a Ni2Ti4O phase was formed and was confirmed by transmission electron microscopy (TEM) observation. This study showed that pore formation in in situ alloyed NiTi can be controlled via heat treatment. Moreover, we have shown that the two-step heat treatment is a promising method to homogenise the chemical and phase composition of in situ alloyed NiTi powder fabricated by LPBF.peer-reviewe

    Effect of spark plasma sintering and high-pressure torsion on the microstructural and mechanical properties of a Cu–SiC composite

    Get PDF
    This investigation examines the problem of homogenization in metal matrix composites (MMCs) and the methods of increasing their strength using severe plastic deformation (SPD). In this research MMCs of pure copper and silicon carbide were synthesized by spark plasma sintering (SPS) and then further processed via highpressure torsion (HPT). The microstructures in the sintered and in the deformed materials were investigated using Scanning Electron Microscopy (SEM) and Scanning Transmission Electron Microscopy (STEM). The mechanical properties were evaluated in microhardness tests and in tensile testing. The thermal conductivity of the composites was measured with the use of a laser pulse technique. Microstructural analysis revealed that HPT processing leads to an improved densification of the SPS-produced composites with significant grain refinement in the copper matrix and with fragmentation of the SiC particles and their homogeneous distribution in the copper matrix. The HPT processing of Cu and the Cu-SiC samples enhanced their mechanical properties at the expense of limiting their plasticity. Processing by HPT also had a major influence on the thermal conductivity of materials. It is demonstrated that the deformed samples exhibit higher thermal conductivity than the initial coarse-grained samples

    Abstracts from the 20th International Symposium on Signal Transduction at the Blood-Brain Barriers

    Full text link
    https://deepblue.lib.umich.edu/bitstream/2027.42/138963/1/12987_2017_Article_71.pd
    • 

    corecore