279 research outputs found

    Long-term tracing of whole catchment 15N additions in a mountain spruce forest: measurements and simulations with the TRACE model

    Get PDF
    Despite numerous studies on nitrogen (N) cycling in forest ecosystems, many uncertainties remain, particularly regarding long-term N accumulation in the soil. Models validated against tracer isotopic data from field labeling experiments provide a potential tool to better understand and simulate C and N interactions over multiple decades. In this study, we describe the adaptation of the dynamic process-based model TRACE to a new site, Alptal, where long-term N-addition and 15N-tracer experiments provide unique datasets for testing the model. We describe model parameterization for this spruce forest, and then test the model with 9- and 14-year time series of 15N-tracer recovery from control and N-amended catchments, respectively. Finally, we use the model to project the fate of ecosystem N accumulation over the next 70years. Field 15N recovery data show that the major sink for N deposition is the soil. On the control plot, tracer recovery in the soil increased from 32% in the second year to 60% in the ninth year following tracer addition, whereas on the N-saturated plot, soil recovery stayed almost constant from 63% in the third year to 61% in the twelfth year. Recovery in tree biomass increased over the decadal time scale in both treatments, to ca. 10% over 9years on the control plot and ca. 13% over 14years on the N-amended plot. We then used these time series to validate TRACE, showing that the adaptation and calibration procedure for the Alptal site was successful. Model-data comparison identified that the spreading method of 15N tracers needs to be considered when interpreting recovery results from labeling studies. Furthermore, the ground vegetation layer was recognized to play an important role in controlling the rate at which deposited N enters soil pools. Our 70-year model simulation into the future underpinned by a Monte-Carlo sensitivity analysis, suggests that the soil is able to immobilize a constant fraction of 70 and 77% of deposited N for the treated and the control plot, respectively. Further, the model showed that the simulated increased N deposition resulted in a relatively small elevated C sequestration in aggrading wood with an N use efficiency of approximately 7kg C per kgN adde

    Alterseinkommen der Zukunft: eine szenarische Skizze

    Full text link
    Inhaltsverzeichnis: 1 Einleitung und Zielsetzung; 2 Aktuelle wirtschaftliche Ressourcen Ă€lterer Bevölkerungsgruppen in Deutschland; 3 Demographische Entwicklungen - Szenarien bis 2030; 3.1 Entwicklung der BevölkerungsgrĂ¶ĂŸe; 3.2 Altersstruktur der Bevölkerung; 4 Sozialer Wandel; 5 Entwicklungslinien des Alterssicherungssystems; 6 Entwicklung von Erbschaften und Kapitaleinkommen; 6.1 Erbschaften; 6.2 Die Entwicklung von Geldvermögen und Kapitaleinkommen; 7 Entwicklung der Ruhestands-/Transfereinkommen; 7.1 Szenario zur Entwicklung der Ruhestandseinkommen auf Basis geltenden Rechts und der Reformszenarien der Bundesregierung; 7.2 Mögliche Auswirkungen der EinfĂŒhrung einer freiwilligen kapitalgedeckten Zusatzvorsorge im Alter auf die Verteilung der Alterseinkommen; 7.3 KĂŒnftige VerĂ€nderungen der Alterseinkommen; 8 Wirtschaftliche Ressourcen Ă€lterer Bevölkerungsgruppen vor dem Hintergrund derzeitiger Entwicklungstendenzen in den Teilbereichen; 8.1 Demographie und Alterseinkommen; 8.2 Kapitaleinkommen; 8.3 Sozialer Wandel und Sozialstruktur; 8.4 Skizze kĂŒnftiger VerĂ€nderungen; 9 Zusammenfassung; 10 Literatur

    The Small Heat Shock Protein Hsp27 Affects Assembly Dynamics and Structure of Keratin Intermediate Filament Networks

