276 research outputs found

    Synthesis of derivatives of methoxydibenzo[b, f]oxepine in the presence of sodium azide

    Get PDF
    Dibenzo[b,f]oxepine is an important scaffold in medicinal chemistry and its derivatives occur in several medicinally important plants. A new approach to methoxydibenzo[b,f]oxepines (15–21) proceeding under mild reaction conditions, has been developed. Notably, the use of sodium azide in the reaction allows access to new substituted dibenzo[b,f]oxepines. In order to study their shape and conformation, the optimum structures of these compounds were calculated using the DFT B3LYP/6-311++G(2d,p) method. A docking simulation was performed to insert compound 20 into the crystal structure of tubulin at the colchicine binding site to determine the probable binding model. The information from this work can be helpful for the investigation of new tubulin polymerization inhibitors exhibiting stronger activity

    Evaluation of Anti-cancer Activity of Stilbene and Methoxydibenzo[b,f] oxepin Derivatives

    Get PDF
    Background: Stilbenes, 1,2-diphenylethen derivatives, including resveratrol and combretastatins, show anticancer features especially against tumor angiogenesis. Fosbretabulin, CA-4, in combination with carboplatin, is in the last stages of clinical tests as an inhibitor of thyroid cancer. The mode of action of these compounds involves suppression of angiogenesis through interfering with tubulin (de)polymerization. Objective: We have previously synthesized five E-2-hydroxystilbenes and seven dibenzo[b,f]oxepins in Z configuration, with methyl or nitro groups at varied positions. The aim of the present work was to evaluate the anticancer activity and molecular mechanism(s) of action of these compounds. Results: Two healthy, EUFA30 and HEK293, and two cancerous, HeLa and U87, cell lines were treated with four newly synthetized stilbenes and seven oxepins. Two of these compounds, JJR5 and JJR6, showed the strongest cytotoxic effect against cancerous cells tested and these two were selected for further investigations. They induced apoptosis with sub-G1 or S cell cycle arrest and PARP cleavage, with no visible activation of caspases 3 and 7. Proteomic differential analysis of stilbene-treated cells led to the identification of proteins involved almost exclusively in cell cycle management, apoptosis, DNA repair, and stress response, e. g. oxidative stress. Conclusions: Among newly synthesized stilbene derivatives we selected two as potent anticancer compounds triggering late apoptosis/necrosis in cancerous cells through sub-G1 phase cell cycle arrest. They changed cyclin expression, induced DNA repair mechanisms, enzymes involved in apoptosis, and oxidative stress response. Compounds JJR5 and JJR6 can be a base for structure modification(s) to obtain even more active derivatives

    The stilbene and dibenzo[b,f]oxepine derivatives as anticancer compounds

    Get PDF
    In the present study, the synthesis and cytotoxic effect of six stilbenes and three oxepine derivatives against twocancerous–HeLa and U87, and two normal–EUFA30 and HEK293 cell lines has been reported. The results ofcytotoxic assay andflow cytometry analysis revealed that compounds 9-nitrobenzo[b]naphtho[1,2-f]oxepine(4), (E)-3,3′,4,4′,5,5′-hexamethoxystilbene (6) and 4-hydroxy-2′,4′-dinitrostilbene (8) were the most active andtheir interaction with tubulin (crystal structure from PDB) has been analyzed by computer molecular modeling.Molecular docking of these compounds on colchicine binding site of the tubulin indicates the interaction of (4),(6) and (8) with tubulin. The compound (4) could interact stronger with tubulin, relative to colchicine, however,with no selectivity of action against cancer and normal cells. Conversely, compounds (6) and (8) interact moreweakly with tubulin, relative to colchicine but they act more selectively towards cancerous versus normal celllines. Obtained results proved that the compounds that are the most active against cancerous cells operatethrough tubulin binding

    Activation-induced chromatin reorganization in neurons depends on HDAC1 activity

    Get PDF
    Spatial chromatin organization is crucial for transcriptional regulation and might be particularly important in neurons since they dramatically change their transcriptome in response to external stimuli. We show that stimulation of neurons causes condensation of large chromatin domains. This phenomenon can be observed in vitro in cultured rat hippocampal neurons as well as in vivo in the amygdala and hippocampal neurons. Activity-induced chromatin condensation is an active, rapid, energy-dependent, and reversible process. It involves calcium-dependent pathways but is independent of active transcription. It is accompanied by the redistribution of posttranslational histone modifications and rearrangements in the spatial organization of chromosome territories. Moreover, it leads to the reorganization of nuclear speckles and active domains located in their proximity. Finally, we find that the histone deacetylase HDAC1 is the key regulator of this process. Our results suggest that HDAC1-dependent chromatin reorganization constitutes an important level of transcriptional regulation in neurons.publishedVersio