    Get PDF
    AbstractThe mechanical properties of living cells are essential for many processes. They are defined by the cytoskeleton, a composite network of protein fibers. Thus, the precise control of its architecture is of paramount importance. Our knowledge about the molecular and physical mechanisms defining the network structure remains scarce, especially for the intermediate filament cytoskeleton. Here, we investigate the effect of small heat shock proteins on the keratin 8/18 intermediate filament cytoskeleton using a well-controlled model system of reconstituted keratin networks. We demonstrate that Hsp27 severely alters the structure of such networks by changing their assembly dynamics. Furthermore, the C-terminal tail domain of keratin 8 is shown to be essential for this effect. Combining results from fluorescence and electron microscopy with data from analytical ultracentrifugation reveals the crucial role of kinetic trapping in keratin network formation

    Neuromuscular and Kinematic Adaptation in Response to Reactive Balance Training – a Randomized Controlled Study Regarding Fall Prevention

    Get PDF
    Slips and stumbles are main causes of falls and result in serious injuries. Balance training is widely applied for preventing falls across the lifespan. Subdivided into two main intervention types, biomechanical characteristics differ amongst balance interventions tailored to counteract falls: conventional balance training (CBT) referring to a balance task with a static ledger pivoting around the ankle joint versus reactive balance training (RBT) using externally applied perturbations to deteriorate body equilibrium. This study aimed to evaluate the efficacy of reactive, slip-simulating RBT compared to CBT in regard to fall prevention and to detect neuromuscular and kinematic dependencies. In a randomized controlled trial, 38 participants were randomly allocated either to CBT or RBT. To simulate stumbling scenarios, postural responses were assessed to posterior translations in gait and stance perturbation before and after 4 weeks of training. Surface electromyography during short- (SLR), medium- (MLR), and long-latency response of shank and thigh muscles as well as ankle, knee, and hip joint kinematics (amplitudes and velocities) were recorded. Both training modalities revealed reduced angular velocity in the ankle joint (P < 0.05) accompanied by increased shank muscle activity in SLR (P < 0.05) during marching in place perturbation. During stance perturbation and marching in place perturbation, hip angular velocity was decreased after RBT (P from TTEST, Pt < 0.05) accompanied by enhanced thigh muscle activity (SLR, MLR) after both trainings (P < 0.05). Effect sizes were larger for the RBT-group during stance perturbation. Thus, both interventions revealed modified stabilization strategies for reactive balance recovery after surface translations. Characterized by enhanced reflex activity in the leg muscles antagonizing the surface translations, balance training is associated with improved neuromuscular timing and accuracy being relevant for postural control. This may result in more efficient segmental stabilization during fall risk situations, independent of the intervention modality. More pronounced modulations and higher effect sizes after RBT in stance perturbation point toward specificity of training adaptations, with an emphasis on the proximal body segment for RBT. Outcomes underline the benefits of balance training with a clear distinction between RBT and CBT being relevant for training application over the lifespan

    SUPPORTING SYSTEMS ENGINEERING ACTIVITIES BY ARTIFACT-ORIENTED DESCRIPTION AND SELECTION OF METHODS

    Get PDF
    Systems Engineering (SE) is becoming increasingly relevant in industrial application since more stakeholders are involved in engineering activities. To implement SE, companies have to adapt existing engineering processes and methods. This adaption requires knowledge about new methods as well as their integration into the engineering activities. In order to ensure goal-oriented identification of methods for different SE activities in this contribution an action field profile and the Systems Engineering Method Matrix are proposed. The development of both tools is driven by the assumption that most SE activities and methods can be described based on the artefacts the deliver. In order to get feedback about the proposed tools, semi-structured interviews with two industry partners were conducted, focussing on the tool\u27s usability. These interviews underline the basic usability of the tools and their support to identify SE activities to be supported by (new) methods. Moreover, requirements for further development and adaption are derived from the interviews

    Reactive oxygen-related diseases: therapeutic targets and emerging clinical indications

    Get PDF
    SIGNIFICANCE Enhanced levels of reactive oxygen species (ROS) have been associated with different disease states. Most attempts to validate and exploit these associations by chronic antioxidant therapies have provided disappointing results. Hence, the clinical relevance of ROS is still largely unclear. RECENT ADVANCES We are now beginning to understand the reasons for these failures, which reside in the many important physiological roles of ROS in cell signaling. To exploit ROS therapeutically, it would be essential to define and treat the disease-relevant ROS at the right moment and leave physiological ROS formation intact. This breakthrough seems now within reach. CRITICAL ISSUES Rather than antioxidants, a new generation of protein targets for classical pharmacological agents includes ROS-forming or toxifying enzymes or proteins that are oxidatively damaged and can be functionally repaired. FUTURE DIRECTIONS Linking these target proteins in future to specific disease states and providing in each case proof of principle will be essential for translating the oxidative stress concept into the clinic. Antioxid. Redox Signal. 23, 1171-1185

    Electron-Electron Interactions in Transfer and Excitation in F⁞âș →₂ Collisions

    Get PDF
    We have measured projectile Auger electrons emitted after collisions of H-like F with H2. The cross sections for emission of KLL, KLM, KLN, and KLO Auger electrons show maxima as a function of the projectile energy. One maximum in the KLL emission cross section is due to resonant transfer and excitation. A second maximum in the cross section for KLL emission as well as the maxima in the emission cross section for the higher-n Auger electrons are attributed to a new transfer and excitation process. This involves excitation of a projectile electron by one target electron accompanied by the capture of a second target electron

    Projectile Energy Loss in Multiply Ionizing Ion-Atom Collisions

    Get PDF
    The projectile energy loss for 7.5--25-MeV C6+,5+ and F6+ ions was measured for single collisions with He, Ne, Ar, and Kr as a function of the recoil-ion charge state and the projectile scattering. This energy loss was measured for collisions in which the projectile captured an electron and for those involving just direct ionization. We investigated and found a large average energy transfer (100--250 eV/electron) to the continuum electrons. A strong increase of the scattering angle with recoil-ion charge state was observed for both capture and direct ionization. The results imply that, for smaller impact parameters, higher recoil-ion charge states are produced and that higher energy losses are obtained. We observed a weak target-Z dependence of the energy loss. The results are compared with n-body classical-trajectory Monte Carlo calculations by Olson, semiclassical-approximation calculations by Schuch et al. [Nucl. Instrum. Methods Phys. Res. Sect. B 42, 566 (1989)], and the energy-deposition model

    Microbial activity affects sulphur in biogenic aragonite

    Get PDF
    Carbonates that exhibit obvious diagenetic alteration are usually excluded as archives in palaeoenvironmental studies. However, the potential impact of microbial alteration during early diagenesis is still poorly explored. To investigate the sensitivity of sulphur concentration, distribution, oxidation state and isotopic composition in marine aragonite to microbial alteration, Arctica islandica bivalves and Porites sp. corals were experimentally exposed to anaerobic microbial activity. The anoxic incubation media included a benthic bacterial strain Shewanella sediminis and a natural anoxic sediment slurry with a natural microbial community of unknown species. Combined fluorescence microscopy and synchrotron‐based analysis of the sulphur distribution and oxidation state enabled a comparison of organic matter and sulphur content in the two materials. Results revealed a higher proportion of reduced sulphur species and locally stronger fluorescence within the pristine bivalve shell compared to the pristine coral skeleton. Within the pristine bivalve specimen, reduced sulphur was enriched in layers along the inner shell margin. After incubation in the anoxic sediment slurry, this region revealed rust‐brown staining and a patchy S2‐ distribution pattern rather than S2‐‐layers. Another effect on sulphur distribution was rust‐brown coloured fibres along one growth line, revealing a locally higher proportion of sulphur. The ή34S value of carbonate‐associated sulphate remained largely unaffected by both incubation media, but a lower ή34S value of water‐soluble sulphate reflected the degradation of insoluble organic matter by microbes in both experiments. No significant alteration was detected in the coral samples exposed to microbial alteration. The data clearly identified a distinct sensitivity of organically bound sulphur in biogenic aragonite to microbial alteration even when “traditional” geochemical proxies such as ή18OCARB or ή13CCARB in the carbonate didn’t show any effect. Differences in the intensity of microbial alteration documented are likely due to inherent variations in the concentration and nature of original organic compositions in the samples
    • 

    corecore