    Gamification of learning deactivates the Default Mode Network

    Get PDF
    We hypothesised that embedding educational learning in a game would improve learning outcomes, with increased engagement and recruitment of cognitive resources evidenced by increased activation of working memory network (WMN) and deactivation of Default Mode Network (DMN) regions. In an fMRI study, we compared activity during periods of learning in three conditions that were increasingly game-like: Study-only (when periods of learning were followed by an exemplar question together with its correct answer), Self-quizzing (when periods of learning were followed by a multiple choice question in return for a fixed number of points) and Game-based (when, following each period of learning, participants competed with a peer to answer the question for escalating, uncertain rewards). DMN hubs deactivated as conditions became more game-like, alongside greater self-reported engagement and, in the Game-based condition, higher learning scores. These changes did not occur with any detectable increase in WMN activity. Additionally, ventral striatal activation was associated with responding to questions and receiving positive question feedback. Results support the significance of DMN deactivation for educational learning, and are aligned with recent evidence suggesting DMN and WMN activity may not always be anti-correlated

    A practical approach to the ESC 2022 cardio-oncology guidelines. Comments by a team of experts: cardiologists and oncologists

    Get PDF
    The 2022 European Society of Cardiology (ESC) guidelines [1] are a comprehensive document, prepared jointly by experts in cardiology and oncology. In the case of an oncological patient, it is necessary to individualize care in relation to the cardiological condition, the stage of the cancer and the type of potential anti-cancer therapy. Cardiac care optimisation should be undertaken before the start of oncological therapy, and continued during oncological therapy, as well as long-term after its completion [2]. The published ESC Guidelines were supplemented with a practical comments of a team of polish cardiology and oncology experts

    Activation-induced chromatin reorganization in neurons depends on HDAC1 activity

    Get PDF
    Spatial chromatin organization is crucial for transcriptional regulation and might be particularly important in neurons since they dramatically change their transcriptome in response to external stimuli. We show that stimulation of neurons causes condensation of large chromatin domains. This phenomenon can be observed in vitro in cultured rat hippocampal neurons as well as in vivo in the amygdala and hippocampal neurons. Activity-induced chromatin condensation is an active, rapid, energy-dependent, and reversible process. It involves calcium-dependent pathways but is independent of active transcription. It is accompanied by the redistribution of posttranslational histone modifications and rearrangements in the spatial organization of chromosome territories. Moreover, it leads to the reorganization of nuclear speckles and active domains located in their proximity. Finally, we find that the histone deacetylase HDAC1 is the key regulator of this process. Our results suggest that HDAC1-dependent chromatin reorganization constitutes an important level of transcriptional regulation in neurons.This work was supported by the National Science Centre grant nos. UMO-2015/18/E/NZ3/00730 (A.M., A.G., H.S.N., E.J. and Y.Y.), 2014/15/N/NZ2/00379 and 2017/24/T/NZ2/00307 (P.T.), 2019/35/O/ST6/02484 (D.P. and G.B.), and 2014/14/M/NZ4/00561 (K.H.O. and R.K.F.). B.W. and B.G. were supported by the Foundation for Polish Science TEAM-TECH Core Facility project “NGS platform for comprehensive diagnostics and personalized therapy in neuro-oncology,” Foundation for Polish Science co-financed by the European Union under the European Regional Development Fund (TEAM to D.P.). A.M.G. was supported by the H2020-MSCA-COFUND-2014 grant Bio4Med (GA no. 665735).Peer reviewe

    Multidifferential study of identified charged hadron distributions in ZZ-tagged jets in proton-proton collisions at s=\sqrt{s}=13 TeV

    Full text link
    Jet fragmentation functions are measured for the first time in proton-proton collisions for charged pions, kaons, and protons within jets recoiling against a ZZ boson. The charged-hadron distributions are studied longitudinally and transversely to the jet direction for jets with transverse momentum 20 <pT<100< p_{\textrm{T}} < 100 GeV and in the pseudorapidity range 2.5<η<42.5 < \eta < 4. The data sample was collected with the LHCb experiment at a center-of-mass energy of 13 TeV, corresponding to an integrated luminosity of 1.64 fb1^{-1}. Triple differential distributions as a function of the hadron longitudinal momentum fraction, hadron transverse momentum, and jet transverse momentum are also measured for the first time. This helps constrain transverse-momentum-dependent fragmentation functions. Differences in the shapes and magnitudes of the measured distributions for the different hadron species provide insights into the hadronization process for jets predominantly initiated by light quarks.Comment: All figures and tables, along with machine-readable versions and any supplementary material and additional information, are available at https://cern.ch/lhcbproject/Publications/p/LHCb-PAPER-2022-013.html (LHCb public pages
    corecore